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Microtremor survey is achieved in order to evaluate the dynamical characteristics of surface layers.
For this purpose, 13 trenches were selected and microtremor measurements were performed at the top
and bottom of each trench. Floor spectral ratio (FRS) analysis was accomplished to obtain frequency
and amplification of the trenches. The results of microtremor were compared with 1D equivalent linear
analysis. Most of the fundamental frequencies obtained by 1D analysis are in good agreement with those
calculated by microtremor technique. Irregularities in surface and subsurface geomorphic conditions tend
to have differences in results obtained by both mentioned methods. Damping ratios were derived from
the half power bandwidth method. The damping ratio varied between 2.1 in fine grain soils and 6.6 in

sand soils.

1. Introduction

Surface geological conditions have significant effects
on amplification and deamplification of strong ground
motion at special frequencies (Borcherdt 1970; Joyner
and Boore 1988; Zeng 1993; Olsen and Archuleta
1996; Woolery and Street 2002; Apostolidis et al.
2004; Nguyen et al. 2004; Teramo et al. 2005;
Hasancebi and Ulusay 2006; Leyton et al. 2013).
Past earthquakes such as the 1985 Mexico city
(Mexico), the 1990 Manjil-rudbar earthquake
(Iran), the 1994 Northridge earthquake (Los Ange-
les), the 1995 Kobe earthquake (Japan), the 1999
Izmir earthquake (Turkey) and the 2003 Bam
earthquake (Iran) are evidences for local geology
and soil deposit effects on ground motions and dis-
tribution of damages in metropolitan areas (Singh
et al. 1988; Somerville and Graves 1996; Tertulliani
2000; Bakir et al. 2002; Jafari et al. 2005; Rezaei
et al. 2012).

Microtremor measurement is one of the impor-
tant methods to evaluate the seismic site response,
which is widely used in the urban areas because
of its quick and easy performance at low cost with
minimum disturbance (Walling et al. 2009). The-
ory and practical application of the microtremors
were introduced by Kanai and Tanaka (1954)
and were popularized by Nakamura (1989, 2000),
who introduced horizontal-vertical spectral ratio
(HVSR). This method is used to determine dyna-
mic properties of the soil deposits like predominant
frequency, amplification, and damping ratio, and
to evaluate the thickness of the alluvial deposits
(Kanai and Tanaka 1961; Field and Jacob 1993;
Lermo and Chavez-Garcia 1994; Ohmachi et al.
1994; Ibs-von Seht and Wohlenberg 1999; Luzén
et al. 2001; Xun et al. 2002). The amplification
estimated from the mentioned method is lower
than that estimated from earthquake recording.
However, some researchers have mentioned that
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Figure 1. Location of the study area and trench sites discussed. Trench sites are showed with green rectangles and determined
by code.
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it is unreliable amplification (Singh et al. 2014) and
we can use it as lower limit of amplification for
Mashhad city.

In this study, we used single HVSR method to
evaluate the dynamic properties of the soils in some
of the deep trenches in Mashhad metropolitan city.
The spiritual capital city of Mashhad is located in
the northeast of Iran as seen in figure 1. The city
has about 2.5 million permanent residents and has
more than 20 million visitors and pilgrims annually.
The city is surrounded by some active faults and is
built over thick alluvial deposits.
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2. Materials and methods

2.1 Geological setting

The capital city of Mashhad with an area of
300 km? is located in the east end of Mashhad
plain. Mashhad plain is a Graben formed between
two main tectonic zones of Bilaloud in north and
Kopet-Dagh in south. Thick fans and alluvial
deposits cover the Mashhad city area. Thickness of
the deposits increases towards the east and central
parts and reaches up to more than 350 m.

Figure 2. View of trenches and measurement surveys. Measurements were done with SLO7 seismometer which was placed

on the open ground at the top and bottom of trenches.
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For this study, 13 deep trenches at different
site locations of the city, where geotechnical and
geophysical studies were performed, were selected.
Depth of the trenches ranges from 10 up to 22 m.
Trenches and measurement surveys are shown in
figure 2. Predominant soil textures at the locations
of site nos. 1-7, 9 and 13 include sand and gravel,
while silt and clay are predominant soils at the
locations of site nos. 8, 10, 11 and 12. Depositio-
nal condition at the locations of site nos. 5, 8, 11
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and 12 change frequently, and the profiles are com-
posed of alternate layers of coarse and fine-grained
soils. The soil texture and shear wave velocity pro-
files are shown in figure 3. The shear wave velocity
(Vs) was measured by seismic downhole method
at 2 m depth interval at each borehole. The Vs
increases gradually with depth, and reaches to 800
m/s at site nos. 1, 2 and 6 and 600 m/s for other
sites at the depth of 30 m. The mean Vs up to 30 m
(Vs30) and the mean Vs of the trenched layer
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Figure 3. Soil texture and shear wave velocity profiles at each of the 13 study sites, illustrating the subsurface ground
condition at Mashhad city. ML, CL and CL-ML are the unified symbols for silts, clays, silty clays, respectively.
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Table 1. Characteristics of soil layers of studied wall
trenches.

Site Dt Hiotal Vsso Vst
no. Soil type (m) (m) (m/s) (m/s)
1 Gravel 11.6 30 715 583
2 Gravel 10 50 629 446
3 Sand 10.5 230 481 365
4 Gravel 10.6 280 436 326
5 Gravel 19 180 544 467
6 Sand 22 275 491 439
7 Sand 22 300 394 356
8 Fine grained 19 235 384 322
9 Sand 18 250 405 350
10 Fine grained 9 320 361 244
11 Fine grained 20 75 456 432
12 Fine grained 22 210 388 354
13 Gravel 8 170 461 318

Dr: trench depth, Higta): thickness of alluvium deposits.

(VsT) were computed by using the time averaged
equation as follows:

— H
VS - n . (1)
> i1 (hi/ Vi)

The results as well as thickness of alluvium
(Hiota) and trench depth (Dt) are presented in
table 1. The alluvium thickness ranges between 30
and 300 m at the location of sites.

2.2 Methodology

The HVSR method of free field microtremor was
applied to assess the dynamic properties of the 13
trenched layers in Mashhad capital city in north-
east of Iran. Microtremor data are obtained by
SARA 3-component seismometer model SLO7 with
a 2 Hz natural frequency, the frequency response
of 0.5-20 Hz and the critical damping equal to
0.7. Data measurements were done at the top and
bottom of all trenches. The measurements were
done at early mornings or at the evenings, in
order to avoid adverse effects of man-made noise
and heavy machinery activities. The sampling fre-
quency was 100 Hz and the recording length was
15 min at each survey. The HVSR analyses were
performed by Geopsy software (www.geopsy.org)
in the following way. Each record was split into
15-25 s non-overlapping windows. Bandpass filter
in the range of 0.2-20 Hz, linear Butterworth fil-
ter and 5% cosine tapper on both sides of the win-
dows were applied in order to eliminate intensive
noise. Then, Fast Fourier Transform (FFT) was
computed and Fourier spectra were smoothed by
Konno and Ohmachi function in a logarithmic scale
to clarify the curves (Konno and Ohmachi 1998).
Finally, the average curve of H/V was computed.
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Furthermore, floor spectral ratio (FSR) proposed
by Gosar et al. (2010) was used to determine the
dynamical properties of the wall trench soils. FSR
estimates transfer function of the structure by ratio
of spectra of structure to spectra of ground. In
this method, for both horizontal components, aver-
age spectra were computed for each floor and the
ratio of spectra between the floors and the base-
ment was computed. For both measurements, the
length of the records must be equal; however, it is
not necessary to do simultaneously. The authors
use this idea to estimate transfer function of the
trench wall (Gosar et al. 2010). Transfer functions
of the trenched layer are estimated by the ratio of
spectral of top to spectral of bottom of the trench.
In addition, the damping ratios of the trenched lay-
ers were evaluated using the half power bandwidth
method.

In half power bandwidth method, the frequency
width of FSR curve was determined at the peak
amplitude of 0.707 times, and then the damping
ratio was computed by using the following equation

(Xun et al. 2002):

— 2)

where Af(= fo— f1) is the frequency width and fj
is the peak frequency of the spectrum as observed
in figure 4. The obtained damping ratio must be
calibrated by calibration coefficient of 5.32 because
of smoothing operations. The smoothing causes the
damping to become enlarged (Xun et al. 2002).

In addition, the transfer functions of trenched
layers are estimated by one dimension equivalent
linear method using the Proshake software (EduPro
Civil System, Inc. 1998).
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Figure 4. Estimating of damping by half power bandwidth
method. S is amplitude of peak frequency (fo). fi and f are
frequencies at amplitude of S/+/2.
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3. Results and discussion a clear peak (SESAME 2004). Fundamental fre-

quency reflects the thickness of soft sediment, while

The HVSR curves at the top and bottom of the clarity and amplitude of the peak are related to
trenches are shown in figure 5. Most of the curves the Vs contrast between the upper soft sediment
fulfill the criteria for reliable measurements and and the seismic bedrock. Higher contrast results in
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Figure 5. HVSR curves of trench bottom compared with those of ground surface. Solid lines show the HVSR curves at the
ground surfaces and dashed lines show the HVSR curves at the bottom of trenches.
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higher amplitude (Field and Jacob 1993; Tokeshi
and Sugimura 1998).

The fundamental frequency of surface values fall
in the range of 0.73-3.3 Hz. For the fundamental
frequency of HVSR, the city could be divided into
two parts based on the site’s distance from south
mountains. The sites S1-S3, S5, S11-S13, which
are situated near the mountains, with distance
<2500 m, have a fundamental frequency >1 Hz
with an exception of site no. 2. The sites which are
far from the mountains have a fundamental fre-
quency <1 Hz. As observed from figure 1, the soft
sediments become progressively thicker with in-
creasing distance from the south mountains. The
thicknesses of soft sediments vary between 235 and
320 m and fundamental frequencies range from 0.73
to 0.92 Hz at locations S4, S6-S10. The red line in
figure 6 indicates the dividing line. The dividing line
approximately corresponds to thickness of 230 m.
There is relation between thickness and fundamen-
tal frequency but evaluation of correlation between
them is impossible because of limited data. Ampli-
tude values of fundamental frequency of surface
HVSR curves could be divided into three groups of
<2 (I), 2-4 (II) and >4 (III). The sites S6, S7 and

720000
1

725000 TWWP
1
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S10, which are located at the central part of the
city with thick alluvium and marl bedrock (Azadi
et al. 2009), are classified as group I. The sites S1,
S2, S4 and S11 are categorized as group III. The
sites S1, S2 also have wide peaks. It implies that
the overlain schist behaves as seismic bedrock. The
site S11 is close to mountain with overlain ultra-
basic bedrock. Other sites are categorized as group
II. At the locations of sites S8, S9 and S12, the soft
sediments are composed of sand, silt and clay and
are almost 230 m thick. Three sites of S3, S5 and
S13, with the same amplitude of fundamental fre-
quency, have similar condition. The profiles of soft
sediments are composed of coarse grain soils with
a clay lens approximately 15 m thick at the depth
of 15-30 m (S5 and S13) and 45-60 m (S3).

Comparison of the spectral curves at the top and
bottom of the trenches shows that there are no sig-
nificant difference between fundamental frequency
values at the bottom and top of the sites S4, S6—
S10 which are underlain by thicker soft sediments.
At locations of these sites, ratios of trench depth to
total soft sediment thickness are small. The ampli-
tudes of fundamental frequency at the bottom of
trenches are also evaluated. The HVSR curves at
745000

735000 740000
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Street
[ ] mashhad city
- Divided Line

B Rock

Figure 6. Situation of trenches relative to the dividing line which separate the areas with fundamental frequency more than
1 Hz from areas with fundamental frequency less than 1 Hz. The dividing line is shown by the red line.
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Figure 7. Comparison of transfer functions of total soil profiles using 1D equivalent linear and HVSR methods at the ground
surface. Solid lines show the HVSR (H/V) curves and dashed lines show the transfer function curves obtained by Proshake
(1D equivalent linear analysis).
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the bottom of the sites S1, S2 and S4 show the
fundamental frequency amplitude of more than 4,
similar to the surface curves. The HVSR curve at
the bottom of site S1 is very clear and sharper,
and also shows higher amplitude at fundamental
frequency rather than the HVSR curve at the top
of site. The site S1 is very close to mountain and
is composed of large rock fragments to fine grain.
The amplitude values of fundamental frequency at
the bottom and top of the sites S6, S7 and S10 are
similar. The amplitude values of fundamental fre-
quency become more at the bottom of the sites
S8 and S9 where groundwater level is located at
a depth of 40 m. The sites S3, S5 and S13 also
show higher amplitude values of fundamental fre-
quency at the bottom, and removing coarse grain
layer could be the reason.

The HVSR curves of the surface and transfer
functions of 1D equivalent linear are compared in
figure 7. The profiles to the bedrock were used for
the 1D equivalent linear analysis and the Vs of

Azam Ghazi et al.

deep parts were estimated based on the previous
studies (Hafezi Moghadas et al. 2007). The shear
modulus reduction and damping ratio curves pro-
posed by Seed and Idriss (1970), Seed et al. (1986)
and Idriss (1990) were used for sand, gravel and
rock, respectively. The shear modulus reduction
curves suggested by Seed and Sun (1989) and Sun
et al. (1988) and damping ratio curves suggested
by Idriss (1990) and Sun et al. (1988) were used for
soft clays based on PI values. 1D equivalent linear
analysis resulted in higher amplitude of fundamen-
tal frequency rather than HVSR analysis. Komak
Panah et al. (2002) noted that HVSR technique
results in the underestimation of amplitude of fun-
damental frequency. As observed in figure 7, there
are clear differences between HVSR and Proshake
fundamental frequencies for the sites S1, S2 and S4,
while the best matching between two techniques is
observed at the site S12. The sites S1 and S2 are
located near the mountains with faulting edge
and irregular bedrock, which cannot be modelled

Table 2. The results of HVSR and 1D equivalent linear techniques at top and bottom of the trenches.

Site FmM—¢ FmM—p Fip¢ Fum-T Fip-T &r
no. (Hz) (Hz) (Hz)  (Hz) (Hz)  Am—t Am-b Aip—t Am—rT Aip-1 (%)
1 1.1 1.18 5.5 9 11.6 4.10 9.40 14 2.5 18 3.9
2 0.75 0.87 2.4 2 10.5 7.06 6.1 11 6.6 16 3.8
3 1.123 1.001 1.4 8.9 7.6 3.73 5.17 23 2.1 17 2.8
4 0.84 0.84 3.3 9.3 6.5 6.54 5.8 11 4.5 11 5.4
5 1.83 2.29 1.6 4.5 2.7 3.87 4.22 23 3.1 5 2.6
6 0.73 0.963 0.9 10.6 5.8 1.41 1.38 16 4.5 29 6.6
7 0.785  0.708 1.1 4.8 3.4 1.80 1.80 15 5.2 11 3.2
8 0.93 0.867 1.1 9.3 3.4 3.27 4.96 37 4.8 8

9 0.82 0.753 1.1 6.3 5 2.86 3.91 24 8.6 17 2.8
10 0.75 0.66 0.9 3.9 5.6 2.32 2.55 17 2.3 10 3.8
11 2.88 2.69 1.8 10.3 4.5 4.92 3.81 14 20 11 2.1
12 1.078 1.078 1.2 3.3 3.4 3.69 3.16 32 3.4 13 2.8
13 3.3 2.73 2.7 10.6 9.1 3.26 3.85 18 3.0 13 3.2

M: microtremor; t: top; b: bottom; 1D: 1D equivalent linear analysis; T: trench wall.
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with 1D analysis. The site S4 is located near the
Golestan River and its path has changed over the
time. From the tectonic point of view, Mashhad
valley is subsiding. The land subsidence in north-
east Iran were investigated by Motagh and his
colleague (Motagh et al. 2007) by Interferomet-
ric Synthetic Aperture Radar (inSAR) levelling
and Global Positioning System (GPS) monitoring.
The annual rate of 15 cm yr~! was estimated
for subsidence in northwestern part of Mashhad
city. This phenomenon is caused in depositing
of coarse grain sediments on fine grains of flood
plain. The 1D analysis assumes that the soil layers
are horizontal, parallel and infinite, and neglects
the potential impacts of surface and subsurface
geomorphic conditions. Based on the 1D equivalent
linear analyses, the amplitude values of fundamen-
tal frequency could be categorized to three groups;
10-15 (A), 15-20 (B), > 20 (C). The sites S1, S2,
S4 and S11 are classified as group A, the sites S3,
S5, S6, S7 and S10 are categorized as group B, and
the sites S8, 59, S12 and S13 are classified as group
C. In 1D equivalent linear analysis, the amplitude
of fundamental frequency is affected by thickness of
layers and groundwater level. Maximum amplitudes
of fundamental frequency are observed at sites S8
and S12.

For assessing the dynamical properties of the
trench wall, both 1D equivalent linear and micro-
tremor analyses were used. In microtremor stud-
ies, floor spectral ratio (FSR) method was used to
define dynamical properties of the trench wall. In
1D equivalent linear, dynamical properties of the
trench wall were estimated by determining the top
and bottom layers of the trenches as outcrops. The
results are presented in figure 8 and table 2. Fun-
damental frequency of trench wall for western sites
is higher than fundamental frequency of total soil
profile. As mentioned, the fundamental frequency
is affected by the thickness of soft sediments. Fig-
ure 9 shows the scatter plot of fundamental fre-
quency of the trench wall against depth of trench.
As seen, thickness of the layer directly influences
the fundamental frequency.

The damping values obtained by FSR are pre-
sented in table 2. The maximum and minimum
values of damping ratio belong to gravels and
fine-grained soils, respectively. The correlations of
damping ratio and frequency could not be assessed
because of limited data.

4. Conclusion

This paper presents a quick and efficient approach
by using ambient measurements to investigate the
dynamic properties of ground. The microtremors
were measured at top and bottom of trenches at

1427

13 sites throughout the Mashhad city, Iran. FSR
methods were used to evaluate the natural fre-
quency and the damping ratio of the trenches wall
layers. Natural frequencies of the main H/V peak
curve at the top and bottom of the excavated lay-
ers were almost similar because of the thick allu-
vium of Mashhad plain but the natural frequencies
of the excavated layers were significantly different.
The peak frequency of the excavated layers varied
between 2.0 and 10.6 Hz, and the peak amplitude
ranged from 2.5 to 20.2. Damping ratio is one of the
important parameters in site effect analysis, which
was obtained by half power bandwidth methods
in the present work. Damping ratio increased with
frequency.
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