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The present paper deals with the propagation of Love-type wave in an initially stressed irregular vertically
heterogeneous layer lying over an initially stressed isotropic layer and an initially stressed isotropic half-
space. Two different types of irregularities, viz., rectangular and parabolic, are considered at the interface
of uppermost initially stressed heterogeneous layer and intermediate initially stressed isotropic layer.
Dispersion equations are obtained in closed form for both cases of irregularities, distinctly. The effect
of size and shape of irregularity, horizontal compressive initial stress, horizontal tensile initial stress,
heterogeneity of the uppermost layer and width ratio of the layers on phase velocity of Love-type wave
are the major highlights of the study. Comparative study has been made to identify the effects of different
shapes of irregularity, presence of heterogeneity and initial stresses. Numerical computations have been
carried out and depicted by means of graphs for the present study.

1. Introduction

Regulation of seismic wave propagation due to
structural deformations of the boundary of elastic
medium, in which it is propagating, is an undeni-
able reality. Consequently, seismologists and geo-
physicists found it significant to study the propa-
gation of seismic waves in an elastic medium with
divergent irregularities in order to understand and
predict the seismic behaviour at different moun-
tain basins of the earth, continental margins, etc.
Chattopadhyay et al. (2011a, b) proposed the idea
of finding the dispersion equation of magneto-
elastic shear waves in an irregular monoclinic layer.
Chattopadhyay et al. (1983) studied the propaga-
tion of an SH-guided wave in an internal stratum
with a parabolic irregularity in the lower interface.
Chattopadhyay and De (1983) studied the propa-
gation of Love waves in a porous layer underlain
by isotropic elastic medium with a rectangular

irregularity at the interface. Chattopadhyay and
Pal (1983) established the dispersion relation of
SH-waves caused by irregularity in the pre-stressed
internal stratum. Acharya and Roy (2009) inves-
tigated the plane SH waves through a magneto-
elastic crustal layer based over an elastic, solid
semi-space under the influence of surface stress on
the free surface of the crustal layer and irregularity
of the interface. Singh (2011) discussed the prop-
agation of Love wave in a layer medium bounded
by irregular boundary surfaces as a function of
the amplitudes of the corrugation, frequency and
position parameters of the corrugated boundary
surfaces. Ben-Hador and Buchen (1999) have estab-
lished the dispersion of Love and Rayleigh waves in
multi-layered models with smooth and weakly non-
parallel boundaries using the first-order perturba-
tion theory of Whitham’s equation. Propagation of
a Love wave in an initially stressed fluid-saturated
anisotropic porous layer with an irregular boundary
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sandwiched between two isotropic half-spaces was
studied by Chattaraj et al. (2012). Chattopadhyay
et al. (2011a, b) studied the propagation of horizon-
tally polarized shear waves in an internal magneto-
elastic monoclinic stratum with irregularity in lower
interface. Chattopadhyay and Singh (2012) studied
the effect of irregularity on the propagation of
horizontally polarized shear waves in an irregu-
lar magneto-elastic self-reinforced stratum sand-
wiched between two semi-infinite magneto-elastic
self-reinforced media considering two shapes of
irregularities namely rectangular and parabolic on
the interface of layer and lower semi-infinite media.
The factors such as overburdened layer, variation

in temperature, slow process of creep and gravi-
tational field, etc., have pronounced influence on
the propagation of waves as they are responsible
for the evolution of a large proportion of initial
stress in a medium. Comprehensive information
can be earned from the disquisition of Biot (1965).
A medium which can remold the attitude of the
medium due to some physical or mechanical obliga-
tions is designated as pre-stressed medium whose
occupancy may increase or decrease the overall
rigidity of an elastic structure. A state of initial
stress (pre-stress) in a deformable medium induces
mechanical properties which depend mainly on
the magnitude of the stress and are quite dis-
tinct from those associated with the rigidity of
the material itself. Our earth is a highly initially
stressed medium. Dey and Addy (1978) have shown
the effect of initial stresses on the propagation
of Love waves by considering the layer and the
half-space to be isotropic elastic in one case and
visco-elastic in another case. Acharya et al. (2009)
employed elasto-dynamical equations for trans-
versely isotropic solids to investigate the general
theory of transversely isotropic magneto-elastic
interface waves in conducting media under initial
hydrostatic tension or compression. Recently, the
dynamical response of normal moving load on an
irregular fiber-reinforced half-space is discussed by
Kaur et al. (2014). Khurana and Vashisth (2001)
derived the frequency of Love waves propagating in
a pre-stressed elastic layer overlying a poro-elastic
solid half-space having a loosely bounded common
interface.
Natural media (atmosphere, ocean, ground and

biological medium) exhibit widespread and often
time varying non-homogeneities due to the spa-
tial dependence in their material properties. These
non-homogeneities may be further accompanied by
layering anisotropy and the presence of inclusions.
Accordingly, it became an attractive proposition
to represent a particular medium as a homoge-
neous matrix over which certain properties such
as density, bulk modulus, etc., exhibit a random
variation. The sort of non-homogeneity existing in

the earth affects the propagation of seismic waves
in such media. Therefore, the critique of propaga-
tion of seismic waves in heterogeneous medium has
gained much gravity within the province of applied
mathematics and engineering. Some valuable infor-
mation about the propagation of seismic waves
is available in Ewing and Press (1957). Numer-
ous leading researchers gave thoughtful upshots
on the theory of Love-type wave propagation in
a medium where the velocity, rigidity and density
are functions of depth. Dutta (1963) discussed a
problem relating to the propagation of Love-type
waves in a heterogeneous internal stratum lying be-
tween two semi-infinite homogeneous elastic media.
Bhattacharya (1969) discussed the possibility of
the propagation of Love waves in an intermedi-
ate heterogeneous layer where the heterogeneity
in rigidity was assumed as exponentially varying
function of depth in one case and linearly vary-
ing function of depth in another case. Sato (1952)
studied the propagation of SH waves in a double
superficial layer over heterogeneous medium by
taking variation in rigidity. Till date no attempt
has been made to study the propagation of Love-
type wave in double layers of finite width contain-
ing an irregularity at the common interface and
lying over a half-space. Inclusion of initial stress in
each medium, heterogeneity and different types of
irregularity make the present study more relevant
towards its practical implications.
Since our earth is a layered structure, and hetero-

geneity and initial stress are its trivial characteris-
tics, the real scenario beneath the surface of earth
itself is a good model for considering double pre-
stressed layer with an irregular interface lying over
a pre-stressed half-space. Further, initial stresses
occur in structural elements during their manu-
facture and assembly, in the earth’s crust under
the action of geostatic and geodynamic forces, in
composites when they are created, in rock, etc.
Moreover, the evidence for the fact that ‘elastic
constants of a layer may be functions of depth’ is
also available. Apart from these, presence of irreg-
ular boundary surfaces of the constituent layers of
earth due to the presence of salt and ore deposits
deep beneath the earth, mountains, basins, moun-
tain roots, etc., is unavoidable. All these factors
greatly affect the propagation of seismic wave
through earth.
The present study concerns the propagation of

Love-type wave in an initially stressed irregular
vertically heterogeneous layer overlying an initially
stressed isotropic layer and an initially stressed
isotropic half-space. Heterogeneity in the upper-
most layer is caused due to initial stress, rigidity
and density which are exponentially varying func-
tions of depth. Dispersion relations are found in
closed form for the case of rectangular irregularity
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and parabolic irregularity separately. The effect of
irregularity parameter, horizontal compressive ini-
tial stress, horizontal tensile initial stress, hetero-
geneity parameters, width ratio of the layers on
the phase velocity are the major outcomes of the
study and these are depicted graphically. Compar-
ative study has also been made to trace out some
of the important peculiarities of the study.

2. Formulation of the problem

We consider the propagation of Love-type wave
in an initially stressed heterogeneous irregular
isotropic layer (M1) lying over an initially stressed
isotropic layer (M2) and an initially stressed
isotropic half-space (M3). Cartesian co-ordinate
system has been chosen in such a way that z-axis
is pointing positively downwards and x-axis is in
the direction of wave propagation, lying along the
common interface of medium M2 and M3. Two dif-
ferent types of irregularities have been assumed,
viz., rectangular and parabolic as shown in figures 1
and 2 respectively, with span 2s and depth H ′, at
the interface of uppermost initially stressed het-
erogeneous layer and intermediate initially stressed
isotropic layer.H1 is the thickness of the intermedi-
ate layer whereas (H2 −H1) is the thickness of the
uppermost layer. O is the origin of the rectangular
co-ordinate system. The source of disturbance S, is
placed on the positive z-axis at a distance d (>H ′)
from the origin. The equation of the interface may
be defined as:

z = εh(x)−H1, (1)

Figure 1. Geometry of the problem with rectangular
irregularity.

where

h(x) =

{

2s, |x| < s
0, |x| ≥ s

, (2)

for the case of rectangular irregularity as shown in
figure 1 and

h(x) =

⎧

⎨

⎩

2s

(

1−
x2

s2

)

, |x| < s

0, |x| ≥ s
(3)

for the case of parabolic irregularity as shown in
figure 2.
Here, ε = (H ′/2s)≪1, known as perturbation

parameter, is a small positive number under the
assumption that span of the irregularity is very
large compared to the depth of the irregularity.
For the propagation of Love-type wave, we

consider:

ui = 0, wi = 0, vi = vi(x, z, t), i = 1, 2, 3.
(4)

The heterogeneity in the uppermost layer is
taken as:

µ1 = µ0
1e

υz, ρ1 = ρ01e
υz, S

(1)
11 = S

(0)
11 e

υz,

where υ is the heterogeneity parameter. In the
absence of body force, the equation of motion
for the uppermost heterogeneous layer with initial

stress S
(1)
11 is obtained as:

(1 + ξ1)
∂2v1
∂x2

+
∂2v1
∂z2

+ υ
∂v1
∂z

=
1

β2
1

∂2v1
∂t2

, (5)

where

β1 =

√

µ0
1

ρ01
and ξ1 =

S
(0)
11

2µ0
1

.

Figure 2. Geometry of the problem with parabolic
irregularity.
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In the absence of body force, the equation of
motion for the intermediate isotropic layer with

initial stress S
(2)
11 is obtained as:

(1 + ξ2)
∂2v2
∂x2

+
∂2v2
∂z2

=
1

β2
2

∂2v2
∂t2

, (6)

where

β2 =

√

µ2

ρ2
and ξ2 =

S
(2)
11

2µ2

.

The equation of motion, in the absence of body
force, for the lowermost isotropic half-space is
calculated as:

(1 + ξ3)
∂2v3
∂x2

+
∂2v3
∂z2

=
1

β2
3

∂2v3
∂t2

, (7)

where

β3 =

√

µ3

ρ3
and ξ3 =

S
(3)
11

2µ3

.

The boundary conditions are as follows:

(i) Upper surface of the uppermost heterogeneous
layer is stress free:

µ0
1

∂v1
∂z

eυz = 0 at z = −H2.

(ii) Displacements are continuous at the interface:

v1 = v2 at z = εh(x)−H1.

(iii) Stresses are continuous at the interface:

µ0
1

(

∂v1
∂z

− εh′
∂v1
∂x

)

eυz = µ2

(

∂v2
∂z

− εh′
∂v2
∂x

)

at z = εh(x)−H1, where

h′ =
dh

dx
.

(iv) Displacements are continuous at the interface:

v2 = v3 at z = 0.

(v) Stresses are continuous at the interface:

µ2

∂v2
∂z

= µ3

∂v3
∂z

at z = 0.

3. Solution of the problem

Let us take the solution of equations (5), (6) and
(7) as:

vζ(x, z, t) = Vζ(z, x)e
iωt, (ζ = 1, 2, 3) (8)

where ω is the circular frequency.

Now, defining the Fourier transform Vζ(z, η) of
Vζ(z, x) as:

Vζ(z, η) =

∞
∫

−∞

Vζ(z, x)e
iηxdx, (9)

and the inverse Fourier transform as:

Vζ(z, x) =
1

2π

∞
∫

−∞

Vζ(z, η)e
−iηxdη (10)

and taking the Fourier transform of equations (5),
(6) and (7), we get:

d2V1

dz2
+ υ

dV1

dz
+ p21V1 = 0, (11)

d2V2

dz2
+ p22V2 = 0, (12)

d2V3

dz2
− p23V3 = 0, (13)

where

p21 =

(

ω2

β2
1

− η2(1− ξ1)

)

,

p22 =

(

ω2

β2
2

− η2(1− ξ2)

)

,

p23 =

(

η2(1− ξ3)−
ω2

β2
3

)

.

The appropriate solutions of equations (11), (12)
and (13) are

V1 = e−
υ

2
z(A cosTz +B sinTz), (14)

V2 = C cos p2z +D sin p2z, (15)

V3 = Ee−p3z, (16)

where

T =
1

2

√

−υ2 + 4

(

η2(1 + ξ)−
ω2

β2
1

)

.

Therefore, the displacements in the three media
are:

V1(z, x)=
1

2π

∞
∫

−∞

(A cosTz +B sinTz)e−
υ

2
ze−iηxdη,

(17)
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V2(z, x) =
1

2π

∞
∫

−∞

(C cos p2z +D sin p2z)e
−iηxdη,

(18)

V3(z, x) =
1

2π

∞
∫

−∞

(

Ee−p3z +
2

p3
ep3ze−p3d

)

e−iηxdη,

(19)
where the second term in the integrand of V3 is
introduced due to the source in the lowermost
medium.
Since the interface of the uppermost and

intermediate layer is not uniform, the terms
A, B, C and D are also functions of the pertur-
bation parameter, ε. Expanding these terms in
ascending powers of ε and retaining the terms up
to the first order of ε, as ε is a small parameter;
the following approximations can be used:

A ∼= A0 +A1ε, B ∼= B0 +B1ε,

C ∼= C0 + C1ε, D ∼= D0 +D1ε,

e±vεh ∼= 1± vεh, cos vεh ∼= 1,

sin vεh ∼= vεh,

where v is any quantity.
Using the boundary condition (i), we get:

(

A0T sinTH2 +B0T cosTH2 −
υ

2
A0 cosTH2

+
υ

2
B0 sinTH2

)

+ ε
(

A1T sinTH2 +B1T cosTH2

−
υ

2
A1 cosTH2 +

υ

2
B1 sinTH2

)

= 0. (20)

Using the boundary condition (ii), we have:

∞
∫

−∞

[

(A0 cosTH1 −B0 sinTH1)e
υ

2
H1

−(C0 cos p2H1 −D0 sin p2H1)
]

+ε
[

(A1 cosTH1 −B1 sinTH1)e
υ

2
H1

−(C1 cos p2H1 −D1 sin p2H1)] e
−iηxdη

= ε

∞
∫

−∞

[(

−TA0 sinTH1 +
υ

2
A0 cosTH1

−B0T cosTH1 +
υ

2
B0 sinTH1

)

e
υ

2
H1

+(p2C0 sin p2H1 + p2D0 cos p2H1)
]

×h(x)e−iηxdη. (21)

Now we define the Fourier transform of h(x) as:

h(λ) =

∞
∫

−∞

h(x)eiλxdx, (22)

and the inverse transform as:

h(x) =
1

2π

∞
∫

−∞

h(λ)e−iλxdλ. (23)

Therefore,

h′(x) = −
i

2π

∞
∫

−∞

λh(λ)e−iλxdλ. (24)

Using equations (22), (23) and (24) in equation
(21), we have:

∞
∫

−∞

[

(A0cosTH1−B0 sinTH1)e
υ

2
H1

− (C0 cos p2H1 −D0 sin p2H1)]

+ ε
[

(A1 cosTH1 −B1 sinTH1)e
υ

2
H1

− (C1 cos p2H1 −D1 sin p2H1)] e
−iηxdη

=
ε

2π

∞
∫

−∞

⎧

⎨

⎩

∞
∫

−∞

[(

−TA0 sinTH1 +
υ

2
A0 cosTH1

−B0T cosTH1 +
υ

2
B0 sinTH1

)

e
υ

2
H1

+(p2C0 sin p2H1 + p2D0 cos p2H1)
]

×h(λ)e−i(η+λ)xdη

⎫

⎬

⎭

dλ. (25)

Putting η + λ = k for the inner integral in the
right-hand side of equation (25), so that λ may be
treated as a constant such that dη = dk, replacing
η by k in the left-hand side of equation (25), and
finally after taking the Fourier transform as defined
above, we have:

[

(A0 cosTH1 −B0 sinTH1)e
υ

2
H1

−(C0 cos p2H1 −D0 sin p2H1)]

+ε
[

(A1 cosTH1 −B1 sinTH1)e
υ

2
H1

−(C1 cos p2H1 −D1 sin p2H1)] = εR1(k),

(26)
where

R1(k) =
1

2π

∞
∫

−∞

[(

−TA0 sinTH1 +
υ

2
A0 cosTH1

−B0T cosTH1 +
υ

2
B0 sinTH1

)

e
υ

2
H1

+(p2C0 sin p2H1+p2D0 cos p2H1)
]

h(λ)dλ.

(27)
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Using boundary condition (iii), we obtain:
∞
∫

−∞

{[

(µ2p2C0 sin p2H1 + µ2p2D0 cos p2H1)

−µ0
1e

−
υ

2
H1

(

−A0

υ

2
cosTH1 +B0

υ

2
sinTH1

+TA0 sinTH1 + TB0 cosTH1

)]

+ε
[

(µ2p2C1 sin p2H1 + µ2p2D1 cos p2H1)

−µ0
1e

−
υ

2
H1

(

−A1

υ

2
cosTH1 +B1

υ

2
sinTH1

+TA1 sinTH1 + TB1 cosTH1

)]}

e−iηxdη

= ε

∞
∫

−∞

{

(

C0p
2
2µ2 cos p2H1 −D0p

2
2µ2 sin p2H1

)

+µ0
1e

−
υ

2
H1

(

−A0

υ

2
T sinTH1 −B0

υ

2
T cosTH1

−T 2A0 cosTH1 + T 2B0 sinTH1

−
υ2

4
A0 cosTH1 +

υ2

4
B0 sinTH1

+
υ

2
TA0 sinTH1 +

υ

2
TB0 cosTH1

)}

h(x)

+{(−iηµ2C0 cos p2H1 + iηµ2D0 sin p2H1)

+µ0
1e

−
υ

2
H1iη(A0 cosTH1 −B0 sinTH1)}

×h′(x)e−iηxdη. (28)

Substitution of equations (22), (23) and (24) in
equation (28) and proceeding as in equation (26),
gives:
[

(µ2p2C0 sin p2H1 + µ2p2D0 cos p2H1)

− µ0
1e

−
υ

2
H1

(

−A0

υ

2
cosTH1 +B0

υ

2
sinTH1

+TA0 sinTH1 + TB0 cosTH1

) ]

+ ε
[

(µ2p2C1 sin p2H1 +µ2p2D1 cos p2H1)

− µ0
1e

−
υ

2
H1

(

−A1

υ

2
cosTH1 +B1

υ

2
sinTH1

+ TA1 sinTH1+TB1 cosTH1

)]

= R2(k),

(29)

where

R2(k) =
1

2π

∞
∫

−∞

{[

(

µ2C0p
2
2 cos p2H1

−µ2D0p
2
2 sin p2H1

)

+ µ0
1e

−
υ

2
H1

×
(

−A0

υ

2
T sinTH1 −B0

υ

2
T cosTH1

− T 2A0 cosTH1 + T 2B0 cosTH1

−
υ2

4
A0 cosTH1 +

υ2

4
B0 sinTH1

+
υ

2
TA0 sinTH1 +

υ

2
TB0 cosTH1

)]

+iλ [(−ikµ2C0 cos p2H1 + ikµ2D0 sin p2H1)

+ µ0
1e

−
υ

2
H1ik (A0 cosTH1

−B0 sinTH1)]
}

h(λ)dλ. (30)

From boundary conditions (iv) and (v), we get:

(C0 + C1ε)−

(

E +
2

p3
e−p3d

)

= 0 (31)

and

(µ2p2D0 + µ3p3E − 2µ3e
−p3d) + εµ2p2D1 = 0, (32)

respectively. Equating the absolute terms (i.e., the
terms not containing ε) and the coefficient of ε from
equations (20), (26), (29), (31) and (32), we get:

A0T sinTH2 +B0T cosTH2 −
υ

2
A0 cosTH2

+
υ

2
B0 sinTH2 = 0, (33)

A1T sinTH2 +B1T cosTH2 −
υ

2
A1 cosTH2

+
υ

2
B1 sinTH2 = 0, (34)

(A0 cosTH1 −B0 sinTH1)e
υ

2
H1

− (C0 cos p2H1 −D0 sin p2H1) = 0, (35)

(A1 cosTH1 −B1 sinTH1)e
υ

2
H1

− (C1 cos p2H1 −D1 sin p2H1) = R1, (36)

(µ2p2C0 sin p2H1 + µ2p2D0 cos p2H1)− µ0
1e

−
υ

2
H1

×
(

−A0

υ

2
cosTH1 +B0

υ

2
sinTH1

+ TA0 sinTH1 + TB0 cosTH1

)

= 0, (37)

(µ2p2C1 sin p2H1 + µ2p2D1 cos p2H1)− µ0
1e

−
υ

2
H1

×
(

−A1

υ

2
cosTH1 +B1

υ

2
sinTH1

+TA1 sinTH1 + TB1 cosTH1

)

= R2, (38)
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C0 − E −
2

p3
E−p3d = 0, (39)

C1 = 0, D1 = 0, (40)

p2µ2D0 + µ3p3E − 2µ3e
−p3d = 0. (41)

Solving the above equations, expressions for the
arbitrary constants can be easily deduced. The values
of arbitrary constants are provided in Appendix I.
The displacement in the uppermost layer is given

by:

V1 =
1

2π

∞
∫

−∞

2µ2p2µ3e
−p3d(2T tanTH2 − υ)

U(k)

×

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1+

ε

[

R1µ
0
1(−υ cosTH1 + 2T sinTH1)e

−
υ

2
H1

+2R2 cosTH1e
υ

2
H1

]

4µ2p2µ3µ0
1T (2T tanTH2 − υ)

× ep3dU(k)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

[

−
(2T + υ tanTH2)

(2T tanTH2 − υ)
cosTz + sinTz

]

× e−
υ

2
ze−iηxdη, (42)

where U(k) = Q1 + Q2 tanTH2. Q1 and Q2 are
provided in Appendix I.

3.1 Case I

When the interface of uppermost layer and inter-
mediate layer contains the irregularity of rectangu-
lar shape of depth H ′ and span 2s:
Taking the Fourier transform of equation (2), we

get:

h(λ) =
4s

λ
sin(λs). (43)

Using equations (27) and (30), we get:

1

2
R1µ

0
1(−υ cosTH1 + 2T sinTH1)e

−
υ

2
H1

+R2 cosTH1e
υ

2
H1

=
2s

π

∞
∫

−∞

[ψ(k − λ) + ψ(k + λ)]
1

λ
sin(λs)dλ,

(44)
where

ψ(k − λ) = [A2 +A3 +A4]
η=k−λ e−p3d

U(k)
(45)

with
A2 = Q3 +Q4 tanTH2, (46)

A3 = Q5 +Q6 tanTH2, (47)

A4 = Q7 +Q8 tanTH2, (48)

where Q3, Q4, Q5, Q6, Q7 and Q8 are provided in
Appendix.
Here the argument of ψ(k− λ) is because of η+

λ = k.
Using asymptotic formula of Willis (1948) and

neglecting the terms containing 2/s and higher
power of 2/s for large s, we have (Tranter 1966)

∞
∫

−∞

[ψ(k − λ) + ψ(k + λ)]
1

λ
sin

λs

2
dλ

∼=
π

2
2ψ(k)

= πψ(k). (49)

Using equation (49) in equation (44), we obtain

1

2
R1µ

0
1(−υ cosTH1+2T sinTH1)+R2 cosTH1e

υ

2
H1

= 2sψ(k) =
H ′

ε
ψ(k). (50)

Therefore, the displacement in the uppermost
layer is:

V1 =
1

2π

∞
∫

−∞

2µ2p2µ3e
−p3d(2T tanTH2 − υ)

U(k) [1− (H ′ψ(k)ep3dU(k)/2µ2p2Tµ0
1µ3(2T tanTH2 − υ)(µ2p2 cos p2H1 + µ3p3 sin p2H1))]

×

[

−
(2T + υ tanTH2)

(2T tanTH2 − υ)
cosTz + sinTz

]

e−
υ

2
ze−iηxdη. (51)
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The value of above integral depends entirely on the
contribution of the poles of the integrand. The
poles are located at the roots of equation

U(k)

⎡

⎢

⎢

⎣

1−
H ′ψ(k)ep3dU(k)

[

2µ2p2Tµ
0
1µ3(2T tanTH2 − υ)

×(µ2p2 cos p2H1+µ3p3 sin p2H1)

]

⎤

⎥

⎥

⎦

=0.

(52)

Now, on simplification equation (52) leads to

S1 tan
2 TH2 + S2 tanTH2 + S3 = 0, (53)

where S1, S2, S3 are provided in Appendix I.
If c is the common wave velocity of the wave

propagating along the surface, then one can define
(where ω = ck and k is the wave number),

P2 =
p2
k
, P3 =

p3
k

and t =
T

k
, (54)

where

P2 =

√

c2

β2
2

− 1− ξ′, P3 =

√

1− ξ′ −
c2

β2
3

,

t =
1

2

√

−υ2

k2
+ 4

(

1 + ξ −
c2

β2
1

)

. (55)

In view of equations (54) and (55), equation (53)
gives

S4 tan
2 tKH2 + S5 tan tKH2 + S6 = 0, (56)

where S4, S5 and S6 are given in Appendix.
Equation (56) is the dispersion equation for

the propagation of Love-type wave in an initially
stressed vertically heterogeneous irregular isotropic
layer with rectangular irregularity lying over an ini-
tially stressed isotropic layer and initially stressed
isotropic half-space.

3.2 Case II

When the interface of uppermost layer and inter-
mediate layer contains the irregularity of parabolic
shape of maximum depth H ′ and span 2s:
Taking the Fourier transform of equation (3), we

get:

h(λ) =
4H ′s

ε

sin(λs)− λs cos(λs)

(λs)3
. (57)

Using equations (27) and (30), we get:

R1µ
0
1

(

−
υ

2
cosTH1+T sinTH1

)

e−
υ

2
H1+R2cosTH1e

υ

2
H1

=
2H ′s

πε

∞
∫

0

[ψ(k − λ)+ψ(k + λ)]

√

π

2

J3/2(λs)

(λs)3/2
dλ,

(58)

where J3/2(λs) is a Bessel function of the first kind
of order 3/2.
Using asymptotic formula of Willis (1948) and

neglecting the terms containing 2/s and higher
power of 2/s for large s, we have (Tranter 1966):

∞
∫

0

[ψ(k − λ) + ψ(k + λ)]

√

π

2

J3/2(λs)

(λs)3/2
dλ∼=

2

3s
ψ(k).

(59)

Using equation (59) in equation (58), we obtain:

1

2
R1µ

0
1(−υ cosTH1+2T sinTH1)+R2 cosTH1e

υ

2
H1

=
2H ′s

πε
.
2

3s
ψ(k) =

4H ′

3πε
ψ(k). (60)

Therefore, the displacement in the uppermost layer
is:

V1 =
1

2π

∞
∫

−∞

2µ2p2µ3e
−p3d(2T tanTH2 − υ)

U(k) [1− (H ′′ψ(k)ep3dU(k)/2µ2p2Tµ0
1µ3(2T tanTH2 − υ)(µ2p2 cos p2H1 + µ3p3 sin p2H1))]

×

[

−
(2T + υ tanTH2)

(2T tanTH2 − υ)
cosTz + sinTz

]

e−
υ

2
ze−iηxdη, (61)

where H ′′ = 4
3π
H ′.

The value of above integral depends entirely on the contribution of the poles of the integrand. The
poles are located at the roots of equation

U(k)

[

1−
H ′′ψ(k)ep3dU(k)

2µ2p2Tµ0
1µ3(2T tanTH2 − υ)(µ2p2 cos p2H1 + µ3p3 sin p2H1)

]

= 0. (62)
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Equation (62) after simplification gives:

F1 tan
2 TH2 + F2 tanTH2 + F3 = 0, (63)

where F1, F2, F3 are provided in Appendix I.
Using equations (54) and (55), equation (63)

leads to

F4 tan
2 tkH2 + F5 tan tkH2 + F6 = 0, (64)

where F4, F5 and F6 are given in Appendix.
Equation (64) is the dispersion equation for

the propagation of Love-type wave in an initially
stressed vertically heterogeneous irregular isotropic
layer with parabolic irregularity lying over an ini-
tially stressed isotropic layer and initially stressed
isotropic half-space.

4. Particular cases

4.1 Case 1

When υ = 0 and S
(0)
11 = 0, equations (56) and (64)

reduces to

S
(1)
4 tan2 t(1)kH2+S

(1)
5 tan t(1)kH2+S

(1)
6 = 0 (65)

and

F
(1)
4 tan2 t(1)kH2+F

(1)
5 tan t(1)kH2+F

(1)
6 = 0 (66)

respectively. S
(1)
4 , S

(1)
5 , S

(1)
6 , t(1), F

(1)
4 , F

(1)
5 , F

(1)
6

are provided in Appendix. Equations (65) and (66)
are the dispersion relation for the propagation of
Love-type wave in an irregular isotropic homoge-
neous layer without initial stress lying over an
initially stressed isotropic layer and an initially
stressed isotropic half-space when irregularity is
considered in rectangular form and parabolic form
respectively.

4.2 Case 2

When υ = 0, S
(0)
11 = 0, S

(2)
11 = 0 and S

(3)
11 = 0,

equations (56) and (64) takes the form

S
(2)
4 tan2 t(1)kH2+S

(2)
5 tan t(1)kH2+S

(2)
6 = 0 (67)

and

F
(2)
4 tan2 t(1)kH2+F

(2)
5 tan t(1)kH2+F

(2)
6 = 0 (68)

respectively. S
(2)
4 , S

(2)
5 , S

(2)
6 , F

(2)
4 , F

(2)
5 , F

(2)
6 are

provided in Appendix. Equations (67) and (68)
are the dispersion equation for the propagation
of Love-type wave in an irregular isotropic homo-
geneous layer without initial stress lying over an

isotropic layer and an isotropic half-space with-
out initial stress when irregularity is considered in
rectangular form and parabolic form respectively.

4.3 Case 3

When υ = 0, S
(2)
11 = 0, S

(3)
11 = 0, H ′′ = 0, and

H ′ = 0, both equations (56) and (64) lead to

tan t(2)kH2

=

⎡

⎣

−µ2P
(1)
2 (µ2P

(1)
2 tanP

(1)
2 kH1 − µ3P

(1)
3 )

+µ0
1t

(2) tan t(2)kH1(µ2P
(1)
2

−µ3P
(1)
3 tanP

(1)
2 kH1)

⎤

⎦

⎡

⎣

µ2P
(1)
2 tan t(2)kH1

×(µ2P
(1)
2 tanP

(1)
2 kH1 − µ3P

(1)
3 )

+µ0
1t

(2)(µ2P
(1)
2 + µ3P

(1)
3 tanP

(1)
2 kH1)

⎤

⎦

which is the dispersion equation for the propaga-
tion of Love-type wave in a regular initially stressed
isotropic homogeneous layer without initial stress
lying over an isotropic layer and an isotropic

half-space without initial stress. t(2), P
(1)
2 , P

(1)
3 are

provided in Appendix.

4.4 Case 4

When υ = 0, S
(0)
11 =0, S

(2)
11 =0, S

(3)
11 =0, H ′ = 0,

H ′′ = 0, both equations (56) and (64) reduces to

tan t(1)kH2

=

⎡

⎣

−µ2P
(1)
2 (µ2P

(1)
2 tanP

(1)
2 kH1 − µ3P

(1)
3 )

+µ0
1t

(1) tan t(1)kH1(µ2P
(1)
2

−µ3P
(1)
3 tanP

(1)
2 kH1)

⎤

⎦

⎡

⎣

µ2P
(1)
2 tan t(1)kH1

×(µ2P
(1)
2 tanP

(1)
2 kH1 − µ3P

(1)
3 )

+µ0
1t

(1)(µ2P
(1)
2 + µ3P

(1)
3 tanP

(1)
2 kH1)

⎤

⎦

,

which is the dispersion equation for the propaga-
tion of Love-type wave in a regular isotropic homo-
geneous layer without initial stress lying over an
isotropic layer and an isotropic half-space without
initial stress.

4.5 Case 5

When υ = 0, S
(0)
11 = 0, S

(2)
11 = 0, S

(3)
11 = 0, H ′ = 0,

H ′′ =0, H2 → H1, both equations (56) and (64)
becomes

tan kH

√

c2

β2
2

− 1 =
µ3

√

1− c2/β2
3

µ2

√

c2/β2
2 − 1

,

which is the classical Love-wave equation.
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5. Numerical results and discussion

The following data has been considered for numer-
ical computation of phase velocity of Love-type
wave propagating in an initially stressed irregular
heterogeneous isotropic layer lying over an initially
stressed isotropic layer and an initially stressed
isotropic half-space (Gubbins 1990):
For uppermost layer:

µ1 = 32.3× 109 N/m
2
,

ρ1 = 2803 kg/m
3
.

For intermediate layer:

µ2 = 65.4× 109 N/m
2
,

ρ2 = 3409 kg/m
3
.

For lowermost half-space:

µ3 = 291.7× 109 N/m
2
,

ρ3 = 5563 kg/m
3
.

Moreover, we consider the following data:

υH1 = 0.01, 0.03, 0.05, 1.1;

H ′/H1 = 0.1, 0.3, 0.5;

H2/H1 = 1.1, 1.5, 2.5, 3.5;

ξ1 = 0,±0.2,±0.4;

ξ2 = 0,±0.05,±0.1, 0.2;

ξ3 = 0,±0.2,±0.4.

Graphical interpretation of dispersion curve ref-
lecting the effect of different affecting parameters,
viz., heterogeneity (νH1), irregularity (H ′/H1),
width ratio of layers (H2/H1), horizontal initial
stress acting in uppermost layer (ξ1), horizontal ini-
tial stress acting in sandwiched layer (ξ2) and hor-
izontal initial stress acting in lowermost half-space
(ξ3), have been shown in figures 3–8. All the figures
show the variation of phase velocity of Love-type
wave against wave number for different values
of affecting parameters. It can be easily per-
ceived from all these figures that the phase veloc-
ity of Love-type wave decreases with increase in
wave number. To perform a comparative study for
the case of rectangular irregularity with that of
parabolic irregularity existing at the interface of
uppermost layer and intermediate layer, we carried
out numerical computations and depicted them
graphically in figures 3–8. In each of these figures,
solid line curves correspond to the case of rectangu-
lar irregularity and dotted line curves correspond
to the case of parabolic irregularity.

Figure 3. Phase velocity (c/β1) against wave number (kH1)
for different values of heterogeneity parameter (υH1) when
ξ1 = 0.2, ξ2 = 0.2, ξ3 = 0.2, H ′/H1 = 0.1, H2/H1 = 1.1.

Figure 4. Phase velocity (c/β1) against wave number (kH1)
for different values of width ratio of layers (H2/H1) when
ξ1 = 0.2, ξ2 = 0.2, ξ3 = 0.2, H ′/H1 = 0.1, υH1 = 1.1.

Figure 3 enlightens the effect of heterogeneity
acting in the uppermost layer on the phase velocity
of Love-type wave for both the cases when irregula-
rity is considered in rectangular form and parabolic
form. The figure particularizes that dispersion
curve shifts upward as the heterogeneity increases,
i.e., the phase velocity increases as heterogeneity
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Figure 5. Phase velocity (c/β1) against wave number (kH1)
for different values of irregularity parameter H ′/H1 when
ξ1 = 0.2, ξ2 = 0.2, ξ3 = 0.2, υH1 = 0.01, H2/H1 = 1.5.

Figure 6. Phase velocity (c/β1) against wave number (kH1)
for different values of horizontal initial stress acting in the
uppermost layer (ξ1) when ξ2 = 0.2, ξ3 = 0.2, H ′/H1 = 0.1,
υH1 = 0.01, H2/H1 = 1.5.

grows in the uppermost layer. Moreover, minute
examination of the curves adduce that the effect of
heterogeneity on phase velocity of Love-type wave
is less at low frequency region as compared to high
frequency region.
The effect of width ratio of layers on the phase

velocity of Love-type wave has been shown in
figure 4. It has been noticed from the figure
that as the width ratio increases dispersion curve
shifts downwards, i.e., phase velocity decreases

Figure 7. Phase velocity (c/β1) against wave number (kH1)
for different values of horizontal initial stress acting in the inter-
mediate layer (ξ2) when ξ1 = 0.2, ξ3 = 0.2, H ′/H1 = 0.1,
υH1 = 0.01, H2/H1 = 1.5.

Figure 8. Phase velocity (c/β1) against wave number (kH1)
for different values of horizontal initial stress acting in the
half-space (ξ3) when ξ1 = 0.2, ξ2 = 0.2, H ′/H1 = 0.1,
υH1 = 0.01, H2/H1 = 1.5.

with increase in width ratio of layers for both the
cases when the irregularity is considered in rectan-
gular and parabolic form existing at the interface
of uppermost layer and intermediate layer. Also, it
can be concluded that with increase in the magni-
tude of width ratio, its effect on the phase velocity
of Love-type wave decreases for both rectangular
and parabolic irregularity cases.



1468 Abhishek Kumar Singh et al.

Figure 5 delineates the effect of irregularity
parameter on the phase velocity of Love-type wave.
It is evident from the figure that phase velocity of
Love-type wave decreases with increase in size of
irregularity for both the case of rectangular and
parabolic irregularity. As like the effect of width
ratio on phase velocity, figure 5 elucidates that with
increase in the magnitude of irregularity, its effect
on phase velocity of Love-type wave declines for
both rectangular and parabolic irregularity cases.
Figures 6, 7 and 8 render the effect of hori-

zontal initial stress associated with the uppermost
layer, intermediate layer and lowermost half-space,
respectively, on the phase velocity of Love-type
wave for both the cases of rectangular irregularity
and parabolic irregularity existing at the interface
of uppermost layer and intermediate layer. It has
been deduced from the figures that phase veloc-
ity increases with the increase in horizontal initial

stresses acting in uppermost layer, intermediate
layer and lowermost half-space for both the cases
of rectangular irregularity and parabolic irregular-
ity. More precisely, in each of the three mediums,
phase velocity increases as the horizontal compres-
sive initial stress increases whereas phase veloc-
ity decreases as the horizontal tensile initial stress
increases. In particular, figure 8 illustrates that the
effect of horizontal tensile initial stress on the phase
velocity of Love-type wave is comparatively much
pronounced than the horizontal compressive initial
stress associated with lowermost half-space.
A meticulous observation specifies that although

each of the initial stresses acting in the medium
portray similar behaviour on the dispersion curve
yet the initial stress associated with the interme-
diate layer affects the dispersion curve the most in
comparison to the initial stresses associated with
uppermost layer and lowermost half-space. The

(i) (ii) (iii)

Figure 9. Phase velocity (c/β1) against wave number (kH1) and heterogeneity parameter (υH1) when rectangular irreg-
ularity is considered and H2/H1 = 1.5, H ′/H1 = 0.1; for (i) ξ1 = 0.1, ξ2 = 0.1, ξ3 = 0.1, (ii) ξ1 = 0, ξ2 = 0, ξ3 = 0;
(iii) ξ1 = −0.1, ξ2 = −0.1, ξ3 = −0.1.

(i) (ii) (iii)

Figure 10. Phase velocity (c/β1) against wave number (kH1) and heterogeneity parameter (υH1) when parabolic irregularity
is considered and H2/H1 = 1.5, H ′/H1 = 0.1; for (i) ξ1 = 0.1, ξ2 = 0.1, ξ3 = 0.1, (ii) ξ1 = 0, ξ2 = 0, ξ3 = 0;
(iii) ξ1 = −0.1, ξ2 = −0.1, ξ3 = −0.1.
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effect of initial stresses acting in the uppermost
layer and intermediate layer on the phase velocity
of Love-type wave is less in the low frequency region
but significant at high frequency region for both
the cases of rectangular irregularity and parabolic
irregularity. The effect of initial stress acting in
lowermost half-space on the phase velocity of Love-
type wave is significant in the low frequency region
whereas it is comparatively less at high frequency
region for both the cases of rectangular irregularity
and parabolic irregularity.
An overview and comparative study of all the

curves in figures 3–8 signify that the dotted line
curves always lie above the solid line curves, i.e.,
the curve corresponding to parabolic irregularity
dominates the curve corresponding to rectangular

irregularity. Therefore, these figures reveal that
parabolic irregularity supports comparatively more
phase velocity than the rectangular irregularity
present at the interface of uppermost layer and
intermediate layer.
The variation of dimensionless phase velocity

against dimensionless wave number and hetero-
geneity associated with uppermost layer are shown
by means of surface plots in figures 9 and 10 for
the case of rectangular irregularity and parabolic
irregularity respectively persisting at the interface
of uppermost layer and intermediate layer. Surface
plots in figures 11 and 12 irradiate the variation of
dimensionless phase velocity against dimensionless
wave number and irregularity for the case of
rectangular irregularity and parabolic irregularity

(i) (ii) (iii)

Figure 11. Phase velocity (c/β1) against wave number (kH1) and irregularity parameter (H ′/H1) when rectangular irreg-
ularity is considered and H2/H1 = 1.5, υH1 = 0.1; for (i) ξ1 = 0.1, ξ2 = 0.1, ξ3 = 0.1, (ii) ξ1 = 0, ξ2 = 0, ξ3 = 0;
(iii) ξ1 = −0.1, ξ2 = −0.1, ξ3 = −0.1.

(i) (ii) (iii)

Figure 12. Phase velocity (c/β1) against wave number (kH1) and irregularity parameter (H ′/H1) when parabolic irreg-
ularity is considered and H2/H1 = 1.5, υH1 = 0.1; for (i) ξ1 = 0.1, ξ2 = 0.1, ξ3 = 0.1, (ii) ξ1 = 0, ξ2 = 0, ξ3 = 0;
(iii) ξ1 = −0.1, ξ2 = −0.1, ξ3 = −0.1.
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respectively present at the interface of uppermost
layer and intermediate layer. More specifically,
figures 9(i), 10(i), 11(i) and 12(i) correspond to
the cases when all the media namely uppermost
layer, intermediate layer and lowermost half-space,
are acted upon by horizontal compressive initial
stresses; figures 9(ii), 10(ii), 11(ii) and 12(ii) corre-
spond to the cases when all the media are without
initial stresses; and figures 9(iii), 10(iii), 11(iii) and
12(iii) concur to the cases when all the media are
acted upon by horizontal tensile initial stresses.
Surface plots in figure 9(i, ii and iii), concerned

with the case of rectangular irregularity, exhibit
that as heterogeneity prevails in the uppermost
layer, phase velocity of Love-type wave increases
irrespective of the situation that medium is pre-
stressed or not. Further, the presence of compres-
sive initial stress in each of the medium supports it
in addition. Surface plots in figure 10(i, ii and iii),
associated with the case of parabolic irregularity,
displays the same trend with respect to heterogene-
ity parameter and initial stress as in figure 9. But
comparative study of figures 9(i–iii) and 10(i–iii)
establish that parabolic irregularity support more
to the phase velocity as compared to rectangular
irregularity.
Surface plots in figure 11(i, ii and iii) irradiate

the case of rectangular irregularity whereas sur-
face plots in figures 12(i, ii and iii) correspond to
the case of parabolic irregularity. It is evident from
these figures that initial stress and size of irregular-
ity have a substantial effect on the phase velocity of
Love-type wave. These surface plots manifest that
the growth in the size of irregularity at the com-
mon interface of double layer disfavour the phase
velocity of Love-type wave irrespective of presence
and absence of initial stress in the medium.

6. Conclusions

The current study articulates the propagation
of Love-type wave in an initially stressed irreg-
ular vertically heterogeneous layer overlying an
initially stressed isotropic layer and an initially
stressed isotropic half-space. The heterogeneity in
the upper layer is caused due to exponential varia-
tion in rigidity, density and initial stress in terms of
space variables pointing vertically downward. It is
established through the study that wave number,
width ratio of the layers, horizontal compressive/
tensile initial stresses, heterogeneity parameter of
the uppermost layer and the irregularity parameter
associated with rectangular form of irregularity and
parabolic form of irregularity have a considerable
effect on the phase velocity. The outcomes of the
present study, taking the irregularity in rectangular

as well as parabolic form, can be encapsulated as
follows:

• Wave number has significant effect on the phase
velocity. It is observed that phase velocity
decreases with increase in wave number.

• The heterogeneity parameter of the uppermost
layer has a favourable effect on the phase velocity
of Love-type wave.

• The horizontal compressive initial stresses have
a favourable effect on phase velocity whereas
the horizontal tensile initial stresses have an
unfavourable effect on phase velocity of Love-
type wave.

• The width ratio of the layers and the irregu-
larity parameter has an adverse effect on phase
velocity of Love-type wave. More precisely, it can
be quoted that phase velocity of Love-type wave
decreases with increase in the size of irregularity
exist in the structure and the width of the upper-
most layer as compared to the intermediate layer
in the structure.

• As a special case of the problem, obtained dis-
persion relation is matched with classical Love-
wave equation. This leads to acquiescence of the
validity of the problem.

• Underneath condition holds good in our study
of propagation of Love-type wave in the said
geometry:

β1 < β2 < c < β3 or β2 < β1 < c < β3.

The above condition indicates that phase veloc-
ity of Love-type wave must be less than the shear
wave velocity in lowermost half-space and greater
than the shear wave velocity in both the layers.
The present study has their possible applications

in the sphere of seismology, engineering geology,
earthquake engineering and geophysics. Specifi-
cally in the field of seismology, the problems affili-
ated to waves and vibrations propagating through
a medium under initial stress (inducing mechan-
ical properties to the medium depending on the
magnitude of the stress) and divergent irregulari-
ties are of great significance to seismologists and
geophysicists to understand and predict the seis-
mic behaviour at different geological situations
like mountain basins, mountain roots, continental
margins, etc.
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Appendix I

A0 = −B0

(2T + υ tanTH2)

(2T tanTH2 − υ)
,

A1 = −B1

(2T + υ tanTH2)

(2T tanTH2 − υ)
,

B0 =
2p2µ2µ3e

−p3d(2T tanTH2 − υ)

U(k)
,

B1 =
R1µ

0
1(−υ cosTH1 + 2T sinTH1)e

−
υ

2
H1 + 2R2 cosTH1e

υ

2
H1

−2µ0
1T

,

C0 =
(2T cosTH1 + υ tanTH2 cosTH1 + 2T tanTH2 sinTH1 − υ sinTH1)

(µ2p2 cos p2H1 + µ3p3 sin p2H1)U(k)

× (−2p22µ
2
2µ3e

−p3de
υ

2
H1) +

4µ3 sin p2H1e
−p3d

(µ2p2 cos p2H1 + µ3p3 sin p2H1)
,

D0 =
(2T cosTH1 + υ tanTH2 cosTH1 + 2T tanTH2 sinTH1 − υ sinTH1)

(µ2p2 cos p2H1 + µ3p3 sin p2H1)U(k)

× 2µ2p2µ
2
3e

−p3de
υ

2
H1 +

4µ3 cos p2H1e
−p3d

(µ2p2 cos p2H1 + µ3p3 sin p2H1)
,

E =
(2T cosTH1 + υ tanTH2 cosTH1 + 2T tanTH2 sinTH1 − υ sinTH1)

(µ2p2 cos p2H1 + µ3p3 sin p2H1)U(k)

×
(

−2µ2
2p

2
2µ3e

−p3de
υ

2
H1

)

−
2(µ2p2 cos p2H1 − µ3p3 sin p2H1)e

−p3d

(µ2p2 cos p2H1 + µ3p3 sin p2H1)p3
.

Q1 =
e

υ

2
H1

2
(2µ2p2T cosTH1(p2µ2 sinTH1 − µ3p3 cos p2H1)

−υµ2p2 sinTH1 (p2µ2 sin p2H1 − µ3p3 cos p2H1))

−

((

T 2 +
υ2

4

)

sinTH1(µ2p2 cos p2H1 + sin p2H1µ3p3)

)

e−
υ

2
H1µ0

1

Q2 = e
υ

2
H1

(

µ2p2(µ2p2 sin p2H1 − µ3p3 cos p2H1)
(υ

2
cosTH1 + T sinTH1

))

+

(

cosTH1(µ2p2 cos p2H1 + µ3p3 sin p2H1)

(

υ2

4
+ T 2 cosTH1

))

e−
υ

2
H1µ0

1

S1 = 4Q2µ
0
1µ3µ2p2T

2(µ2p2 cos p2h1 + µ3p3 sin p2h1)−Q2(Q4 +Q6 +Q8)H
′,

S2 = 2µ0
1µ3p2µ2T (µ2p2 cos p2H1+µ3p3 sin p2H1)(2TQ1−Q2υ)−Q1(Q4+Q6+Q8)H

′−Q2(Q3+Q5+Q7)H
′,

S3 = 2Q1υµ
0
1µ3µ2p2T (µ2p2 cos p2H1+µ3p3 sin p2H1)−Q1(Q3 +Q5 +Q7)H

′.

F1 = 4Q2µ
0
1µ3µ2p2T

2(µ2p2 cos p2h1 + µ3p3 sin p2h1)−Q2(Q4 +Q6 +Q8)H
′′,

F2 = 2µ0
1µ3p2µ2T (2Q1T−υQ2)(p2µ2cos p2H1+µ3p3 sin p2H1)−Q1(Q4+Q6+Q8)H

′′−Q2(Q3+Q5+Q7)H
′′,

F3=2Q1υµ
0
1µ3µ2p2T (µ2p2 cos p2H1+µ3p3 sin p2H1)−Q1(Q3 +Q5 +Q7)H

′′.
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Appendix II

Q3 = 4µ2p2T
2µ3µ

0
1(T(µ2p2cos p2H1+ µ3p3 sin p2H1)

− υ cosTH1 sinTH1 (µ2p2 cos p2H1

−µ3p3 sin p2H1)) ,

Q4 = υµ2p2µ3µ
0
1 {(µ2p2 cos p2H1 + µ3p3 sin p2H1)

× (2T 2 + cos2 TH1(υ
2 + 4T 2)) + 2υT cosTH1

× sinTH1(µ3p3 sin p2H1 − µ2p2 cos p2H1)} ,

Q5 = 2e−
υ

2
H1µ0

1µ3p2(−υ cosTH1 + 2T sinTH1)Q1

+µ0
1

(

2υµ2p
2
2Tµ3(µ2p2 sin p2H1+µ3p3 cos p2H1)

− µ2p
2
2µ3 cosTH1 sinTH1 (µ2p2 sin p2H1

−µ3p3 cos p2H1) (4T
2 − υ2)

)

,

Q6 = µ2p
2
2µ3(µ2p2 sin p2H1 − µ3p3 cos p2H1)

× (υ2 cos2 TH1 − 4T 2 sin2 TH1)

− 2υµ2p
2
2Tµ

2
3p3 cos p2H1 cosTH1 sinTH1

− 2Q2µ3p2(υ cosTH1 + 2T sinTH1),

Q7 = −4eυH1µ2
2p

3
2Tµ3 cos

2 TH1

× (µ2p2 cos p2H1 + µ3p3 sin p2H1),

Q8 = −2eυH1µ2p
3
2µ3 cosTH1

× (µ2p2 cos p2H1 + µ3p3 sin p2H1)

× (υµ2 cosTH1 + 2 sinTH1)

S4 = 4L2µ
0
1µ3µ2P2t

2(1 + tan2 tkH1)

×(µ2P2+µ3P3 tanP2kH1)−L2(L4+L6+L8)H
′,

S5 = 2µ0
1µ3P2µ2t(1 + tan2 tkH1)

× (P2µ2 + µ3P3 tanP2kH1)

×
(

2L1t− L2

υ

k

)

− L1(L4 + L6 + L8)H
′,

S6 = 2L1

υ

k
µ0
1µ3µ2P2t(1 + tan2 tkH1)

× (µ2P2 + µ3P3 tanP2kH1)

− L1(L3 + L5 + L7)H
′,

F4 = 4L2µ
0
1µ3µ2P2t

2(1 + tan2 tkH1)

× (µ2P2 + µ3P3 tanP2kH1)

− L2(L4 + L6 + L8)H
′′,

F5 = 2µ0
1µ3µ2P2t(1 + tan2 tkH1)

× (µ2P2 + P3µ3 tanP2kH1)
(

2L1t− L2

υ

k

)

− L1(L4 + L6 + L8)H
′′,

F6 = 2L1

υ

k
µ0
1µ3µ2P2t(1 + tan2 tkH1)

× (µ2P2 + µ3P3 tanP2kH1)

− L1(L3 + L5 + L7)H
′′,

L1 = e
υ

2
H1µ2P2(P2µ2 tanP2kH1 + µ3P3)

×
(

t−
υ

2k
tan tkH1

)

− e−
υ

2
H1µ0

1 tan tkH1

× (µ2P2 + µ3P3 tanP2kH1)

(

t2 +
υ2

4k2

)

,

L2 = e
υ

2
H1µ2P2(µ2P2 tanP2kH1 − µ3P3)

×
( υ

2k
+ t tan tkH1

)

+ e−
υ

2
H1µ0

1

× (µ2P2 + µ3P3 tanP2kH1)

(

υ2

4k2
+ t2

)

L3 = 4µ2P2t
3µ3µ

0
1(1 + tan2 tkH1)

×(µ2P2+µ3P3 tanP2kH1)−4
υ

k
µ2P2t

2µ3µ
0
1

× tan tkH1(µ2P2 − µ3P3 tanP2kH1),

L4 =
υ

k
µ2P2µ3µ

0
1(µ3P3 tanP2kH1 + µ2P2)

×

(

2t2(1 + tan2 tkH1) +
υ2

k2
+ 4t2

)

+2
υ2

k2
µ2P2tµ3µ

0
1 tan tkH1(µ3P3 tanP2kH1−µ2P2),

L5 = 2e−
υ

2
H1µ0

1µ3P2

(

−
υ

k
+ 2t tan tkH1

)

L1 + µ0
1

×

(

2
υ

k
µ2P

2
2 tµ3 tan

2 tkH1(µ3P3+µ2P2 tanP2kH1)

+µ2P
2
2 µ3

(

2
υ

k
t− tan tkH1

(

υ2

k2
+ 4t2

))

×(µ2P2 tanP2kH1 − µ3P3)

)

,

L6 =

(

υ2

k2
µ2P

2
2 µ3 − 4µ2P

2
2 t

2µ3 tan
2 tkH1

)

×(µ2P2 tanP2kH1 − µ3P3)

−2µ3P2

(υ

k
µ2P2tµ3P3 tan tkH1

+ L2

(υ

k
− 4t tan tkH1

))

,

L7 = −4eυH1µ2
2P

3
2 tµ3(µ2P2 + µ3P3 tanP2kH1),

L8 = −2eυH1µ2P
3
2 µ3(µ2P2 + P3µ3 tanP2kH1)

×
(υ

k
µ2 + 2 tan tkH1

)

,

S
(1)
4 = 4L

(1)
2 µ0

1µ3µ2P2(t
(1))2(1 + tan2 t(1)kH1)

×(µ2P2 + µ3P3 tanP2kH1)

−L
(1)
2 (L

(1)
6 + L

(1)
8 )H ′,

S
(1)
5 = 4L′

1µ
0
1µ3P2µ2(t

(1))2(1 + tan2 t(1)kH1)

×(P2µ2 + µ3P3 tanP2kH1)

−L
(1)
1 (L

(1)
6 + L

(1)
8 )H ′,

S
(1)
6 = −L

(1)
1 (L

(1)
3 + L

(1)
5 + L

(1)
7 )H ′,
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F
(1)
4 = 4µ0

1µ3L
(1)
2 µ2P2(t

(1))2(1 + tan2 t(1)kH1)

×(µ2P2 + µ3P3 tanP2kH1)

−L
(1)
2 (L

(1)
6 + L

(1)
8 )H ′′,

F
(1)
5 = 4µ0

1µ3L
(1)
1 P2µ2(t

(1))2(1 + tan2 t(1)kH1)

×(P2µ2 + µ3P3 tanP2kH1)

−L
(1)
1 (L

(1)
6 + L

(1)
8 )H ′′,

F
(1)
6 = −L

(1)
1 (L

(1)
3 + L

(1)
5 + L

(1)
7 )H ′′,

L
(1)
1 = µ2P2t

(1)(P2µ2 tanP2kH1 + µ3P3)− µ0
1(t

(1))2

× tan t(1)kH1(µ2P2 + µ3P3 tanP2kH1),

L
(1)
2 = µ2P2t

(1) tan t(1)kH1(µ2P2 tanP2kH1 − µ3P3)

+µ0
1(t

(1))2(µ2P2 + µ3P3 tanP2kH1)

L
(1)
3 = 4µ2P2µ3µ

0
1(t

(1))3(1 + tan2 t(1)kH1)

×(µ2P2 + µ3P3 tanP2kH1),

L
(1)
5 = 4µ0

1µ3P2t
(1) tan t(1)kH1

× (L1−µ2P2t
(1)(µ2P2 tanP2kH1−µ3P3)),

L
(1)
6 = 4µ3P2t

(1) tan t(1)kH1 (L
(1)
2 − µ2P2t

(1)

× tan t(1)kH1(µ2P2 tanP2kH1 − µ3P3)),

L
(1)
7 = −4µ2

2P
3
2 t

(1)µ3(µ2P2 + µ3P3 tanP2kH1),

L
(1)
8 = −4µ2P

3
2 µ3 tan t

(1)kH1

×(µ2P2 + P3µ3 tanP2kH1),

S
(2)
4 = 4L

(2)
2 µ0

1µ3µ2P
(1)
2 (t(1))2(1 + tan2 tkH1)

×
(

µ2P
(1)
2 + µ3P

(1)
3 tanP

(1)
2 kH1

)

−L
(2)
2

(

L
(2)
6 + L

(2)
8

)

H ′,

S
(2)
5 = 4L

(2)
1 µ0

1µ3µ2P
(1)
2 (t(1))2(1 + tan2 t(1)kH1)

×(P
(1)
2 µ2 + µ3P

(1)
3 tanP

(1)
2 kH1)

−L
(2)
1 (L

(2)
6 + L

(2)
8 )H ′,

S
(2)
6 = −L

(2)
1 (L

(2)
3 + L

(2)
5 + L

(2)
7 )H ′,

F
(2)
4 = 4L

(2)
2 µ0

1µ3µ2P
(1)
2 (t(1))2(1 + tan2 t(1)kH1)

×
(

µ2P
(1)
2 + µ3P

(1)
3 tanP

(1)
2 kH1

)

−L
(2)
2 (L

(2)
6 + L

(2)
8 )H ′′,

F
(2)
5 = 4L

(2)
1 µ0

1µ3P
(1)
2 µ2(t

(1))2(1 + tan2 t(1)kH1)

×(P
(1)
2 µ2 + µ3P

(1)
3 tanP

(1)
2 kH1)

−L
(2)
1 (L

(2)
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(2)
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F
(2)
6 = −L

(2)
1 (L

(2)
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(2)
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(2)
7 )H ′′,

L
(2)
1 = µ2P

(1)
2 t(1)

(

µ2P
(1)
2 tanP

(1)
2 kH1 − µ3P

(1)
3

)

−µ0
1(t

(1))2 tan t(1)kH1

×
(

µ2P
(1)
2 − µ3P

(1)
3 tanP

(1)
2 kH1

)

,

L
(2)
2 = µ2P

(1)
2 t(1) tan t(1)kH1

(

µ2P
(1)
2 tanP

(1)
2 kH1

−µ3P
(1)
3

)

+ µ0
1(t

(1))2(µ2P
(1)
2

+µ3P3(1) tanP
(1)
2 kH1)

L
(2)
3 = 4µ2P

(1)
2 (t(1))3µ3µ

0
1(1 + tan2 t(1)kH1)

×(µ2P
(1)
2 + µ3P

(1)
3 tanP

(1)
2 kH1),

L
(2)
5 = 4µ0

1µ3P
(1)
2 t(1) tan t(1)kH1

(
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(1)
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(1)

×
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µ2P
(1)
2 tanP

(1)
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(1)
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,
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(2)
6 = 4µ3P

(1)
2 t(1) tan t(1)kH1
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t(2) =
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