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The monitoring of gravity changes in a region enables the investigation of regional structural elements
depending upon the changes in load compensation. This method, preferred in recent years, has yielded
good results from different parts of the world for determination of the deformation at fields. With the
addition of GPS/GNSS monitoring to microgravity studies, the mass changes within the crust in vertical
directional movements of a region can be estimated. During GPS/GNSS monitoring and microgravity
studies, it was found that the behaviour of vertical directions of Izmir and the surrounding areas, indicate
an active tectonic regime and high seismic activity, especially since 2000. As a result, regions considered
to have a mass change in vertical direction were determined by 3-year measurements and it was found

that they were consistently highly seismic.

1. Introduction

Microgravity is a geophysical method defining
density changes under the surface. The method
is affected directly by density distribution under
the surface, especially the existence of the cavities
creating a mass loss in proportion to surrounding
environment. This also enables a convenient defini-
tion of subsurface environment (Butler 1984; Ioane
and Ion 2005; Reci et al. 2011). In a study carried
out by Ergintav et al. (2007) and Bonforte et al.
(2007), the change in microgravity values at the
same measurement points were examined together
with vertical changes in GPS/GNSS data for
determining the deformation in vertical direction
in an investigation area. Additionally, using vertical
velocities, tectonic structures were examined in
some studies (Dietrich et al. 2004; Devoti et al.
2011). At present, studies have also been carried

out on the subjects including monitoring geother-
mal reserves, groundwater levels, volcanic activi-
ties, determination of fault systems and mechanic
connections of these systems, monitoring horst-
graben areas and their stress deformation (Jentzsch
et al. 2001; Battaglia et al. 2003; Carbone et al.
2003; Zeeuw-van Dalfsen et al. 2006). These types
of relations show the vertical surface movements,
also density and mass changes in the subsurface
structures. From this point of view, GPS/GNSS and
microgravity network system measurements were
carried out together in Izmir and its surroundings
(figure 1) in the complex tectonism of western
Anatolian region for the scope of this study.
Western Anatolian region has a complex tecton-
ism within an opening system in N-S direction.
Izmir and its surroundings are within this system
as seen in figure 1(a). It is indicated in various
approaches related to the tectonism belonging
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Figure 1. (a) The regional tectonic structure of the study area and (b) local tectonic elements of the study area (Dewey and
Sengor 1979; Jackson and McKenzie 1984; Sengor et al. 1985; Eyidogan and Jackson 1985; Sengor 1987; Ambraseys 1988;
Seyitoglu and Scott 1991; Taymaz et al. 1991; Reilinger et al. 1997; Ambraseys and Jackson 1998; Bozkurt 2001; Sozbilir

2001; Goneng and Akgiin 2011; Goneng et al. 2012).

to Izmir and its surroundings (figure 1b) that the
region is located in the corridor defined as Izmir—
Balikesir Transfer Zone (IBTZ) where strike-slip
and normal faults exist together (Ocakoglu et al.
2004, 2005; Uzel et al. 2010).

Maps of active faults known in Izmir and its
surroundings were given by Saroglu et al. (1992).
However, it is indicated that there are more earth-
quake sources than known in the studies carried
out in Izmir (Barka et al. 1996). At present, the
new findings of the faults were pointed out by Emre
et al. (2005) for the study area. In these studies,
the necessity for resolving the kinematics of the

faults formed in different directions within active
tectonism, examining their kinematic characteris-
tics in more detail, and carrying out more detailed
investigations is indicated. The study of Nyst and
Thatcher (2004) has pointed out that GPS/GNSS
velocity vector directions have some differences in
Izmir and its surroundings from western Anatolia.
In the studies of Pamukgu et al. (2010a, b), the
approaches were made for tectonic interpretation
of gravity anomalies in Izmir and its surroundings.

Continuous visualization of the movements in
the investigation area is an important point for
understanding seismic risk of the region. From this
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point of view, microgravity and GPS/GNSS mea-
surements (supported by Scientific and Technolog-
ical Council of Turkey, 108Y285) were carried out
between the years 2009 and 2011 in Izmir and its
surroundings for/within the scope of this study.

As a result, statistical analyses of microgravity
and GPS/GNSS measurements were carried out.
The vertical changes of gravity data and vertical
velocities which were obtained from GPS/GNSS
data were evaluated together and finally individual
datasets were examined by using seismological data
of the investigation area.

2. Applications

The stations were built for GPS/GNSS and micro-
gravity network system. Nineteen stations (figure 2)
are on the bedrock, all of them are in the high
topography zone and are built far away from faults
to avoid near fault kinematic effects. The Trimble
RTK 5700 for GPS/GNNS measurements and
2 pcs Scintrex gravimetry CG-5 for microgravity
observation network were used (figure 3).

The plan for microgravity studies is given in
figure 4. The six profiles were formed as 100, 200,
300, 400, 500, and 600 by using 19 measurement
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points (figure 5). IZMT is a base station and located
inside Engineering Faculty, Tinaztepe Campus of
Dokuz Eyliil University. Profile intended directions
are given with continuous lines in figure 5.

In this study, the measurements at each micro-
gravity point were measured as departure and
return for two times (figure 4). This microgravity
campaign was carried out across six separate profiles
on approximately same dates between the years
2009, 2010, and 2011. The evaluation results of
microgravity data are given in figure 6.

GPS/GNNS measurements at each station were
measured for 3 days and 10 hours for each day from
the beginning of July for each year (2009-2010-
2011). For processing GPS/GNSS data, the software,
which is called GAMIT/GLOBK (Herring 2009;
King and Bock 2009) was used. In figure 7, the
results of vertical displacement by using ITRF2008
solutions are shown. In this step, ANKR, ISTA,
TUBI (Turkey), ZECK (Russia), NSSP (Armenia),
NICO (Cyprus), MIKL (Ukraine), GLSV (Ukraine),
BUCU (Romania), PENC (Hungary), WTZR
(Germany) and MATE (Italy) were evaluated as
IGS (International GNSS Service) stations.

To this extent, microgravity data obtained in the
field were processed by pre-data processing tech-
niques. All the measurements were also assessed

Aydin Mountains

2i6:30;

Aegean Sea
38°00; el
| 2630,
|:| Quaternary alluvium Neogene sediments
Neogene volcanics Neogene granite

- Menderes Massif

normal and/or
D oblique fault
\\ strike slip fault
\‘\ Major thrust
and suture zones

............. inferred fault

|:] Bornova flysch zone

Karaburun Platform

CB: Cumaovasi Basin, 6G:Gediz Graben, KMG: Kiigiik Menderes Graben

SFZ: Seferihisar Fault Zone, OFZ:Orhanl Fault Zone, ORFZ:Ortakdy Fault zone, IFZ:Izmir Fault Zone, KFZ:Karsiyaka Fault Zone, MFZ:Manisa Fault Zone, GFZ:6iilbahge Fault

Figure 2. Location of 19 stations with local tectonic elements (Uzel et al. 2012).
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Figure 3. (a, b) One of the project stations when it is set up, (¢) GPS/GNSS equipments, and (d) gravity equipments.

by means of GravAP software (Schueler 2010). At
first, instrument elevation, tide, atmosphere, drift
and base corrections were applied by means of
pressure, temperature, instrument elevation values.
Approximately 15 repetitive measurements were

Profiles Stations
100 Izmt | DEU14 | DEU11 | DEU13 | DEU5 | DEU10| DEU5 | DEU13 | DEU11 | DEU14 | Izmt
200 Izmt | DEU1 | DEU7 | DEU8 | DEU9 | DEU8 | DEU7 | DEU1 Izmt
300 Izmt | DEU2 | DEU3 | DEU12| DEU4 | DEU11 | DEU14 | DEU11| DEU4 | DEU12 | DEU3 | DEU2 | Izmt
400 Izmt | DEU18 | DEU1 | DEU20 | DEU1 | DEU18 | Izmt
500 Izmt | DEU1 | DEU16 | DEU17 | DEU16 | DEU1 Izmt
600 Izmt | DEU5 | DEU6 | DEU15| DEU6 | DEU5 Izmt
Figure 4. The study plan of microgravity mesurements, Izmt is base point.

carried out at each measurement point. The section
remaining in drift +8 range of the gravity values
belonging to these measurements was selected.
Subsequently, attention was paid for keeping
the lowest and the highest values of standard
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Figure 5. The microgravity stations and mesurement lines which are red in colour.

deviations of measured profiles within a security
limit of 95%.

Processing GPS and gravity data according to
time (their increase/decrease relations) are worth
considering to explain the deformation of station
points. In this study, after processing the datasets,
the statistical relations were investigated by cor-
relation analyses. For this purpose, correlation
coefficient ‘r’ was used. The values of r are —1 <
r < 1. As it is known, if the correlation coef-
ficient is positive while the value of one of the
variables increases (or decreases), the other one
increases (decreases). Conversely, if the coefficient
is negative, while the value of one of the variables
increases (or decreases) the other one decreases
(increases). When r = 0, it can be said that there

is no linear relationship between the variables. If
r = 41, there is a positive linear relationship bet-
ween variables. If » = —1, it indicates a negative
linear relationship.

Correlation coefficients calculated from gravity
(figure 6) and GPS/GNSS (figure 7) measurement
results are given in table 1.

In the next step of the study, for obtaining
gravity changes equation (1) was used.

9 (te) = g (to) + dg/dt (tr — to) - (1)

Calculated gravity change results are given in
table 2. Moreover, data given in table 2 were used
for obtaining linear changes of gravity and vertical
velocity (figure 11).
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Figure 6. The microgravity measument values in 2009-2010-2011 and tectonic setting (figure 2) of the study area.

3. Discussions and conclusions

GPS/GNNS and microgravity network system was
used to understand the behaviour of vertical dis-
placement of the region and the active tectonism
in southern Izmir, which is included within the
western Anatolia extending system.

Results related to vertical displacement of time
dependent microgravity and GPS/GNNS data
between 2009 and 2011 years are presented in
figures 6 and 7. As can be seen from table 1,
showing relations between two datasets, there are
negative relations between DEU1, DEU2, DEUS5,
DEU6, DEU9, DEU11, DEU12, DEU14, DEU16,
DEU17, DEU18, and DEU20. Thus they offered
increased gravity value in response to decreased
vertical changes or decreased microgravity value
in response to increased vertical changes. But,
in table 1, the correlation coefficients of DEU2,
DEU9, DEU16, DEU17, DEU20, besides being
negative, were below —0.5. This result shows that

two variables may have a negative but nonlinear
relation. The correlation coefficients of DEU3,
DEU4, DEU7, DEUS, DEU10, DEU13, and
DEU15 were positive (table 1). According to this
result they offered increased (decreased) gravity
value in response to increased (decreased) verti-
cal changes. DEU10 also had a correlation coeffi-
cient below 0.5. This result may also be due to a
positive but a nonlinear relation among variables
of GPS/GNSS and gravity. DEU3, DEU4, DEU7,
DEUS, DEU10, DEU13, DEU15 were not work-
ing in a manner suitable for isostatic balance. This
may be possibly considered as imbalance in load
distribution caused by subsurface mass loss due
to geothermal environment, subsurface water or
seismic activity for these points (Pamukcu et al.
2014a). According to isostasy theory, while vertical
displacement is negative (—), gravity value should
be positive (Watts 2001). To investigate the effects
of surface load on these points, gravity changes
data given in figure 11(a) and topographic map
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Figure 7. The GPS/GNSS vertical displacement values in 2009-2010-2011 and tectonic setting (figure 2) of the study area.

Table 1. Correlation coefficients of GPS/
GNSS and gravity measurement results.

Station name

DEU 1
DEU 2
DEU 3
DEU 4
DEU 5
DEU 6
DEU 7
DEU 8
DEU 9
DEU 10
DEU 11
DEU 12
DEU 13
DEU 14
DEU 15
DEU 16
DEU 17
DEU 18
DEU 20

r

—0.963975585
—0.107272114
0.966267299
0.999962112
—0.992849122
—0.990940172
0.666490719
0.994229705
—0.340666125
0.412529893
—0.618333974
—0.984108589
0.749763187
—0.916409483
0.642297519
—0.190825629
—0.367337167
—0.914612737
—0.022538063

Table 2. Obtained dg/dt values of measured micro-

gravity values.
Station Id

DEU 1
DEU 2
DEU 3
DEU 4
DEU 5
DEU 6
DEU 7
DEU 8
DEU 9
DEU 10
DEU 11
DEU 12
DEU 13
DEU 14
DEU 15
DEU 16
DEU 17
DEU 18
DEU 20

dg/dt

0.06
0.185
0.2025
0.005
—0.7575
0.2675
0.2425
0.3675
0.3075
—1.0225
—0.01
0.001
—0.365
—0.58
0.16
—0.11
—0.19
—0.48754
—0.9775

RMS (%)

£0.019149
+0.12278
+0.093162
+0.280505
+0.33187
+0.1827
+0.029463
+0.003536
+0.074246
+0.685447
+0.221585
+0.103763
+0.179141
+0.464408
+0.051881
+0.042426
+0.284429
+0.100187
+0.355452
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given in figure 8 were evaluated together. As a
result, while topographic value of DEUS3 is high, its
gravity change is also high. This result shows that
the expectation about negative gravity changes of
higher topographic measurement points and posi-
tive gravity changes of lower topographic measure-
ment points is not confirmed for all stations. It can
be concluded that effects of surface loads on time
dependent gravity changes may not be significant.

It is accepted that some structures and for-
mations are developed during and after the

Oya Pamukcu et al.

earthquake (Audemard and De Santis 1991) and
they are examined under two main classes as
seismotectonic and seismogravitational (Dramis
and Blumetti 2005). Seismotectonic structures are
the deformations developed depending on tectonic
stresses, and in form of faults, horst-graben sys-
tems, geothermal areas, and longitudinal ridges.
However, seismogravitational structures are the
deformations caused by mass displacement, micro
fissures, and liquefaction. It is known that earth-
quakes forming the deformations have occurred
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Figure 8. Topographic map and main tectonic structures
Pamukcu et al. 2014b).
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since historical period until today in western
Anatolia and especially in Izmir and its surround-
ings, where the inspection area is located. So,
the measured data were evaluated in the light of
seismologic data of the region. Primarily, the distri-
bution of the earthquakes with magnitudes varying
between 2 and 6.9 (figure 9) and depths of focus
varying between 2 and 40 km (figure 10) obtained
from USGS (US Geological Survey) between the
dates 1970 and 2012 are given. When figures 9, 10,
and 11 were evaluated together, on the southwest of
the study area, Gulf of Sigacik, high seismic activ-
ity, negative gravity change, and positive vertical
velocity (except for DEU13) were determined. It is
thought that a structure causing earthquakes hav-
ing magnitude of 3—4 (figure 9) and focus depth of
10-20 km (figure 10) may be effective on tectonic
mechanism of the region, which may also affect
vertical velocity and gravity changes.
Microgravity changes of 3 years which are com-
piled in table 2 and vertical velocities obtained
from GPS/GNSS values of 3 years (error-rate
tolerances are 10 mm) and earthquake focus dis-
tributions are given in figure 11. When the gravity
changes in figure 11(a) are examined, a north-south
directional structure is observed. An increase in
gravity changes of DEU6, DEU7, DEUS, DEU9
located on the west side of the north-south direc-
tional structure is observed and DEU5, DEU10,
and DEU13 located on the east side of this structure
have lower gravity changes. This situation partially
confirms topographic changes given in figure 8. On
the other hand, although topography of DEUS) is
closer to sea level than DEU10 and DEU13, its
gravity change is negative (figures 8 and 1la).
Although in the east side of the study area,
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Seferihisar Uplift, there is an increase in gravity
changes of DEU1, DEU2, DEU3, and DEU15
measurement points; in the south part of that
area, DEU14 and DEU20 have lower values when
compared to the north. Results of this area are also
roughly in parallel with the topographic data given
in figure 8. But topographic value of DEU1 and
gravity change when compared to DEU2, DEU3,
and DEU15 show positive changes around Seferi-
hisar Uplift. From the same point of view, gravity
change of DEU20 is negative like DEU14, although
it is closer to sea level.

In figure 11(b), changes in vertical velocities have
a repeat of high in positive trend and high in nega-
tive trend in west—east direction. Vertical velocity
changes from west to east are: high in positive
trend for DEU6, DEU7, DEUS, DEU5, DEU11
measurement points (uplift), stable for DEU12 and
DEU4, high in positive trend for DEU1, DEU2,
DEU15 (uplift) and high in negative trend for
DEU1 and DEU16 (collapsed).

When figure 11(a and b) are compared, parallel
to the positive increase in gravity changes of DEUG,
DEU7, and DEUS8 measurement points, vertical
velocity changes are positive. The same situation
is valid for DEU3, DEU2, and DEU15. Besides
these, vertical velocities and gravity changes of
DEU16 measurement points have negative values.
Although gravity changes of DEU5, DEU10, DEU14,
DEU17, DEU18, DEU20 measurement points are
negative, their vertical velocities are positive.
Vertical velocity of DEU9 is stable and its grav-
ity change is positive. Vertical velocity of DEUL1 is
negative and its gravity change is positive. No
significant changes were observed for DEU12 and
DEU4 for an observation period of 3 years.
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Figure 10. The earthquakes focus depth distrubution between 1970 and 2012 in Izmir.
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Interesting results were obtained for DEU11 and
DEU13, which are located at a region where seismic
activity is high (figures 9, 10). Although vertical
velocity of DEU13 is lower than the other stations,
its gravity change is negative for 3 years of
observation. This situation can be evaluated as
a result of subsurface density /mass loss, collapse,
geothermal effects, and seismic gaps, etc., in the
region. For 3 years, DEU11 has shown no gravity
changes but high vertical velocity in positive
direction. This result can be attributed to the void

within the structure. In conclusion, this region
should be investigated thoroughly.
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