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In this study, retrieval of temperature and humidity profiles of atmosphere from INSAT 3D-observed
radiances has been accomplished. As the first step, a fast forward radiative transfer model using an
Artificial neural network has been developed and it was proven to be highly effective, giving a correlation
coefficient of 0.97. In order to develop this, a diverse set of physics-based clear sky profiles of pressure
(P), temperature (7') and specific humidity (¢) has been developed. The developed database was further
used for geophysical retrieval experiments in two different frameworks, namely, an ANN and Bayesian
estimation. The neural network retrievals were performed for three different cases, viz., temperature
only retrieval, humidity only retrieval and combined retrieval. The temperature/humidity only ANN
retrievals were found superior to combined retrieval using an ANN. Furthermore, Bayesian estimation

showed superior results when compared with the combined ANN retrievals.

1. Introduction

Remote sensing of the atmosphere and ocean has
gained considerable impetus in view of its use-
fulness in achieving better forecast skill through
radiance assimilation. Several data assimilation
techniques in both deterministic and stochastic
frameworks have been developed in the last few
decades. In order to achieve better forecast skill,
accurate retrieval of atmospheric parameters are
inevitable. Modern developments in satellite mete-
orology have paved way to accomplish the for-
mer. Geostationary satellites whose field of view
is fixed over a particular region have proved to
have a greater impact on the assimilation. There
is a class of deterministic approaches available for
the inversion/retrieval of atmospheric profiles from
the satellite-observed radiances. Hewison (2007)
demonstrated the use of 1D-VAR retieval tech-
nique to retrieve both temperature and humidity
profiles from a ground-based microwave radiometer.

This showed a considerable improvement in the
retrievals. Similarly, Marécal and Mahfouf (2000)
used the variational approach for simultaneous
retrieval of temperature and humidity from TRMM
precipitation radar. They also studied the impact
of the observation error in the retrieval and they
were subsequently assimilated in the ECMWEF 4d-
VAR system. Phalippou (1996) proposed a new
variational retrieval method based on the non-
linear optimal estimation theory for retrieving
humidity profiles from SSM/I radiances. The capa-
bility of neural networks was employed by Jones
et al. (1999) to derive monthly averages of the sur-
face specific humidity and air temperature. Churnside
et al. (1994) also used neural networks for inver-
sion of microwave radiometer data to obtain tem-
perature profiles. Shi (2001) demonstrated the
usage of feed-forward back propagation neural
network for temperature retrieval from AMSU-A
measurements. Jieying et al. (2010) proposed an
algorithm based on neural networks with morilet
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and mexihat function. They demonstrated the
humidity retrieval performance from FENGYUN-
3A datasets. Passive microwave humidity retrievals
using a multi-layered feed-forward neural network
was attempted by Cabrera-Mercader and Staelin
(1994). They demonstrated the superiority of neu-
ral network retrievals over statistical and other
physical retrieval schemes. Ajil et al. (2010) pro-
posed a neuro-fuzzy logic scheme for retrieving
temperature and humidity from GOES-12 sounder
channels.

Improvements in Bayesian statistics have also
inspired many researchers and the power of invok-
ing prior knowledge in the retrieval framework
has improved the retrieval performance signifi-
cantly. Marzano et al. (2010) presented an itera-
tive Bayesian retrieval algorithm for dual-polarized
radars. McFarlane et al. (2002) presented a new
algorithm for optical depth and liquid water con-
tent retrieval from millimeter wavelength radar
reflectivity. They used the prior distributions cal-
culated from in-situ measurements of droplet size
distributions. Thapliyal et al. (2014) studied the
impact of hybrid-regression technique on humid-
ity profile retrieval using an infrared sounder
data. Krishnan et al. (2012) developed a fast for-
ward model for simulating infrared radiances and
demonstrated its far-reaching impact in reduc-
ing the computation time required by the tra-
ditional line-by-line (LBL) solvers. Ramanujam
et al. (2011) developed a new PCA-ANN retrieval
approach for retrieving the hydrometeor pro-
files in a raining atmosphere. Bayesian retrievals
were also attempted by Balaji and Ramanujam
(2013) for retrieving the vertical rainfall struc-
ture from MADRAS instrument aboard Megha-
Tropiques. In view of the above in this study, a
simultaneous retrieval of humidity and tempera-
ture has been attempted in two different frame-
works namely an artificial neural network and
Bayesian estimation. The key highlights of this
work are: (1) use of physics-based retrievals and
(2) use of actual satellite-observed radiances for the
retrievals.

2. INSAT 3D

The INSAT 3D satellite launched on 26th July 2013
by ISRO, is one of India’s major meteorological
satellites. The objectives of the mission are:

® to continuously monitor the oceanic and land
surface regions with a multi-channel sounder and
imager which are of meteorological importance,

® to provide a quantitative estimate of the temper-
ature and humidity, and

e for satellite aided search and rescue services.
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The payload is an advanced very high resolution
infrared imager and a 19-channel sounder. The
sounder has 18 channels spanning in the infrared
region from 3.74 to 14.71 um and one channel in the
visible region of the spectrum with a ground resolu-
tion of 10x10 km at nadir for all channels. Table 1
gives the specifications of the infrared sounder pay-
load. There are three modes of operation available
in INSAT 3D, viz., full frame mode, programmed
normal scan mode and programmed sector scan
mode. The different scanning sectors associated
with INSAT 3D are shown in figure 1.

The various channels present in INSAT 3D
sounder and their respective central wavelengths
are shown in table 2. The INSAT 3D measured
counts were converted to brightness temperatures
(BTs) using the look up tables provided with the
Level 1 data. For a fuller discussion on different
modes of operation and corrections done on INSAT
3D products, please refer to INSAT 3D catalogue
(Katti et al. 2006).

3. Spectral response functions of INSAT 3D

The spectral response of the instrument channels
in the infrared region of the spectrum is shown in
figure 2. The spectral response function is con-
volved with each channel radiance in the following

way:
/0 TF) B, T.)dy = /0 TR R dv.

—~
—_
~—

Table 1. Infrared sounder payload specifications.

Spectral range Resolution
Spectral channels (nm) (km)
Visible 0.67-0.72 10
SWIR (6 channels) 3.67-4.59 10
MWIR (5 channels) 6.38-11.33 10
LWIR (7 channels) 11.66-14.85 10

Figure 1. INSAT 3D scanning geometry.
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Table 2. INSAT 3D channel specifications.

Central Principal
wavelength Bandwidth absorbing
Channel (pm) (pm) constituent
1 14.71 0.281 CO2 band
2 14.37 0.268 COg9 band
3 14.06 0.256 CO2 band
4 13.96 0.298 CO2 band
5 13.37 0.286 COg band
6 12.66 0.481 Water vapour
7 12.02 0.723 Water vapour
8 11.03 0.608 Window
9 9.71 0.235 Ozone
10 7.43 0.304 Water vapour
11 7.02 0.394 Water vapour
12 6.51 0.255 Water vapour
13 4.57 0.048 N2O
14 4.52 0.047 N2O
15 4.45 0.045 COq
16 4.13 0.0683 COq
17 3.98 0.0683 Window
18 3.74 0.140 Window

In equation (1), v is the wave number, F' is the
response of the instrument and B is the Planck’s
blackbody intensity at v and at temperature T..
Finally, R is the intensity measured by the instru-
ment. With this, the convolved radiance can be
written as:

S FW)RW)
P=T5F0)

(2)

4. Forward model

The intensity of electromagnetic radiation emerg-
ing from top of atmosphere in the infrared region of
the spectrum can be given by the radiative transfer
equation (RTE).

dI,
o 3
P (3)

In equation (3), I is the intensity of the diffuse
radiation, x is the absorptivity, € is the emissivity
and 7 is the optical depth. In the above equation,
the scattering effects were neglected due to clear
sky conditions. It can be seen that the intensity
change within a given optical depth is the sum of
attenuation inherent in the medium and augmen-
tation due to emission. Finally, I, is the Planck’s
blackbody spectral intensity which is a function of
wavenumber 1 and temperature (7") which can be
given as:

= —Iinln =+ 677[571'

P
" exp(ean/T) — 1

(4)
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Figure 2. Spectral response function for INSAT 3D channels.

where ¢; and ¢, are first and second radiation con-
stants respectively. By invoking Kirchoff’s law, we
can rewrite equation (3) as:

dI,
ar

an’
Texp(con/T) — 1°

In the present study, to simulate accurately the
upwelling radiances in the infrared regime of the
spectrum, an LBL radiative transfer equation solver
is inevitable. LibRadTran (Mayer and Kylling
2005), a community RTE solver for thermal and
solar radiation is used. The LBL calculations were
carried out with the information on radiative
properties from HITRAN (Rothman et al. 2005)
database. The agreement between the simulated
and observed BT's can be seen from the accompany-
ing parity plot (figure 3), which shows a correlation
coefficient of 0.98.
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Figure 3. Parity between forward model simulated and
observed INSAT 3D BTs.

5. Artificial neural networks

Artificial neural networks (ANN) are considered as
a more promising tool for problem involving huge
datasets especially when the relationship ceases to
be linear. The multi-layer feed-forward back prop-
agation network involves an input layer, a hidden
layer and an output layer. There are as many num-
ber of neurons as input in the input layer. All the
neurons in the hidden layer and input layer are
combined with associated weight to form the tar-
get output. The optimal weights can be arrived
using any of the gradient minimization algorithms.
The neurons being building blocks of these neural
network architecture can be varied and different
transfer functions can be used. One such transfer
function that has been widely used is the tan-
sigmoidal function which is given as:

et — e %

=—\ 6

I (6)

The output from each of the hidden neuron is
calculated as:

yi=rf (Z wzﬂz‘) (7)

where f is the transfer function and w;; is the
random weights given to each ¢ and jth neuron.
Finally, the output from the output layer is calcu-
lated by adding a linear activation function of the
form,

0j = > wi;. (8)
=1

During the training of ANN, a minimization tech-
nique is used to arrive at the best estimate of the
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Input
layer

Output
layer

Figure 4. A typical neural network architecture.

weights w;; for a given set of input and output vec-
tor. Once the best network is achieved, the weights
are saved and they are tested for accessing the
performance.

6. ANN-based forward model

In view of the time consuming forward model cal-
culations, a fast forward model is required so as
to accelerate the process of retrieval if direct ANN
retrievals are not desired and instead ANN is used
to drive a more robust retrieval algorithm. Fur-
thermore, each retrieval step may require many
forward calculations. The promising performance
and the learning capabilities of the ANNs have
aspired many researchers for developing an ANN-
based fast-forward model. So in this work, a fast
forward model has been constructed in the par-
lance of neural networks. A general architecture of
the ANN discussed above is shown in figure 4. The
inputs for the ANN are layerwise values of pressure
(P), temperature (7) and specific humidity (¢) and
the outputs are 18 channel BTs corresponding to
INSAT 3D.

6.1 Generation of physically consistent profiles

As discussed above, the process of retrieving atmo-
spheric humidity profiles has been accelerated by
the use of ANN. The atmospheric profiles required
for running the LibRadtran should be physically
consistent or physically based, taking care of
the atmospheric dynamic processes involved. The
Advanced Research WRF (ARW-WRF) (Skamarock
et al. 2005) has been used to achieve the same. The
ARW is a community numerical weather predic-
tion model. The ARW model solves the basic four
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primitive equations of fluid motion with either a
hydrostatic or non-hydrostatic assumption. ARW
follows o vertical coordinates which is commonly
used in many atmospheric hydrostatic models.

Ph — Pht
=Dl )
W

Ui

where

It = Phs — Pht- (10)

In equation (9), p,, refer to the hydrostatic com-
ponent of the pressure, whereas py; and py,, refer to
the top and surface pressure of the model, respec-
tively. The value of n varies from 0 at the sur-
face to 1 at top of the model pressure level. The
flux form of the Euler equations are solved numeri-
cally with third-order Runge-Kutta scheme (RK3).

Table 3. Physics paramterizations used in WRF

simulations.

Physics Scheme
Microphysics Kessler scheme
Convective Kain—Fritsch scheme

RRTM
Goddard scheme
MYJ surface scheme

Long-wave radiation
Short-wave radiation
Surface layer

25°N

15°N

10°N

5°N

75°E BO°E

BS°E 90°E 85°E
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The RK3 scheme solves the governing equation for
prognostic variables in three steps.

=" + %R(@t) (11)
P =P + %R(@*) (12)
PITAL = Pt AtR(P™) (13)

where, @' refers to the prognostic variables at time
t and R(®') refers to the model equations. The
Courant number limitation on the model time step
At can be written as:

C”rtheory « 556

\/3 Umax '

For more details on the stability criterion, time
split integration and spatial discretization, please
refer to Skamarock et al. (2005). Arakawa C grid
staggering is used in WRF. In such a staggered
grid, horizontal wind components U and V are
defined along the normal cell face whereas all
other thermodynamic properties © are defined at
the center of each grid. The initial and bound-
ary conditions required by the pre-processor in

At < (14)

100°E

Figure 5. Domain used for running WREF.
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WREF is supplied with the Global Forecast System
data at a resolution of 1° x 1°, which are avail-
able every 3 hrs. The same has been downloaded
from NOAA (http://nomads.ncdc.noaa.gov/data/
gfs4/) and the model was initialized from 7" — 6
hours, where T is the time at which the INSAT
3D observations are available. To allow the model
to get stabilized, initial spin-up time was taken
in to account. There are a huge variety of
parametrization schemes available in WRF in order
to account for the sub-grid processes. Since we
are focused on the clear sky scenarios, the sen-
sitivity of the forecast to different parametriza-
tion schemes were not carried out. The parametric
schemes used in this study are elaborated in
table 3.

The WRF domain considered in this study is
shown in figure 5. In the present study, the model
resolution was taken as 6 km x 6 km with 31 n
levels, which gives a total of 32,400 pixels in each
WRF run over the above domain. Since the focus
of the present retrieval studies is clear sky condi-
tion, it is very important to identify and remove the
cloudy pixels. As mentioned earlier, there are three
window channels available in the infrared sounder
of INSAT 3D. These channel radiances were used
to identify the cloudy pixels by means of thresh-
old values available in the literature. Since there is
a resolution change between the sounding instru-
ment and the WRF domain, a collocation strat-
egy was used to identify the common pixels. The

INSAT3D
Observations

Cloudfree
pixels

yes Collocation ves

S 2

LibRadtran

J 2

Bias
Correction
I 2
Matched

up
profiles

Figure 6. Generation of physically consistent profiles.
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collocation is based on the minimum distance
strategy which is shown in equation (15).

d;= \/ (latinsar —latwrr)? + (lonwsar — 101“\7\111?)2 )
15

In equation (15), j refers to the jth INSAT 3D
pixel. The minimum criterion for d was chosen

15
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Figure 7. Generated database of (a) pressure, (b) tempera-
ture, and (¢) humidity profiles.
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to be ~1 km. After successful collocation, the bias
correction of channel-wise brightness temperatures
(BTs) was carried out. The above-mentioned pro-
cedure is shown as a flow diagram in figure 6.

The generated database of geo-parameters of
interest, viz., pressure, temperature and specific
humidity are shown in figures 7(a, b and c). It is
evident that especially the humidity data are very
diverse in the whole range of relative humidity
which can be seen from the eigen vector plots of the
dataset, which is more representative of the spread
inherent in the profiles (figure 8).

6.2 Bayesian retrieval methodology

The above-developed diverse database of humid-
ity profiles were further used for accessing the
humidity retrieval performance in a Bayesian sense.
The Bayesian statistical framework has been used
widely for the inverse problems in the last few

15

10F

Vertical layers
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decades. The formulation of the Bayesian retrieval
is as follows:

PY|0)P(O)

(16)

where © is the state to be estimated given the
measurement vector Y. P(6) is our prior belief
about the state under consideration. The priors
can be information or non-informative. P(Y|O©)
is the likelihood probability in this case. It is
nothing but the mapping between the parameter
space and the observation space. Finally P(6|Y)
is the posterior probability density function of
O given Y. The maximum a posteriori (MAP)
estimate can be viewed as a maximum likeli-
hood estimate when a uniform prior P(©) « 1

0.4

-0.2 0
Magnitude of the Eigen Vectors

02 0.4 05

Figure 8. Eigen vectors of humidity profiles.
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Figure 9. Overview of Bayesian retrieval.
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is used in equation. The normalizing constant P(Y)
is taken as [ P(Y|©)P(O). For the discrete case,
the integration can be replaced with a summa-
tion. From the above equation, we can calculate
the expectation of a particular state as follows:

oy 2.9

E(6) = S (17)

In equation (17), the weight W, can be calculated as:

10N

(a)

15N

260 265 270 275 280 285 290 295 300

(c)

C Krishnamoorthy et al.

1 —(Yo—Ys)2

= 202 1
Wi \/27r06 (18)

where Yy and Yy are observed and simulated radi-
ances respectively and o is the standard deviation
of the radiance data under consideration. From the
above, it can be seen that the estimated state 6
is nothing but a weighted estimate of all candi-
dates from the database. Figure 9 elucidates the

1J.1]111|1il1111J_111

20N

15N

1 L L 1 l i Lk L J. L bk Il [ L Il i I

T T T ] T T

80E 8

T T I T L T T ] T
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[T

(b)

15N

10N

80E 85E 90E 95E

260 265 270 275 280 285 290 295 300

(d)

Figure 12. Comparison between observed and ANN simulated BT's for (a and b) water vapor channel and (¢ and d) window

channel.
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overall Bayesian retrieval methodology for temper-
ature and humidity retrieval.

7. Results and discussion

7.1 Parametric studies on the
fast-forward model

The procedure elucidated above for obtaining
physically consistent profiles was carried out for
different cloud free days during the months of

1 -~ : ™ - + + - -+
- ——— A retrieved "
STINSAT 3D Level 2 data
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“
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H
s sl
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(a) Specific hunidity o'k
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12 = INSAT Level 2 data

10F
“
N
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b
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(h) Tenperature in K

Figure 13. Comparision of (a) retrieved humidity profile in
a humidity only retrieval experiment and (b) retrieved tem-
perature profile in a temperature only retrieval experiment.

Table 4. RMS error associated with humidity
retrievals.

Humidity only Combined
retrieval retrieval

Min: 1.28 g/kg
Max: 8.72 g/kg

Max: 1.61 g/kg
Max: 9.34 g/kg
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March—September 2014, the rationale behind this
wide consideration is to capture the whole range
of clear sky conditions. Once the dataset was
populated and bias correction of the simulated BTs
done, about 80% of the data were used for training
the neural network. The rest of the data were used
to access the performance of the neural network,
viz., root mean squared (RMS) error and so on.
The parameters of paramount importance in order
to select the best network candidate are number
of neurons in the hidden layer, number of hidden
layers and the transfer function being used. The
minimization algorithm involved in arriving at the

Table 5. RMS error associated with temperature

retrievals.
Temperature only Combined
retrieval retrieval
Min: 1.28 K Min: 1.61 K
Max: 5.72 K Max: 5.84 K

i
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Figure 14. Comparison of retrieved (a) temperature and (b)
humidity profiles in a simultaneous retrieval experiment.
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optimal weight is of considerable importance. So
the number of neurons in a hidden layer is varied
between 1 and 50 and the number of hidden layer
is kept either 1 or 2. The network performance was
accessed using the RMS error calculated from the
remaining data as aforementioned. Figure 10 shows
the variation of the RMS error for a network with
various number of hidden layers.

It can be inferred that a network with 44 neurons
with 1 hidden layer performs better. Moreover, it is
a well established fact that when the number input
parameters far exceed the number of outputs, then
the neural network will perform better. Support-
ing the former argument, figure 11 shows the par-
ity plot between simulated and observed BTs from
INSAT 3D. The value of correlation coefficient was
found to be 0.97.

Figure 12 shows the observed and ANN sim-
ulated BTs for a water vapour channel centered
around 12.02 um and for a window channel cen-
tered around 11.03 um. Also from the figure, it is
evident that the ANN-based fast-forward model is

FMS Error in X

o 100 200 200 400 500 BOC
(a) WiN retrieved tesperature profiles

PHS Error in ¥

(b) RN retrieved humidity profiles

Figure 15. RMS error in a sample (a) humidity and (b)
temperature ANN retrieval.
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able to predict the cloud-free scenario with much
ease. Thus, it can be concluded that the ANN
performs extremely well as proxy for the forward
radiative transfer calculations. Furthermore, the
fast-forward model developed ascertains the qual-
ity of the developed realistic database. It can be
concluded that the database covers a whole range
of clear sky scenarios.

7.2 ANN-based geophysical retrievals

It is evident from the above discussions that an
ANN-based forward model performs well. By the
same token, an ANN-based brute force retrieval
was also attempted. From the above-developed
database of geophysical parameters, viz., pressure,
temperature and relative humidity, three different
classes of retrievals were performed in order to
arrive at the best retrieval strategy, viz., (1) tem-
perature only retrieval, (2) humidity only retrieval,
and (3) simultaneous retrieval of temperature and
humidity.

14 - -
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|
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Figure 16. Comparison of retrieved (a) temperature and (b)
humidity profiles in a Bayesian retrieval experiment.
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7.2.1 Temperature and humidity only retrieval

An ANN was trained with the 18 channel sim-
ulated BTs as input with the 15 layer temper-
ature/humidity as output. The above-mentioned
parametric studies were carried out to arrive at
the best neural network architecture. Once we have
decided upon the best neural network architec-
ture, actual INSAT 3D observed BTs were used
to retrieve the humidity profiles. Since we have
used the clear-sky conditions as the input and
their corresponding radiance response as the out-
put, we need to filter the cloudy pixels from the
measurement data again. First, the clear sky pix-
els were identified. Since the above database was
constructed by gathering thermodynamic profiles
over the ocean, it is inevitable to filter out the
pixels over the land. After successful collocation,
the retrievals were performed. Figure 13(a) shows
a comparison of a sample retrieved humidity pro-
file for cloud-free condition with the INSAT 3D
Level 2 data from MOSDAC (www.mosdac.gov.in).

RS Error in X

i i L L . = Y L
[ 50 100 150 200 %0 300 350 400 450
(a) Retrieved profiles of specific humidity

RS error in X

50 100 150 200 50 300 350 400 450
(b) Retrieved profiles of tesperature

Figure 17. RMS error in a sample (a) humidity and
(b) temperature Bayesian retrieval.
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The RMS error associated with the humidity only
retrieval is shown in table 4. The layerwise RMS
error of all shows a maximum error of 8.72 g/kg
near the surface.

Figure 13(b) shows the comparison for the tem-
perature retrieval. From table 5, the maximum
RMS error associated with the ANN only temper-
ature retrieval is 5.722 K.

7.2.2 Simultaneous temperature
and humidity retrieval

The third case of simultaneous retrieval was accom-
plished by training the network with the 18
channel BTs as input and layerwise values of both
temperature and humidity as output. As afore-
mentioned, after zeroing on the best network archi-
tecture, retrieval experiments were performed with
the actual INSAT 3D observations. Figure 14(a)
shows a comparison of the retrieved temperature
and Level 2 data. Similarly, the humidity counter-
part is shown in figure 14(b). The RMS errors for

12 === Renaved
Ra0B

Vertical levels

(a) Specific husidity in gikg

Retneved
RaQB

Vertical levels

0 i i N i " L
180 200 220 240 260 260 oo 3z

(h) Tenperature in K

Figure 18. Comparison of retrieved (a) temperature and
(b) humidity profile with RaOB for station: 23459.
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the simultaneous retrieval of humidity and temper-
ature can be seen in tables 4 and 5. It can be seen
that the maximum error incurred in the humidity
and temperature retrieval are 9.343 g/kg and 5.843
K, respectively. Eventhough the ANN architecture
is not a compression type of network, the errors
associated with the combined retrieval increases
only marginally when compared with humidity and
temperature alone retrievals. Also shown in fig-
ure 15(a and b) is the RMS error variation for
the sample retrieved profiles of temperature and
humidity. The average RMS error in the retrieval
was found to be 1.29% for temperature and 3.4%
for humidity.

7.3 Bayesian retrieval of temperature
and humidity

The above described Bayesian likelihood estima-
tion is used as a retrieval tool for retrieving
simultaneously temperature and humidity from 18
channel BTs measured by INSAT 3D. The o was
calculated from the covariance matrix of the BTs
from the database. The INSAT 3D measurements
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1} 2 4 ] 8 10 12 14 16 18 20
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Figure 19. Comparison of retrieved (a) temperature and
(b) humidity profile with RaOB for station: 23009.
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for a clear sky scenario were taken and the
retrievals were performed. Figure 16(a and b)
shows a comparison of the retrieved temperature
and humidity profiles with the INSAT 3D Level 2
derived data.

The RMS error associated with the retrieval
is shown in figure 17(a and b) for humidity and
temperature respectively. The average RMS error
in retrieved humidity profile was found to be
1.7%, whereas for the temperature it was observed
to be 0.01%. When compared with simultaneous
retrieval using an ANN, Bayesian retrieval method-
ology proves highly superior since the ANN archi-
tecture used for simultaneous retrieval was not a
compression type of network. The errors in the
retrieved humidity and temperature profiles can
be minimized when suitable priors for temperature
and humidity are used.

The Bayesian retrieval framework was compared
with in-situ radiosonde observations extracted
from NCEP ADP Upper Air Data by collocating
the coordinates of observations over ocean with
INSAT 3D pixels and three different locations
with station ids 23459, 23009 and 23094 were
used for comparison. The corresponding latitude
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Figure 20. Comparison of retrieved (a) temperature and
(b) humidity profile with RaOB for station: 23094.
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and longitude coordinates are (14.01°,87.0°),
(15.0°,89.96°) and (13.48°,83.98°) repectively.
The agreement between the retrieved profiles
of temperature and humidity can be seen in
figures 18(a)-20(b). The comparison shows an
RMS error of 3.52 g/kg in humidity and 3.78 K
in temperature.

8. Conclusions

The present work reports the development of an
ANN-based fast-forward model as a proxy for
the existing line-by-line solvers for simulating the
upwelling radiances associated with the channels
present in infra-red sounder aboard INSAT 3D. A
diverse set of physically consistent profiles of P, T’
and g was arrived at by using a dynamic weather
model WRF. The fast forward model was trained
and experimented with the realistic database and
a good correlation was observed when compared
with the observed BTs. Thus the exhaustiveness
of the developed database of geo-parameters were
ascertained. Two retrieval techniques, namely, (1)
an ANN-based retrieval and (2) Bayesian likeli-
hood retrieval were performed using the observed
radiances from INSAT 3D infrared sounder. In the
ANN-based retrieval itself three different configu-
rations were numerically experimented. A compar-
ison of the two retrieval techniques were made for
a clear sky scenario observed by the INSAT 3D
instrument and the resulting RMS errors observed
in different techniques were also highlighted. Com-
parison of the retrieved results with the radiosonde
observations was also done. In view of the above
results, it can be concluded that the diverse set of
profiles developed were more representative of most
of the clear sky scenarios. By a careful scrutiny of
the outcomes it can be concluded that:

1. The realistic database has a diverse nature with
respect to humidity and temperature.

2. The comparison made with humidity /temper-
ature only retrievals, showed better results
compared to the combined retrieval of temper-
ature and humidity.

3. The simultaneous retrieval of temperature and
humidity using Bayesian technique outperforms
ANN in terms of the RMS error.

The developed database not only filters the pix-
els over land, but also the pixels which are deemed
to be cloudy and this poses as a limitation of
the retrieval methodology developed. Eventhough
there is an exhaustiveness inherent in the devel-
oped database, the retrieval performance can be
even improved by assuming an a-priori for the
parameters and this is underway.
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