A generalized advection dispersion equation
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This paper examines a possible effect of uncertainties, variability or heterogeneity of any dynamic system
when being included in its evolution rule; the notion is illustrated with the advection dispersion equation,
which describes the groundwater pollution model. An uncertain derivative is defined; some properties of
the operator are presented. The operator is used to generalize the advection dispersion equation. The
generalized equation differs from the standard equation in four properties. The generalized equation is
solved via the variational iteration technique. Some illustrative figures are presented.

1. Introduction

The distribution of sedimentary facies controls
the heterogeneity of hydrogeological properties of
porous sedimentary aquifers at different scales. The
arrangement of individual facies and their porosity
and permeability determine the path of groundwa-
ter flow across sedimentary bodies. Therefore the
capability to forecast hydrogeological heterogene-
ity due to facies changes helps to improve solu-
tions of flow and diffusion problems in this kind
of aquifer. When real aquifers are studied, it is
impossible to model groundwater flow at a scale
such that we can take into account the effects of
fine-scale sedimentary heterogeneity; in fact this
would require a precise knowledge of the sedimen-
tary bodies that cannot be obtained from sparse
data at some wells and this would be prohibitive
for the required computing power. Therefore the
fine scale heterogeneity is usually ‘up-scaled’ and
the heterogeneous real medium is substituted at
a larger scale with an equivalent often anisotropic
medium, whose parameters allow the reproduction
of the average flow of the real heterogeneous sed-
imentary structure. It is very important to notice

that there is a close relationship between the flow
and the transport of the pollution through the geo-
logical formation. The description of transport is
closely related to the terms convection, diffusion,
dispersion, and retardation as well as decomposi-
tion. First, it is assumed that there are no interac-
tions between the species dissolved in water and the
surrounding solid phase (Javandel et al. 1984). The
primary mechanism for the transport of improp-
erly discarded hazardous waste through the envi-
ronment is by the movement of water through the
subsurface and surface waterways. Study of this
movement requires that one must be able to mea-
sure the quantity of waste present at a particu-
lar point in space and time. The measure, uni-
versally, for chemical pollution is the concentra-
tion. Analytical methods that handle solute trans-
port in porous media are relatively easy to use
(Javandel et al. 1984). However, because of com-
plexity of the equations involved, the analytical
solutions generally available are restricted to either
radial flow problems or to cases where velocity
is uniform over the area of interest or the area
under investigation is homogeneous. Neglecting
such aspects in groundwater assessments can lead
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to incorrect results and misleading output. Up to
now the notion of variability or nonhomogeneity
in groundwater assessment is not well known. It
is not easy to precisely determine how the aquifer
system varies from one point to another and how it
will vary as time goes. This notion of heterogene-
ity can then be classified under uncertainties in
groundwater assessment. Generally there are other
various sources of uncertainty in model outputs,
for example, uncertainty associated with lack of
knowledge or accuracy of the model inputs as well
as the structural uncertainty related to the math-
ematical interpretation of the model. The assess-
ment and presentation of the effects of uncer-
tainty are now widely recognized as important
parts of analyses for complex systems (Mandeibrot
1982; Gloecke and Nonnemacher 1993; Metzler
and Klafter 2000; Yanovsky et al. 2000; Chechkin
et al. 2002). At the simplest level such analy-
ses can be viewed as the study of functions. In
order to include explicitly the possible effect of
the uncertainties into mathematical models, we
have introduced in this paper, the uncertainties
in groundwater models as a function of time
and space.

u=u(z,t). (1.1)
The idea of modelling the uncertainties may be
generalized in all dynamic systems. A dynamical
system is a concept in mathematics where a fixed
rule describes the time dependence of a point in
a geometrical space (Alligood et al. 2000). At any
given time a dynamical system has a state given by
a set of real numbers (a vector) that can be repre-
sented by a point in an appropriate state space (a
geometrical manifold). Small changes in the state
of the system create small changes in the num-
bers (Alligood et al. 2000). The evolution rule of
the dynamical system is a fixed rule that describes
what future states follow from the current state.
The rule is deterministic; in other words, for a
given time interval only one future state follows
from the current state (Alligood et al. 2000). In
mathematical terms, a dynamic system is a tuple
(D, f, T) with © a manifold (locally a Banach
space or Euclidean space), T the domain for time
(non-negative real, the integers) and f an evolu-
tion rule ¢ — f' (with ¢t € T) such that f* is a
diffeomorphism of a manifold to itself (Palis and
de Melo 1982).

In this paper the idea of including the uncer-
tainties into the mathematical formulation of an
evolution rule of a dynamic system will be illus-
trated with the advection diffusion equation (the
groundwater pollution model). The paper starts
with the following definition and properties.
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2. Definition and properties

2.1 Definition

Let ® be a dynamic system with domain T
(domain for time), and u > 0 an uncertainty func-
tion of ® within T, then if f € ®, the uncertain
derivative of function f denoted by D"f is defined as:

DU f(z) = (1 +u(@))f'(z) +u'(z)f(x). (2.1)
Existence of the operator
(D" f(@)] = [(1 4+ u(x)) f'(x) + v f(x)|
< | 4 u(@)|[f /(@) + [/ ()] f ()] (2.2)

therefore, if f(z), f'(z), u(z) and «/(z) exist then
D"f(z) exists.

2.2 Some properties of the operator (Atangana
and Kiligman 2013a)

Let us examine some properties of the above
derivative operator

e Addition
If u,, f(z) and g(z) are differentiable in the
opened interval ©, then:
D [f(x) + g(z)] = D*[f(x)] + D*[g()].
Proof

(2.3)

Olf (z) + g(=)]

D [f(a) +g(@)) = (1 +u) =

O [ @)+ @)1+ )

)

dlg(z)]
ox

_|_

(1 + u,)

+2 [g(a)].

= D™[f(x)] + D™ [f(x)].

® Division
If w, and 1/(f(x)) are differentiable on the
opened interval ©, then:

DT T O w) ) + ()

b bmJ ()
P wf)  df@)
T P e Y
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e Multiplication

If u,, f(z) and g(z) are differentiable in the
opened interval ©, then:

D [f(z) - g(x)]=g(x) ['(x) + f(x)g (z)

+(9f + f9)(@)us + w(f(x)g(x)). (2.5)

e Power

If u, and f(z) are differentiable in the opened
interval ©, then

Dy [(f ()]

=nf " funf [T ufr, o n> L

e If u, and f(x) are two times differentiable in the
opened interval ©, then:

P >’ f
D™ (D (@)= (1+ ) | (1 + u) 55
Of Ou, 0%u, ou,
+3% Oxr  Ox? f} Ox f-
e Clauraut’s theorem for the approximation

Assume that f(z, y), u, and wu, are func-

: ; f P e 0%y
tions for which 520y’ yds’ duoy and 920

exist and are continuous over a domain DC
R? then, D't [D'*% [f(z,y)]] and D'*"vsx
[DYFu= [f(x,y)]] exist and are continuous over the
domain D. In addition, if u, = u, then,

D [D* [f(z,y)]l = D* [D* [f(z, y)]] -

Proof. If f(z, y), u, and u, are functions con-

; oh 25 9 ey 0%y
tinuous for which 520y’ Byda’ bzos 520,
and are continuous over a domain an open domain

D C R? then,

and exist

D (D" [f(z,y)]]

Ouy, Of *f Ou,
— (1 =
(I+u,) [ Jy Ox + 0yox 8y8mf(x’y)
ou, 8_f
ox Oy

b4 uy) L0 Ouy Ou

oy Ox Oy Ox f@y)

(2.6)
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Then, D" [D"* [f(z,y)]] expression exists as sum
of existing function. Now interchanging x by y we

obtain the same result with D" [D*[f(z,y)]].
’f _ 9°f
oydx ~  0x0y

raut’s theorem, thus replacing
D" [D"= [f(z,y)]], we obtain

D (D" [f(x,y)]] = D" [D™ [ (&.y)]].

according to Clau-

2°f °f
Oxdy by Jyox mn

If u, = u,, then

® Chain-rule for the approximation

D(f09) = (14 u)g () fo(w)] + 52 09)
= /@) lo(@)] + e/ (@) lo(w)) + D2(f o )

e Rolle’s theorem for the approximation

If a real-valued function f and u, are continuous
functions on a closed interval (a, b), differentiable
on the open interval (a, b), and f(a) = f(b), then
there exist a ¢ in the open interval (a, b) and a
small parameter p such that

D" f(c) = uf(c).

Proof. Following Rolle’s theorem, there exists a ¢
in the open interval (a, b) such that f’(¢) = 0. For
this ¢ we have

DU f(c) = (1 + ug(e)) f'(e) +u.(c)f(c)

e If g(x), f(z) and u, are differentiable in ©, then
there exist @ > 1 and 8 > 0 such that:

D" f(@) — D" g(x)| < al f'(x) - ¢ (2)]
+8|f(x) —g(z)|, Vxel.

Proof. Let z € ©, then

| D f ()= D" g(x)] = [(1+us (2)) ' (2) +us, () f ()
—(1+us(2))g'(x)—w(z)g()]
=[1+u, (2)||f"(z) -9 (2)|

+ [ ()] | f (z) =g ()]

but u,(z) is very small such that |1+ u,(z)| < 2
and |u/ (z)| > 0, it follows that

1+ e (2)[[f(2) = ¢' ()] + [, (@) f (2) — g(2)]
< alf'(z) — g' (@) + Bl (z) — g(x)|.
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It is important to observe that if u = 0, we recover
the properties of normal derivatives.

3. Application on the advection
dispersion equation

The concern here is the modification of advec-
tion dispersion equation by including a possible
effect of heterogeneity or variability of the aquifer
into the mathematical formulation. A one dimen-
sional model consisting of an infinitely long homo-
geneous isotropic porous medium with a steady
state uniform flow with a seepage velocity v is con-
sidered here. A particular chemical from one end
of the model for a period of time ¢, such that
the input concentration varies as an exponential
function of time. The value of that chemical
concentration at any time t and at a distance
x from the injection boundary, allowing for the
decay and adsorption, may be obtained from
the solution of the following set of equations
(Cleary and Ungs 1978); more details for this
model can be found in (Van Genuchten and
Alves 1982; Jaiswal et al. 2009, 2011; Yadav et
al. 2011). Other results for this problem can
be found in (Benson et al. 2000; Meerschaert
et al. 2006; Zhang et al. 2007; Atangana and
Kiligman 2013b).

0’c  oC oC
50 VEs ARC = RE + f(z, ).

(3.1)

Subject to the initial and boundary conditions:
C(x,0) =0, C(0,t) = coexp(—at)

and
C,(c0,t) =0,

where D is the dispersion coefficient, v is the seep-
age velocity, R is the retardation factor, A\ is the
radioactive decay constant, cy is the initial con-
centration, « is a positive constant and f(z, t) is
any source and sink in the system. However, in
the case of the groundwater pollution the function
f(x, t) is always neglected because we assume,
there is no source and sink in the system under
investigation (Atangana and Kiligman 2013b).
Therefore in our case we will set the function to
be zero.

The above equation does not consider the effect
of heterogeneity, variability or uncertainties in
these aquifers. Therefore in order to include the
effect of uncertainties, heterogeneity or variability
of the geological formation into the mathematical
expression, the standard derivative is replaced by
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the uncertainty function equation (2.1) in equation
(3.1) to obtain:

DD [Dux [C($7 t)]] —vD% [C(xa t)] -
= RD"“[C(x,t)]

ARC(z,t)

0%u,
+%¢ﬂ

0*C 0C du,
D{(l—i—um) [(14—%)8 > —i-B% o

auw } [1+Ua: Oc 8uwc]
ox
R

a5+ G| e

—ARC(z,t) = ot o

The above equation is the generalized hydrody-
namic advection dispersion equation. This equa-
tion takes into account the value of that chemi-
cal concentration at any time ¢ and at a distance
z from the injection boundary, allowing for the
decay and adsorption and also the possible effect of
heterogeneity, or uncertainties, variability’s of the
geological formation system in which the value of
chemical concentration is measured.

4. Analysis and possible solutions

Let us put equation (3.2) in the suitable form that
can easily be used for possible analytical solutions.

Suppose that the variability or uncertainties or
heterogeneity of the aquifer with respect to time
is very small such that addition to unity is small,
then, (3.2) can be divided on both sides by (14u,),
in that case equation (3.2) can be roughly approx-
imated to:

0%c Oc
86
0%u, O,
Fl@)=D 922 ' Oz
. augj 8ut
Bla.t) =5, ~ 50
D(z,t) = (1 +u, —u)D
v(z,t) = (1 + u, — uy)v.

4.1 Analysis

F(z) can be viewed as force of uncertainties, het-
erogeneity or variability of the geological forma-
tion system at each position, that acts on the
constant dispersion coefficient and seepage veloc-
ity, and proportional to the value of that chemical
concentration.
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B(z, t) can be viewed as the proportion that
allows the value of that chemical concentration to
remember its trajectory in the geological formation
system and the time where it was retarded since
its departure from the point of injection.

D(z, t) is obviously the dispersion function in each
point and time in the geological formation system.

v(z, t) is the seepage velocity function in each
point and time in the geological formation system.

The modified equation differs from the standard
version in four properties: First, the dispersion
coefficient depends on time and coordinates due to
the effect of uncertainties, or variability or hetero-
geneity of the geological formation in which the
chemical is being dispersed with memory depend-
ing on time and coordinates. Secondly, seepage
velocity coefficient depends on time and coordi-
nates due to the effect of uncertainties, or variabil-
ity or heterogeneity of the geological formation in
which the chemical is being transported with mem-
ory depending on time and coordinates. Thirdly,
the force of uncertainties, heterogeneity or varia-
bility of the geological formation system at each
position, that acts on the constant dispersion coef-
ficient and seepage velocity, and proportional to the
value of that chemical concentration. Finally, we
have the functional proportion, which allows, the
value of that chemical concentration to remember
its trajectory in the geological formation system.
It also remembers the time where it was retarded
since its departure from the point of injection.

4.2 Possible analytical solution

To solve equation (4.1) some approximation must
be considered on one hand, an appropriate method
of solving non-linear partial differential equation
must be chosen. As V M Alexandrov wrote in the
foreword of a popular science book ‘Asymtotology:
ideas, methods, and applications’, asymptotic
methods belong to the, perhaps, most romantic
area of modern mathematics (Andrianov and
Manevitch 2003). Though computer science is
growing very fast, and numerical simulation is
applied everywhere, non-numerical issues will still
play a large role. Various perturbation methods
have been widely applied to solve nonlinear prob-
lems. Here the variational iteration is used to find
an asymptotic solution to equation (4.1).

To solve equation (4.1) the following approx-
imations are considered. First equation (4.1) is
reformulated as:

9*C oC oC
Therefore, this equation can be solved approxi-
mately by changing the function C' to Cy, which
satisfies equation (4.1), in terms involving u (or in
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some of these terms). In particular, if such a change
is made in all the terms, we arrive at the following
hydrodynamic advection dispersion equation:

0’C  oC oC
Daﬁaﬂgz—ARC—ng—Kwh%Gﬁ
= K(z,1). (4.2)

4.2.1 Variational iteration method

Variational iteration method has been favourably
applied to various kinds of nonlinear problems. The
main property of the method is in its flexibility
and ability to solve nonlinear equations accurately
and conveniently. Very recently it was recognized
that the variational iteration method (He 1998a,b,
1999, 2000; Atangana 2012) and other analyti-
cal methods (Atangana et al. 2013; Atangana and
Alabaraoye 2013) can be an effective procedure
for solution of various nonlinear problems without
usual restrictive assumptions. To solve equation
(4.2) by means of variational iteration method, we

put (4.2) as follows:
D(C(z,t))2:—v(C(,t))s—ARC(2,t)—K(z,t) = 0.

The correction functional for equation (4.2) can be
approximately expressed as follows:

t — -
9°C.  oC,
Cri1(x,t) = Cp(x, t) + f)ll(T) DW—UW
0
y omc
—ARCn—RaT—m—K(X,T) dT,

where \; is a general Lagrange multiplier (Inokuti
et al. 1978) which can be recognized optimally
by means of variation assumption (Inokuti et al.
1978), here (C(x,7))2x, K(x,7) and C,(x) are
considered as constrained variations. Making the
above functional stationary, we obtain:

t
omC
0C, 11 (z,t) = 6C, (x,t) + 5/)\1(7') [—Ra :|d7'.
Tm
0
Capitulating the next Lagrange multipliers, pro-
duces the following Lagrange multipliers A\, = —1
for the case where m =1 and \; = z — { for m = 2.
For this matter m = 1, we obtain the following
iteration formula:

LT 9%, oc,
CnJr]_(I,t) = Cn(l',t) —/0 |:_D 83;‘2 —’U%
omC
—ARC,, — R Gom K(x,t)] dr.
(4.3)
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It is worth noting that if the zeroth component
Co(x, t) is defined, then the remaining compo-
nents n > 1, can be completely determined such
that each term is determined by using the pre-
vious terms, and the series solutions are thus
entirely determined. Finally, the solution P(r, t) is
approximated by the truncated series

N-1
Cn(z,t) =Y Culx,t) (4.4)
n=0
and
lim Cy(r,t) = C(x,t)
N —oc0
Example. Suppose that the average variability

in space and time of the geological formation of an
aquifer is governed by the following equation:

u(x) = 0.5cos(mrz) and wu(t) — 1. (4.5)

Following the discussion presented earlier in equa-
tion (4.2), we obtain that, the nonhomogeneous
part of (4.2)

0%Cy
K(z,t) = (1-0.5 cos(mr))ﬁ
+v(0.5 cos(mzx) — 1)%
0%0.5cos(mx) 0.5 cos(mx)
+ <D 0x? - oz ) Co
+80.5 cos(mx) Co
oz
here
co exp(—at) x(q, — u,)
Co(z,t) =
1) = LD o 20
T — ut x(q, + u,)
xerfec 2 VD + exp 2D,
« erf T+ u,t
erfe
2v/D,t
u, = /¢ + 4D, (A — a),
D
D,=% and g = % (4.6)
and

= l OoeX —IE2 X
erfefa) = — / p(—22)d (47)

is known as complementary error function and « is
a positive constant.

Here the trajectory of the chemical concentra-
tion can be traced, but not the time of retardation.
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Following the discussion presented earlier in sec-
tion 4.2.1 (equation 4.3) we obtained the following
recursive formula

t

0?C, ocC,
Cn+1($7t) = Cn($7t) +/ [DW -v oz
0
—ARC,, — Rg—g — K(x, t)] dr. (4.8)
T

To be simple, we chose the first component to
be zero such that the second component can be
determined as:

Cii(z,t) :/K($,t)d7'. (4.9)

In this case, two components of the decomposition
series were obtained of which P(z, t) was evaluated
to have the following expansion:

Cy(z,t) = Ciy(z,t) + Cip(z,t) +--- . (4.10)

5. Numerical simulation

In this section, numerical simulations of the
solution of generalized advection dispersion equa-
tion introduced in this paper together with
the standard advection dispersion equation
are presented. Different orders of the vari-
able derivative are used to access the effect
of the uncertainties in the mathematical for-
mulation of the model describing the trans-
port of solid through the geological formation
called aquifer. The approximate solution of the
main problem has been depicted in figure 1(a)
with uncertain function u(x, t) = 1 — sin (z-t),
figure 1(b) with uncertain function u(z, t) = 1 —
cos (z-t), figure 1(c) with uncertain function u(z,
t) = 1 —sin (z), and the solution of the standard
advection dispersion equation in figure 1(d).

In this simulation we assume an initial concen-
tration of 1000 kg/m? the radioactive decay to
be 0.9, the dispersion factor to be 0.1, the veloc-
ity seepage to be 1 m/day and finally, we assume
that the positive constant a = 0.6. It is very
important to notice from figure 1(a, b, and c¢)
that the generalized advection dispersion equation
(figure 1 d) is more predictable than the results
presented by the advection dispersion equation.
Figure 1(d) predicts that the pollution will be
smooth through the aquifer while figure 1(a, b and
c¢) predicts that the pollution will be found in the
aquifer according to the properties of the geological
formation. This is mainly due to the introduction
of the uncertain function representing in practise
the heterogeneity of the aquifer or uncertainty in
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(a) Sirulation of c(x {) .m...me anuifer

w10

. 00 ,
time Distance from source

(c) Simulation of c{x {) in the aquifer

w0

00 .
fime Distance from source
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(b) Simulation of c(x.t)‘t.rilhe atuifer

x10

; 0o .
time Distance from source

(d) Simulation of c{xf) in the aquifer

0wl

y11] P

(g ]
,’

; 01 .
lime Distance from source

Figure 1. Numercal simulation of the approximate solution with uncertainties effect.

the geological formation through which the solu-
tions are being transported. This is more realistic
than what is predicted by the ADE.

6. Conclusion
The main concern in this paper was to exam-

ine the possible effects of uncertainties, variability
or heterogeneity of a dynamic system when being

included in its evolution rule. To achieve this, an
uncertain derivative was defined and some of its
properties were presented. This concept was illus-
trated with groundwater pollution model by using
the defined operator to generalize the hydrody-
namic advection dispersion equation. The gener-
alized equation differs from the standard version
in four properties: First, the dispersion coefficient
depends on time and coordinates due to the effect
of uncertainties, or variability or heterogeneity of
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the geological formation in which the chemical is
being dispersed with memory depending on time
and coordinates. Secondly, seepage velocity coeffi-
cient depends on time and coordinates due to the
effect of uncertainties, or variability or heterogene-
ity of the geological formation in which the chemi-
cal is being transported with memory depending on
time and coordinates. Thirdly, the force of uncer-
tainties, heterogeneity or variability of the geolog-
ical formation system at each position, that acts
on the constant dispersion coefficient and seep-
age velocity, and proportional to the value of that
chemical concentration. An asymptotic analytical
solution is proposed via the variational iteration
method.
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