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SnowWater Equivalent (SWE) is an important parameter in hydrologic engineering involving the stream-
flow forecasting of high-elevation watersheds. In this paper, the application of classic Artificial Neural
Network model (ANN) and a hybrid model combining the wavelet and ANN (WANN) is investigated
in estimating the value of SWE in a mountainous basin. In addition, k-fold cross validation method is
used in order to achieve a more reliable and robust model. In this regard, microwave images acquired
from Spectral Sensor Microwave Imager (SSM/I) are used to estimate the SWE of Tehran sub-basins
during 1992–2008 period. Also for obtaining measured SWE within the corresponding Equal-Area Scal-
able Earth-Grid (EASE-Grid) cell of SSM/I image, approach of Cell-SWE extraction using height–SWE
relations is applied in order to reach more precise estimations. The obtained results reveal that the
wavelet-ANN model significantly increases the accuracy of estimations, mainly because of using multi-
scale time series as the ANN inputs. The Nash–Sutcliffe Index (NSE) for ANN and WANN models is
respectively 0.09 and 0.44 which shows a firm improvement of 0.35 in NSE parameter when WANN is
applied. Similar trend is observed in other parameters including RMSE where the value is 0.3 for ANN
and 0.07 for WANN.

1. Introduction

Snow Water Equivalent (SWE) is identified as one
of the main parameters in stream-flow forecasting
of high-elevation watersheds. The problems such as
limited numbers and the sparse network of snow
stations and also the fact that the ground obser-
vations are cost-consuming, are main concerns for
using space-borne observations to estimate snow
parameters including the SWE.

Microwave images are among the most appropri-
ate options for estimating the value of snow water
equivalent. These data are not sensitive to climatic
conditions such as cloudiness (Engman and Gorney
1991). In most generally applied passive microwave

(PM) snow algorithms, SWE is directly calculated
via a simple regression relationship to the differ-
ence between the brightness temperature observed
at 18 and 37 GHz (Chang et al. 1982; DeWalle and
Rango 2008).

Several algorithms have been presented for esti-
mating SWE from PM images (Foster et al. 1997;
Tait 1998; Singh and Gan 2000). Afterwards,
Koenig and Forster (2004) and Goita et al. (2003)
evaluated the accuracy of SWE estimations from
microwave images in different conditions utilizing
recent algorithms. In this regard, Tedesco et al.
(2003), Gan et al. (2009) and Tong et al. (2010)
proceeded to estimate SWE using artificial neural
networks and results demonstrated the superiority

Keywords. SWE; wavelet transform; ANN; SSM/I; k-fold cross validation; Tehran basin.

J. Earth Syst. Sci. 123, No. 7, October 2014, pp. 1591–1601
c© Indian Academy of Sciences 1591



1592 A B Dariane et al.

of ANN among other models. Matkan (1999) com-
puted snow depth obtained from SSM/I data
throughout Iran using a linear algorithm. Dariane
et al. (2012) used SSM/I data to estimate snow
water equivalent in Tehran basins.

Space-born passive microwave images have
coarse resolution. Therefore, their application for
estimating SWE in mountainous areas has been
argued due to spatial variability of snow proper-
ties in these areas. Most PM-based research has
employed EASE-Grid products having 25 × 25 km
fixed grid cell resolution which is very coarse for
rugged surface topography of mountainous area.
Because of these issues, the new GlobSnow prod-
uct has omitted calculations of SWE for mountain-
ous areas (Takala et al. 2011). Nevertheless, some
researchers have suggested methods to improve the
PM-based SWE estimations in these areas and
benefit the available space-born images where in
situ data are limited and sparse. For example,
Li et al. (2012) showed that using the Advanced
Microwave Scanning Radiometer for EOS (AMSR-
E) 37 GHz Level 2A (L2A) footprints with an area
of 87.9 km2 could partially overcome the resolution
problem of EASE-Grid data. Tong et al. (2010)
indicated that the application of ANNs for AMSR-
E and SSM/I performed much better than the algo-
rithms based on brightness temperature difference
for SWE estimation on a mountainous region in
Canada. Therefore, regardless of resolution issues
justly mentioned by many researchers on the appli-
cation of PM-based methods for estimating SWE
in rugged mountainous areas, there are also ways
to partially overcome the problem and to benefit
the advantage of PM data in areas where in situ
data is sparse and/or not available. This paper
addresses one of these approaches through the
application of wavelet transform coupled with
ANN model.

Artificial Intelligence (AI) techniques are known
to have great abilities in estimating nonlinear
time series where they have attracted attention
from various areas including hydrologic engineer-
ing. In hydrologic field, they employ available his-
torical time series for simulating the system. In
this aspect, ANN and some other methods have
been in the core attention for modelling nonlin-
ear hydrologic systems. Regardless of their rela-
tive success, ANN procedures have some shortages
which limit their applications in many problems
including peak flow estimations. When signal fluc-
tuations are nonstationary, ANN-based approaches
are not satisfied in precision and in this situation
model performance lacks the expected quality. In
order to overcome this deficiency and to raise the
precision of model estimates, some hybrid models
in combination with ANN are suggested (Nourani
et al. 2011). A combination of wavelet transform

and ANN is one of the most common hybrid
methods mentioned in the literature.

Wavelet transform method has become a pop-
ular tool in enhancing the performance of ANN
models. It does this by explaining both spectral
and temporal input data information in signals. In
this regard, Wang and Ding (2003) applied WANN
model to predict short term and long term hydro-
logic time series. Their results revealed that the
hybrid model could increase accuracy of prediction.
Partal and Cigizoglu (2008) estimated the daily
suspended sediment by using a WANN model. In
one step, past sediment data and in the other step,
daily river flow data were applied to estimate sed-
iment load. They reported that the WANN model
has a good fit to the observed data (especially in
peak values) and has better results than the clas-
sic ANN model. Adamowski and Sun (2010) also
applied a coupled wavelet transform and neural
network method for flow forecasting in semi-arid
watershed. They used wavelet coefficients as inputs
into Levenberg Marquardt artificial neural network
models for flow forecasting at lead times of 1 and 3
days. Their results showed that wavelet-neural net-
work models provide more accurate flow forecasts
than the artificial neural network models. Krishna
et al. (2011) used wavelet neural networks for mod-
eling the streamflow time series in Malaprabha
River (in India). They used discrete wavelet trans-
form to decomposed time series as inputs to neural
network. They compared WANN with classic ANN
and autoregressive (AR) models and showed that
the hybrid model is able to produce better results
than either ANN or AR models.

In this article, a new application is demonstrated
by using a combination of wavelet and ANN model
in estimating the SWE values based on microwave
images. As mentioned earlier, most previous meth-
ods for estimating SWE include linear functions.
ANN method has been also applied in limited
cases. Based on our information, the application of
wavelet-ANN has not been yet carried out for SWE
estimations.

This paper is organized as follows. The case
study, ground and satellite measured data are pre-
sented in section 2. Section 3 presents the concepts
and methods which are used in this study. Section 4
includes the results and discussions and finally, the
last section contains the conclusions of the study.

2. Research area

The study area is Tehran basin that covers an
area of about 5880 km2 with elevations ranging
from 1236 m in the south to 4346 m in the north-
ern region and is located in the central part of
Alborz Mountains in Iran (see figure 1). This area
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Figure 1. Location of the research area in Tehran region.

is classified with semi-humid cold climate which
is affected by northern humid climate in the mar-
gin of Caspian Sea in the north, and hot and dry
central plateau climate in the south (Department
of Energy 2009). The area includes 23 snow mea-
suring stations as shown in figure 1 with their
corresponding SSM/I pixels.

The satellite passive microwave data are
acquired by the SSM/I sensor; launched on the US
Defense Meteorological Satellite Program (DMSP)
in 1987. The SSM/I sensor contains seven chan-
nels that include both horizontally and vertically
polarized channels at frequencies of 19, 37, and
85 GHz and a vertical polarization at 22 GHz
(Armstrong et al. 1994–2008). The daily SSM/I
data are acquired in ascending and descending
mode spanning between 1992 and 2008 with the
spatial resolution of 25 and 12.5 km corresponding
to the channels of 19, 22, 37, and 85 GHz, respec-
tively. The data is freely available from National
Snow and Ice Data Center (NSIDC) website. In
addition, a DEM from the Shuttle Radar Topog-
raphy Mission (SRTM) with a spatial resolution of
90 m was used in this study.

3. Methods

In this section, at the beginning Cell-SWE extrac-
tion method for obtaining measured SWE within
the corresponding Equal-Area Scalable Earth-Grid
(EASE-Grid) cell of SSM/I image is presented.
Then, the structure of artificial neural network
and the concepts of wavelet transform are briefly
explained. Following that, the structure of hybrid
model in which wavelet transform has been com-
bined with ANN for estimating SWE is intro-
duced. Finally, k-fold cross validation method as
a procedure to achieve more realistic model is
presented.

3.1 Extraction of the height–SWE relations

In most of basins in Iran, one or two snow mea-
surements are recorded at each station during the
snowy months in every year. Using these measure-
ments, monthly average values are obtained for
each station. Moreover, observed long-term aver-
age SWE values are derived in each snowy month.
The height–SWE relation is then extracted for each
month as:

SWEm = amH + bm (1)

where H is the station height, am and bm are linear
regression parameters and SWEm is the long-term
average SWE for mth month.

3.2 Cell-SWE extraction method

The location of snow stations whose measurements
are used in this study is depicted in figure 1. As it
can be found in figure 1, hydro-meteorological sta-
tions in the basin are inappropriately distributed
in altitude. Therefore, in order to properly extract
SWE values over EASE-Grid cells, the following
methods are investigated.

• Method 1 - simple average: In this method,
which is also a common practice, SWEc is
obtained by averaging the SWE values in each
cell as:

SWEc =
1

n

n∑

i=1

SWEc
i (2)

where SWEc
i is snow water equivalent in ith sta-

tion and n is identified as number of stations in
the cell.

• Method 2 - weighted average distance: In
this approach, SWEc in each cell is calculated
based on weights extracted from the distance
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between each station and the center of cell
(equations 3 and 4).

Wi =
1

li

n∑

j=1

(
1

li

)
(3)

SWEc =

n∑

i=1

Wi SWEc
i (4)

where li is Euclidean distance from ith station
to the center of cell and Wi is the weight of ith
station.

• Method 3 - normalized SWE value based
on altitude and weighted average distance:
Snow and consequently SWE values in each cell
depend on height; the SWE value is first adjusted
to the SWE corresponding to the averaged height
using the first regression parameter (slope) of
the height–SWE relation, i.e., a, and the SWE
values measured at station height applying
equation (5). SWEc for each cell is then com-
puted using equations (3) and (4).

SWEc
n = SWEc

st + am(H
c
avg −Hc

st) (5)

where Hc
st is station altitude, Hc

avg is denoted as
the averaged height of the cell c, am is the slope of
the height–SWE relation for mth month, SWEc

st

is the SWE of the corresponding station in mth
month and SWEc

n is the adjusted SWE for the
nth station.

• Method 4 - Cell-SWE extraction: The spa-
tial resolution of the SSM/I images is 25×25 km
while that of the SRTMDEM is 90×90 m. Hence,
the results could be improved using the SWE
adjusted on the basis of DEM pixels. The SWE
value of each station is corrected for DEM pix-
els covering one SSM/I pixel. The average val-
ues, therefore, represent the SWE of the SSM/I
pixel (equations 6 and 2). The results obtained
demonstrate that the proposed approach applies
the height–SWE relations with higher accuracy
compared to the previous methods.

SWEc
n =

1

k

k∑

PD=1

(SWEc
st + am(H

c
PD −Hc

st)) (6)

where Hc
PD is height in the PDth pixel of DEM

that is located in the SSM/I pixel, k is the num-
ber of pixels of DEM covering the SSM/I pixel
and SWEc

n is the corrected SWE for nth station.

A comparison of results indicates that as
expected, method 4 has the best performance. For
example, a comparison of the last method with
method 1 as shown in table 1 shows that Cell-SWE

extraction method has been able to significantly
improve the correlation between SWE of ground
station data and signals of SSM/I bands. There-
fore, method 4 was employed for the rest of this
paper.

3.3 Artificial neural network

Artificial intelligence methods have the ability to
give better performance through handling nonlin-
earity and other complexities in modeling of the
time series. From these categories, artificial neural
networks (ANNs) have flexibilities in data mod-
elling (Zhang and Dong 2001). ANN is reported
by many authors (Tedesco et al. 2003; Gan et al.
2009) as a proper tool in estimating the value of
SWE.

ANNs, also called multi-layer perceptrons
(MLP), are mathematical models in order to pro-
cess information and predict outputs based on net-
work learning. Neural networks consist of an input
layer, usually one or two hidden layers, and one
output layer. Each layer consists of one or more
neurons directionally linked with the neurons of
adjacent layers. Number of neurons in the input
layer is determined by the number of input param-
eters in the model. In the output layer, there is usu-
ally one neuron representing the output parameter.
In some cases, number of neurons in the output
layer could be more than one which is determined
by the modeler. Number of neurons in the hidden
layer is unknown and must be properly determined.
A common method is by trial and error. Neurons
in each layer are directionally linked with neurons
of adjacent layers by weights that can be adjusted
during the training process of the model. Each neu-
ron in the hidden layer has weighted inputs and by
using a transfer function over the sum of weighted
inputs, it produces a weighted output that is sub-
sequently used as the input of a neuron in the next
layer. The neurons in the input layer only receive
simple input values and do not have summation
and/or transfer function. Some texts avoid using
the term ‘layer’ for the inputs due to these char-
acteristics. Also, the neurons in the output layer
receive weighted inputs and apply summation and
transfer function, but their output is not weighted.
The transfer function in the output layer is usu-
ally a simple linear one. Having weights (w) and
biases (b) and inputs (x ) of a problem, the output
(a) of each neuron using a transfer function f is
defined as a = f (wx+ b) (for a detailed study on
this subject, see Hagan et al. 1996).

For training ANNs, datasets are introduced to
the network and the output of the network is com-
puted. Then, the mean square error is calculated
over the entire dataset. In the next step, the error
is back-propagated through the hidden nodes to
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Table 1. Comparison of correlation coefficients between data from ground stations and
SSM/I bands.

Band H19 V19 V22 H37 V37 H85 V85

Method 4: Cell-SWE extraction 0.23 0.41 0.45 0.52 0.52 0.64 0.66

Method 1: Simple extraction 0.21 0.31 0.33 0.37 0.34 0.42 0.43

modify the weights of the inputs. This process is
repeated and the weights are adjusted iteratively
until the neural network converges to specified
error. Back propagation algorithm is a common
method for training feedforward networks.

3.4 Wavelet transform

Wavelet transform is relatively a new progress in
the field of signals and has attracted much atten-
tion since its introduction in the early 1980s. The
first aim of wavelet analysis is both to determine
the frequency content of a signal and the tempo-
ral variation of this frequency content for analyzing
the data. Therefore, the wavelet transform is a use-
ful choice when signals are nonstationary (Labat
2005).

Wavelet transform analysis is a more appropriate
tool than the Fourier transform in studying non-
stationary signals (Partal and Kisi 2007). The main
advantage of wavelets is their ability to provide
information about time, location, and frequency of
signals, whereas Fourier transform only provides
information about the frequency (Adamowski and
Chan 2011). The wavelet transforms convert a sig-
nal to a set of subsignals. These subsignals explain
a better behaviour and reveal more information of
the process than the original time series. So, they
can help to predict with more accuracy (Remesan
et al. 2009; Calatao 2011).

When a function satisfies the following condi-
tions, it is a mother wavelet (Mallat 1998):

+∞∫

−∞

ϕ(t)dt = 0;

+∞∫

−∞

|ϕ̂(w)|2
|w| dw < ∞ (7)

where ϕ(t) is wavelet function or mother wavelet
and the ϕ̂(w) is Fourier transform of ϕ(t). Other
wavelets ϕa,τ(t) can be obtained by compressing
and expanding the mother wavelet:

ϕa,τ (t) = a−1/2ϕ

(
t− τ

a

)
(8)

where a is scale or frequency factor also called dila-
tion factor and τ is the time factor. The term ‘scale’
refers to extend or to compress the wavelet. Using
small scale causes the wavelet to be compressed and

in the case of large scale, the wavelet is extended.
Large scale values are not able to show the details,
but small scales are applied to reveal more details.

The time-scale wavelet transform of continuous
time series, x(t), is defined as (Mallat 1998):

cxφ =
1√
a

∞∫

−∞

x(t)ϕ∗
(
t− τ

a

)
dt (9)

where * denotes conjugate complex function.
Continuous wavelet transform (CWT) needs cal-

culating wavelet coefficients at each scale (more
work) and requires more calculation time. But as
compared to CWT, the discrete wavelet trans-
form (DWT) requires less computation time and is
simpler to develop. Scales and positions of DWT
are usually based on powers of two (dyadic scales
and positions) and this method is more efficient
than CWT for practical cases (Partal and Kisi
2007; Adamowski and Chan 2011). The discrete
wavelet has the following general form (Grossman
and Morlet 1984):

ϕm,n(t) = a−m/2
0 ϕ

(
t− nτ0a

m
0

am
0

)
(10)

where m and n are integers that control, respec-
tively, the wavelet dilation (scale) and translation
(time); a0 is a specified fixed dilation step greater
than 1; and τ0 is the location parameter and must
be greater than zero. The most common (and sim-
plest) choice for the parameters a0 and τ0 is 2
and 1.

For a discrete time series xi, where it occurs at
different time t, the DWT can be defined as (Mallat
1998):

Wm,n = 2−m/2

N−1∑

i=0

xiϕ(2
−mi− n) (11)

where Wm,n is wavelet coefficient for the discrete
wavelet of scale a = 2m and location τ = 2mn.

The discrete wavelet transform is used to decom-
pose the time series data. By this procedure, the
signal is divided into two parts as approximation
and detail. The process is continued by succes-
sive decomposition of the approximation. In this
way, the original signal is broken down into lower
resolution component.
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3.5 Coupled wavelet and ANN (WANN)

WANN structure consists of wavelet transform
and ANN model as explained in an earlier sec-
tion. Wavelet-ANNs are the ANN models where
the decomposed subsignals are used as the
inputs. In this structure, back propagation pro-
cess is used to compute weights through train-
ing the WANN model. These decomposed subsig-
nals are obtained by discrete wavelet transform
because of less computational effort than continu-
ous wavelet transform. Wavelet-ANNs were intro-
duced by Zhang and Benveniste (1992) as an
alternative to feedforward ANNs. Wavelets can also
be used within the ANN structure as substitutes to
activation functions (Alexandridis and Zapranis
2013).

3.6 k-fold cross validation

Cross validation method plays an important role
in proper interpretation of the results obtained by
the model. The commonly practiced method con-
sists of dividing the dataset into two parts. Usu-
ally first 80% of the data is used for training and
calibration of the model where the optimum value
of adjustable parameters is determined and the
remaining 20% at the end of data period is used
to validate the trained model. A major setback
of this method concerns the representativeness of
the period selected for validation. If the valida-
tion period is a dry or wet period, or if it con-
sists a different rainfall-runoff regime, then the val-
idation results could be erroneous. On the other
hand, employing a limited data could give opti-
mistic or otherwise pessimistic results that are both
unreal. k-fold is a method that could overcome
these problems.

With k-fold method, datasets are divided into k
parts. Noting that each dataset should be divided
into two parts of training and validation; in each
run, one fold of data is allocated for validation
and k−1 folds are allocated for training the model.
This process is repeated k times and real error
of this model is estimated by averaging the error
of k runs of the model (Refaeilzadeh et al. 2009).
k-fold method has considerable advantage over
the common practice; for example, it makes the
data play two roles of training and validation in
the whole k runs. The results obtained by using
k-fold may or may not be higher in evaluation
parameters as compared to the classic method, but
these results are real and more reliable. There-
fore, the model evaluated by this method is more
dependable. For estimating the actual performance
of model and to obtain more reliable results, k-
fold cross validation method is employed in this
paper.

3.7 Approach

The SSM/I data acquired in descending mode is
selected to estimate SWE. It should be noted that
in descending mode data is recorded in the early
morning which usually represents dry snow condi-
tion. Using the best Cell-SWE extraction method
as described by equation (6) (method 4), the SWE
value in EASE-Grid cell is calculated from the mea-
sured raw data and corresponding Digital Num-
ber (DN) values of the EASE-Grid cell extracted
from seven channels. In this study, first, ANN with-
out any data pre-processing within Tehran basin
is developed to estimate the nonlinear relationship
between the DN and SWE values as inputs and
output of the model, respectively. In this regard,
according to the measured SWE within 19 years
(1990–2008, inclusive), 223 data series are obtained
to establish the models. Due to rather small num-
ber of available data and for better training of the
neural network, only 10% of the data is used to
validate the neural network model. Thus, from 223
available data, 203 data is applied for training and
the remaining 20 datasets are allocated for vali-
dation process. Also, because of small number of
validation data and to achieve more reliable and
robust model, k-fold resampling method is used.
Moreover, the application of discrete wavelet trans-
form in conjunction with ANN model is investi-
gated. Data from channels 1 to 7 are decomposed
by discrete wavelet transform and used as inputs
of ANN. The advantage of this model over ANN
lies in its ability in identifying the components of
the nonstationary time series, such as SWE, by
multi-level wavelet decomposition.

The models are evaluated through three well-
known criteria as presented in table 2.

In forecasting models, NSE gives a better mea-
sure about the goodness of forecasts. Coefficient of
determination by itself could mislead one by show-
ing high values, where predicted flows are very dif-
ferent, but highly correlated with observed ones.
RMSE could help to partly overcome this problem
but it fails to give a firm measure of model accu-
racy because its value is data scale dependent. On
the other hand, NSE is dimensionless and free of
scale and has been widely used in hydrology and
other fields of science since it was introduced by
Nash and Sutcliffe (1970).

4. Results and discussion

In this section, first, feedforward multilayer percep-
tron (MLP) neural network trained by Levenberg–
Marquardts scheme of back propagation algorithm
is used to estimate the SWE values. It should
be mentioned that in all ANN models, a single
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Table 2. Forecasting accuracy criteria.

Parameter Formula Definitions

Coefficient of determination (R2)

[∑N
i=1 (Qobsi −Qobs)× (Qpredi

−Qpred)
]2

∑N
i=1 (Qobsi −Qobs)

2 ×∑N
i=1 (Qpredi

−Qpred)
2

Qobsi : observed,

Qpredi
: predicted,

Qobs : mean observed,

Qpred : mean predicted,

Root mean square error (RMSE)

√∑N
i=1 (Qobsi −Qpredi

)2

N − 1

N : number of data

Nash–Sutcliffe model efficiency (NSE) 1−
∑N

i=1 (Qobsi −Qpredi
)2

∑N
i=1 (Qobsi −Qobs)

2

Par. Ranges:

(0 ≤ R2 ≤ 1)

(0 ≤ RMSE ≤ ∞)

(−∞ ≤ NSE ≤ 1)

hidden layer is assumed and the number of neu-
rons in this layer is selected by trial and error.
Also, for better performance of the neural network
model, available data are normalized between zero
and one. So, SWE is presented in dimensionless
form in figures.

In this case, using k-fold method, datasets are
divided into 11 parts (folds) and then in each run,
one fold of data is set aside for validation and the
remaining 10 parts are used for training the model.
It was mentioned earlier, data from channels 1 to 7
(seven inputs) are used as input variables to esti-
mate the SWE as the model output. The results
obtained by ANN model using k-fold resampling
method are presented in table 3.

According to table 3, the model in stage 5 has
the weakest results with NSE value equal to −1.77.
This means that probably the dataset used for val-
idation in this stage has a different trend than
the rest of data that are used in calibration of
the model. Also, the model in stage 11 shows the
strongest performance with an NSE value of 0.55.
This is also probably an indication that the vali-
dation data in this stage is in accordance with the
main trend of the training data. It is evident from
these results that if a classic method was used we
could have made erroneous conclusions about the
model performance. The average performance of
the model has an NSE value of about 0.10. The
model in stage 6 has a close performance to the
average NSE which is selected for further anal-
ysis. So, this part of data (inclusive 2002–2003)
is used as the validation period in figure 2. It is
necessary to mention that because of using nor-
malized data, the RMSE values are dimensionless
throughout this paper.

Figure 2 shows the estimated and observed SWE
and scatter plot of selected ANN model for vali-
dation period. The solid line in the left plot shows
the perfect prediction where data calculated by
the model perfectly matches the observed ones.

It is evident from the data scatterings in the left
plot that the model predictions are insensitive
to variations of the observed data. This explains
the point that due to low NSE value of 0.10,
which is close to zero, the model performance is
not much better than the observed average. Obvi-
ously, this model would not be suitable for SWE
estimates.

In the next step, a hybrid model using the pre-
processed data, generated by the wavelet method,
is used as the input to the ANN model in order
to improve the results. In other words, wavelet
decomposition helps obtaining detailed and fine
features from the time series signals that enter as
the inputs to the ANN model. These subsignals
explain a better behaviour of the process and reveal
more characteristics of the input data by which
the ANN receives better training. In this article,
the wavelet-ANN (WANN) model is established
by applying subsignals computed through discrete
wavelet transform (DWT) on original signals. Sig-
nals are the data related to channels 1 to 7 of SSM/I
sensor.

Through wavelet decomposition method, one
approximation subsignal of the original signal
and several detail subsignals (equal to number of
decomposition stages) are obtained and these sub-
signals of discrete wavelet transform show varia-
tions on different scales. In this application, coiflet
1 was applied as mother wavelet by trial and error
and 2 decomposition levels are selected for decom-
posing time series. Time series with scales 21,
22, and approximate and original signals of data
related to channel 1 are presented in figure 3. With
these decomposed sub-signals as the input of ANN
model, 21 inputs (one approximate and two details
for each signal), related to 1990–2008 duration, are
applied to estimate the SWE values.

Once again the k-fold resampling method is used
following all the previously explained steps. The
results obtained by WANN model as presented in
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Table 3. Results of ANN model using k-fold resampling method.

Training Validation period

Stage period Validation period NSE (R2) RMSE

1 The remaining Part 1 (Twenty-data) 0.18 0.28 0.33

2 Part 2 (Twenty-data) 0.05 0.06 0.35

3 Part 3 (Twenty-data) 0.18 0.26 0.22
4 Part 4 (Twenty-data) 0.36 0.44 0.25

5 Part 5 (Twenty-data) −1.77 0.68 0.24

6 Part 6 (Twenty-data) 0.09 0.24 0.30

7 Part 7 (Twenty-data) 0.46 0.65 0.26

8 Part 8 (Twenty-data) 0.53 0.58 0.20

9 Part 9 (Twenty-data) 0.19 0.24 0.24

10 Part 10 (Twenty-data) 0.35 0.48 0.2

11 Part 11 (Twenty-three data) 0.55 0.6 0.14

Mean: 0.10 0.41 0.25

Min: −1.77 0.06 0.14

Max: 0.55 0.68 0.35

Figure 2. The estimated and observed SWE and scatter plot of ANN model for validation period.

Figure 3. (a) Original input signal (channel 1); (b) approximation subsignal of input signal (level 2); (c) detail subsignal
of input signal (level 2); and (d) detail subsignal of input signal (level 1).
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table 4 show a substantial improvement over the
ANN model.

Table 4 shows that the model in stage 9 has
the weakest performance with an NSE value equal
to 0.21. Also, the WANN model developed in
stage 11 shows the best performance with NSE
equal to 0.68. The average NSE obtained for all
k-folds is about 0.43 which is a significant result
for passive microwave application in mountain-
ous areas. We observe that the model in stage
5 has the closest performance to the average
of all runs which is selected for further analy-
sis. In addition, this part of dataset (inclusive
2000–2002) is used as the validation period in
figure 4.

Figure 4 shows the estimated and observed SWE
and scatter plot of selected WANN model for vali-
dation period. The solid line in the left plot shows
the place of perfect prediction.

A comparison of results obtained by the classic
ANN model with those of the hybrid WANN model
reveals improvement in results by using hybrid
model. The average NSE of ANN model is 0.10
(table 3) whereas for the WANN model, mean NSE
is 0.43 (table 4), indicating a substantial improve-
ment. Other parameters including average R2 and
RMSE for ANN are 0.41 and 0.25, respectively,
while they are 0.50 and 0.15 for WANN model, also
showing a similar trend. The improvements in the
maximum and minimum of parameters are more
noticeable. Minimum NSE in ANN model is −1.77
which is increased to 0.21 in the WANN model.
The real value of hybrid model is more appreciated
by comparing the plots in figures 2 and 4. Com-
parison of time series plots and the scatter plots
shows that the SWE values estimated by the
WANN model are more precise than those found
by the ANN.

Table 4. Results of hybrid WANN model using k-fold resampling method.

Training Validation period

Stage period Validation period NSE R2 RMSE

1 The remaining Part 1 (Twenty-data) 0.34 0.35 0.21

2 Part 2 (Twenty-data) 0.32 0.32 0.21

3 Part 3 (Twenty-data) 0.25 0.28 0.15

4 Part 4 (Twenty-data) 0.5 0.6 0.16

5 Part 5 (Twenty-data) 0.44 0.56 0.07

6 Part 6 (Twenty-data) 0.36 0.56 0.18

7 Part 7 (Twenty-data) 0.54 0.67 0.17

8 Part 8 (Twenty-data) 0.64 0.70 0.13

9 Part 9 (Twenty-data) 0.21 0.30 0.17

10 Part 10 (Twenty-data) 0.51 0.53 0.13

11 Part 11 (Twenty-three data) 0.68 0.68 0.09

Mean: 0.43 0.50 0.15

Min: 0.21 0.28 0.07

Max: 0.68 0.70 0.21

Figure 4. The estimated and observed SWE and scatter plot of WANN model for validation period.
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5. Conclusion

In this paper, the application of classic ANN
and a hybrid model combining the wavelet and
ANN (WANN) was investigated in estimating the
value of SWE in a mountainous basin. Microwave
images acquired from Spectral Sensor Microwave
Imager (SSM/I) were used to estimate the SWE of
Tehran sub-basins during 1992–2008 period. Also
for obtaining measured SWE within the corre-
sponding Equal-Area Scalable Earth-Grid cell of
SSM/I image, approach of Cell-SWE extraction
was successfully used. It was found that the appli-
cation of neural networks in SSM/I images helps
in better estimations of SWE values. Moreover,
wavelet transform when combined with ANN was
able to substantially enhance the performance of
the model. A comparison of results obtained by
the classic ANN model without any data pre-
processing with those of the hybrid WANN model
that employs wavelet transform to pre-process the
input signals revealed the true value of wavelet
transform. The average NSE of ANN model was
found to be 0.10, whereas for the WANN model,
mean NSE was estimated at 0.43, indicating a sub-
stantial improvement. In addition, comparison of
time series plots and the scatter plots showed that
the SWE values estimated by the WANN model
are more precise than those found by the ANN.

Acknowledgments

Authors would like to thank NSIDC for providing
SSM/I data and the Iranian Water Resource Man-
agement Organization for making available ground
data needed in this project.

References

Adamowski J and Sun K 2010 Development of a coupled
wavelet transform and neural network method for flow
forecasting of non-perennial rivers in semi-arid water-
sheds; J. Hydrol. 390 85–91.

Adamowski J and Chan H F 2011 A wavelet neural net-
work conjunction model for groundwater level forecasting;
J. Hydrol. 407 28–40.

Alexandridis A K and Zapranis A D 2013 Wavelet neural
networks: A practical guide; Neural Netw. 42 1–27.

Armstrong R L, Knowles K W, Brodzik M J and
Hardman M A 1994 Updated current year. DMSP SSM/I
Pathfinder Daily EASE-Grid Brightness Temperatures
[1995–2008]; National Snow and Ice Data Center, Digital
media, Boulder, Colorado, USA.

Calatao J P S 2011 Hybrid wavelet-PSO-ANFIS approach
for short-term wind power forecasting in Portugal; IEEE
Trans. Sust. Ener. 2(1) 50–59.

Chang A T C, Foster J L, Hall D K, Rango A and Hartline
B K 1982 Snow water equivalent estimation by microwave
radiometery; Cold Reg. Sci. Technol. 5 259–267.

Dariane A B, Zakeri Nejad A R and Dehghani M 2012 Esti-
mation of snow water equivalent using SSM/I passive
microwave data in Tehran; 9th International Congress on
Civil Engineering, Isfahan University of Technology, May
8–10.

Department of Energy, Iran Water Resources Management
Company, Tehran Regional Water Company 2009 Orga-
nize the surface waters south of Tehran (qualitative and
quantitative studies) Volume I: Report of Weather; report
code: TWM/MS-02 (in Persian).

DeWalle D R and Rango A 2008 Principle of snow hydrology ;
England, Cambridge University, 410p.

Engman E T and Gorney R J 1991 Remote sensing in
hydrology ; London, Chapman and Hall.

Foster J L, Chang A T C and Hall D K 1997 Comparison
of snow mass estimates from a prototype passive micro-
wave snow algorithm, a revised algorithm and snow depth
climatology; Remote Sens. Environ. 62 132–142.

Gan T Y, Kalinga O and Singh P 2009 Comparison of snow
water equivalent retrieved from SSM/I passive microwave
data using artificial neural network, projection pursuit
and nonlinear regressions; Remote Sens. Environ. 113
919–927.

Goita K, Walker A E and Goodison B E 2003 Algorithm
development for the estimation of snow water equivalent
in the boreal forest using passive microwave data; Int. J.
Remote Sens. 24 1097–1102.

Grossman A and Morlet J 1984 Decompositions of hardy
functions into square integrable wavelets of constant
shape; SIAM J. Math. Anal. 5 723–736.

Hagan M T, Demuth H B and Beale M H 1996 Neural
Network Design; Boston, PWS Publishing.

Koenig L S and Forster R R 2004 Evaluation of pas-
sive microwave snow water equivalent algorithms in the
depth hoar-dominated snowpack of the Kuparuk River
Watershed, Alaska, USA; Remote Sens. Environ. 93
511–527.

Krishna B, Rao Y and Nayak P 2011 Time Series Modeling
of river flow using wavelet neural networks; JWARP 3(1)
50–59.

Labat D 2005 Recent advances in wavelet analysis: Part 1 –
a review of concepts; J. Hydrol. 314 275–288.

Li D, Durand M and Margulis S A 2012 Potential for hydro-
logic characterization of deep mountain snowpack via pas-
sive microwave remote sensing in the Kern River basin,
Sierra Nevada, USA; Remote Sens. Environ. 125 34–48.

Mallat S G 1998 A wavelet tour of signal processing ; 2nd
edn, San Diego, Academic Press.

Matkan A 1999 Passive microwave monitoring of snow cover
and rainfall over Iran using DMSP: F-11 SSM/I data;
Bristol University.

Nash J E and Sutcliffe J V 1970 River flow forecasting
through conceptual models. Part I – A discussion of
principles; J. Hydrol. 10(3) 282–290.

Nourani V, Kisi O and Komasi M 2011 Two hybrid Arti-
ficial Intelligence approaches for modeling rainfall–runoff
process; J. Hydrol. 402 41–59.

Partal T and Cigizoglu H K 2008 Estimation and forecasting
of daily suspended sediment data using wavelet–neural
networks; J. Hydrol. 358 317–331.

Partal T and Kisi O 2007 Wavelet and neuro-fuzzy conjunc-
tion model for precipitation forecasting; J. Hydrol. 342
199–212.

Refaeilzadeh P, Tang L and Liu H 2009 Cross-validation;
In: Encyclopedia of Database Systems (eds) Liu L and
Ozsu T, Springer, pp. 532–538.

Remesan R, Shamim M A, Han D and Mathew J 2009
Runoff prediction using an integrated hybrid modelling
scheme; J. Hydrol. 372 48–60.



ANN coupled with wavelet transform for estimating SWE 1601

Singh P R and Gan T Y 2000 Retrieval of snow water equiv-
alent using passive microwave brightness temperature
data; Remote Sens. Environ. 74 275–286.

Tait A B 1998 Estimation of snow water equivalent using
passive microwave radiation data; Remote Sens. Environ.
64 286–291.

Takala M, Luojus K, Pulliainen J, Derksen C, Lemmetyinen
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