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This paper aims to study the dispersion of torsional surface waves in a crustal layer being sandwiched
between a rigid boundary plane and a sandy mantle. In the mantle, rigidity and initial stress vary
linearly while density remains constant. Dispersion relation has been deduced in a closed form by means
of variable separable method in the form of Whittaker function. The velocity equation for isotropic layer
over a homogeneous half-space has been obtained which coincides with the standard result of Love wave
under the effect of rigid boundary.

1. Introduction

The earth is layered solid under high initial
stresses. Due to atmosphere, variation of temper-
ature, gravitating pull, slow process of creep and
pressure due to overburdened layer, a large quan-
tity of stresses (may be critical initial stresses) are
stored in the layer of the earth. Artificially gen-
erated seismic waves provide information about
the configuration of the rock layer for oil explo-
ration, ground water prospecting and on smaller
scale information as to the rigidity of shallow layer
for engineering purposes. A straight mathematical
attack may produce explicit or numerical solutions
even for rather complex solid media. The math-
ematical expression provides the bridge between
modelling results and field application. Any dis-
turbance in earth’s interior may serve as the basic
reason of seismic wave propagation. The theoret-
ical study of wave propagation consists of finding
the solution of a partial differential equation or a
system of partial differential modelling under ini-
tial and boundary conditions. The propagation of

seismic waves through the earth’s interior is gov-
erned exactly by mathematical laws similar to the
laws of light waves in optics. If the propagation
velocities and other elastic properties were uni-
form throughout the earth, seismic waves would
radiate from the focus of the earthquake in all
the directions through the earth along rectilinear
path or rays. In general, however, the wave veloc-
ity increases with depth and consequently, seismic
rays are not straight lines but lines curved with the
concave side upward providing the shortest time
past through the earth.

Earth is a gravitating initially stressed medium
due to the presence of overburdened layers. The
presence of gravity field and internal friction of dry
sandy material will have effect on the propagation
of the waves. The acceleration due to gravity g
has a greater role to play in studying the dynamic
and static problems of the earth. Kepceler (2010)
has studied torsional wave dispersion relations in a
pre-stressed bi-material compounded cylinder with
an imperfect interface. Propagation of torsional
surface waves in a homogeneous layer of finite
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thickness over an initially stressed heterogeneous
half-space have been recently studied by Gupta
et al. (2012a) whereas propagation of torsional
surface waves in dry sandy medium under grav-
ity has been studied by Dey et al. (1998). Refer-
ences can be made to Dey and Sarkar (2002); Selim
(2007); Ozturk and Akbbarov (2009); Akbarov
et al. (2011) and Gupta et al. (2012b, c) for their
excellent contribution in investigating torsional
surface wave in various mediums under various cir-
cumstances. Behaviour of torsional surface wave in
an elastic layer with void pores has been studied by
Dey et al. (2003) whereas torsional wave propaga-
tion in a thin rectangular domain using asymptotic
approach has been handled by Davini et al. (2008).
Golamhossen (2000) pointed out the propagation
of waves in an elastic cylinder with voids while a
detailed study has been made in axially symmet-
ric problems for a porous elastic solid by Lesan
and Nappa (2003). Some authors investigated the
effect of nonlinear variations in the elastic moduli,
density and initial stress with various geo-media.
Dey et al. (1996) discussed the possibility of prop-
agation of torsional surface waves in a nonhomo-
geneous elastic medium with polynomial variation
of rigidity and density, i.e., μ = μ0 (1 + az)2n and
ρ = ρ0 (1 + az)m. They found that inhomogeneity
parameter being non-linearly associated with rigid-
ity and density has a prominent effect on torsional
surface wave. Very recently, Chattaraj et al. (2011)
investigated the propagation of torsional surface
wave in anisotropic poroelastic medium under ini-
tial stress, where he has taken quadratic varia-
tion in the directional rigidities, density and initial
stress, i.e., N = N0 (1 + αz)2 , L = L0 (1 + αz)2,
ρ = ρ0 (1 + αz)2, P = P0 (1 + αz)2. They found
that the effect of quadratic variation is more pro-
nouncing at higher frequency. Although the nature
and characteristic of the curves for nonlinear vari-
ations are similar to that being plotted for linear
variation in the present problem; on the basis of
the studies being made by the authors in past, it
can be concluded that the effect of quadratic varia-
tion on the phase velocity of torsional surface wave
may come out to be similar to that of the linear
one, and has no special contribution or empha-
size over the torsional surface wave. The reason for
this may lie to the fact that the basic character-
istic of surface wave is that it decreases as depth
increases. Therefore z2 and higher power of z have
been neglected and only linear variation has been
preferred in the present problem. The works done
by Georgiadis et al. (2000); Quintanilla (2001);
Midya (2004); Arora and Tomar (2007) and Gupta
et al. (2013) cannot be overlooked as their con-
tributions are commendable towards seismic wave
propagation.

So far, it has been found that the effect of grav-
ity on the propagation of torsional surface wave in
an inhomogeneous anisotropic layer has remained
unattempted. Therefore, in the present paper, an
attempt has been made to study the propagation of
torsional surface waves in an anisotropic inhomo-
geneous layer over gravitating dry sandy mantle.
Torsional surface wave is a wave with amplitude
decaying exponentially with distance from the free
surface. Inside the earth, a very hard layer (also
known as ‘rigid’) is present. Since the composition
of the earth is heterogeneous including a very hard
layer, the inhomogeneous medium and the rigid
interface play significant roles in the propagation
of the seismic waves. A dry sandy mantle may be
defined as a half-space consists of sandy particles
retaining no moistures or water vapours, the char-
acteristic of which has been defined by η known as
sandy parameter.

For the present study, the heterogeneity taken
is caused by variation in directional rigidities and
density in the layer whereas heterogeneity taken in
the mantle is caused by variation in rigidity and
initial stress. The crust region of our planet is com-
posed of various heterogeneous layers with different
geological parameters. As pointed out by Bullen
(1940), the density inside the earth varies at dif-
ferent rates with different layers within the earth.
He approximated density law inside the earth as a
quadratic polynomial in depth parameter for 413–
984 km depth. For depth from 984 km to the cen-
tral core, Bullen approximated the density as a
linear function of depth parameter. Sari and Salk
(2002) took the variation in the density of sedi-
ments with depth as a hyperbolic function. Like-
wise, different authors have taken different forms
of variation, like harmonic, linear, quadratic, expo-
nential, etc., for simulating the variation in density
and other geological parameters inside the earth.
Therefore, in the present paper, variations taken
in the layer are N = N0e

z/α, L = L0e
z/α, ρ =

ρ0e
z/α, whereas variation taken in the mantle are

μ = μ1 (1 + a z) , P = P1 (1 + b z) , ρ = ρ1,
where α is a constant having dimension equal to
length and a, b are constants having dimension
equal to inverse of length. ‘z’ is a vertical coordi-
nate axis, positive downward having origin at the
interface (as shown in figure 1). It may also be
called as depth coordinate. In the half-space, rigid-
ity varies linearly whereas density remains con-
stant throughout; this is called Gibson half-space
(Vardoulakis 1984). Keeping this in view, an
attempt has been made to find out whether such
an inhomogeneous layer can allow torsional sur-
face wave to propagate through it when lower Gib-
son half-space (mantle) is dry and sandy under
the effect of gravitation. It is observed that the
phase velocity of torsional surface wave increases
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Figure 1. Three-dimensional geometry of the problem.

with the increase of compressive initial stress while
decreases as the tensile initial stress decreases.
It has also been found that the phase velocity
increases as the inhomogeneity parameter associ-
ated with rigidity and the initial stress increases
while decreases as the inhomogeneity parameter
associated with directional rigidity and density of
the layer increases. It is observed that the pres-
ence of gravity field always allow the torsional sur-
face wave to propagate. It has also been concluded
that the torsional surface wave propagates more
smoothly in the layer when the lower half-space is
elastic in comparison to dry sandy half-space. Fur-
ther, anisotropy has also much effect in enhancing
the velocity of torsional surface wave.

The present study of the dispersion of torsional
waves in an anisotropic inhomogeneous crustal
layer over a sandy mantle can be used to refine our
knowledge of crustal and sub-crustal region near
the earth surface. This study may also be useful
for the study of seismic waves generated by artifi-
cial explosions. Effect of torsional waves cannot be
ignored in assessment of damage caused by earth-
quake waves. Hence, the present study with the
assumed variation in rigidity, density and stress
may be useful in predicting nature of torsional
surface wave in inhomogeneous geo-media.

2. Statement of the problem

To study the torsional surface waves, a cylin-
der coordinate system is introduced with z-axis
towards the interior of the gravitating dry sandy
Gibson half-space. A Gibson half-space is one
where rigidity varies linearly while density remains
constant. The study has been made to get the dis-
persion equation of torsional surface wave in an
inhomogeneous anisotropic layer of thickness H,
over a sandy half-space under the effect of grav-
ity, initial stress and rigid boundary as shown in
figure 1. The origin of the coordinate system is

located at the surface of the half-space at the centre
of a circular region.

3. Solution

3.1 Solution of the inhomogeneous
anisotropic layer

If r and θ be radial and circumferential coordi-
nates respectively, and if the wave travels along the
radial direction only, the equation of motion in the
layer may be written as (Biot 1965):

∂σrθ

∂r
+

∂σzθ

∂z
+

2
r
σrθ = ρ

∂2v

∂t2
(1)

where v(r, z, t) is the displacement along θ direc-
tion and ρ is the density.

For a non-homogeneous anisotropic elastic me-
dium, the stresses are related to strain by

σrθ = 2Nerθ, σzθ = 2Lezθ (2)

where erθ = 1
2

(
∂v
∂r

− v
r

)
, ezθ = 1

2
∂v
∂z

. N and L are
directional rigidities of the medium along r and z
directions, respectively.

Using the above relations, equation (1) takes the
form

N

(
∂2v

∂r2
− v

r2
+

1
r

∂v

∂z

)
+

∂

∂z

(
L

∂v

∂z

)
= ρ

∂2v

∂t2
. (3)

The solution of equation (3) when wave propagate
along radial direction with amplitude of displace-
ment as a function of depth may be taken as:

v = V (z) J1 (kr) eiωt, (4)

ω being circular frequency of the wave where V (z)
is the solution of

d2V (z)
dz2

+
1
L

dL

dz

dV

dz
− k2N

L

(
1 − c2ρ

N

)
= 0 (5)
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where c = ω/k is the velocity of the propagation
of torsional surface wave and J1 is the Bessel’s
function of first kind and of order one.

On substituting, V = V1/
√

L in equation (5), we
get:

d2V1

dz2
− 1

2L

{
d2L

dz2
− 1

2L

(
dL

dz

)2
}

V1

=
k2N

L

(
1 − c2ρ

N

)
. (6)

Now, the variations in directional rigidities (elastic
moduli) and density in the layer has been taken as:

N = N0e
z/α, L = L0e

z/α, ρ = ρ0e
z/α (7)

Using equation (7), equation (6) becomes:

d2V1

dz2
− m2

1V1 = 0 (8)

where m2
1=k2

{
1

4α2k2 + N0
L0

(
1− c2

c2
0

)}
and c0=

√
N0/ρ0

is the shear wave velocity in the layer.
The solution of equation (8) is given by

V (z) = A1e
−m1z + A2e

m1z

where A1 and A2 are arbitrary constants and hence
the displacement in the upper inhomogeneous
anisotropic layer is given by

v = v0 (say) =
{

A1e
−(m1+

1
2α)z + A2e

(m1− 1
2α)z
}

× J1 (kr)√
L0

eiωt. (9)

3.2 Gravitating dry sandy mantle

The dynamical equation of motion for the initially
stressed dry sandy half-space under the effect of
gravity as given by Biot (1965) may be written as:

∂σrθ

∂r
+

∂σzθ

∂z
+

2σrθ

r
+

∂

∂z
{(P − ρgz) ezθ}

−ρgz
∂

∂r

{
1
2

(
∂v

∂r
+

v

r

)}
= ρ

∂2v

∂t2
(10)

where v(r, z, t) is the displacement along θ direc-
tion, ρ is the density, g is the acceleration due to
gravity and P is the compressive initial stress along
r direction. We also have N = ημ, where η is the
sandy parameter and μ is the modulus of rigidity.

The inhomogeneity in the half-space is taken as:

μ=μ1 (1+a z) , ρ=ρ1, P =P1 (1+b z) . (11)

Using relation σrθ=2Nerθ and σzθ=2Nezθ in equa-
tion (10), we get:

{
ημ1 (1 + az) − ρgz

2

}{∂2v

∂r2
− v

r2
+

1
r

∂v

∂r

}

+
[
ημ1 (1 + az) +

1
2
{P1 + (P1b − gρ) z}

]
∂2v

∂z2

+
{

ημ1a +
1
2

(P1b − ρg)
}

∂v

∂z
= ρ

∂2v

∂t2
. (12)

We assume the solution of equation (12) in the
form of

v = V (z)J1 (kr) eiωt (13)

where V (z) be solution of the equation given by

d2V

dz2
+

{
ημ1a + 1

2
(P1b − ρg)

}
[
ημ1 (1 + az) + 1

2
{P1 + (P1b − gρ) z}

]

dV

dz
−

k2
{
ημ1 (1 + az) − ρgz

2

}
[
ημ1 (1 + az) + 1

2
{P1 + (P1b − gρ) z}

]

×
[

1 − ρω2

k2
{
ημ1 (1 + az) − ρgz

2

}

]

V = 0. (14)

Putting, V (z) = (ϕ (z)/
[
ημ1 (1 + az) + 1

2
{P1 +

(P1b − gρ) z}]1/2) in equation (14), we get

d2ϕ

dz2
+

1
4

{
ημ1a + 1

2
(P1b − gρ)

}2
ϕ (z)

[
ημ1 (1 + az) + 1

2
{P1 + (P1b − gρ) z}

]2

−
k2
[
ημ1 (1 + az) − ρgz

2

]
[
ημ1 (1 + az) + 1

2
{P1 + (P1b − gρ) z}

]

×
[

1 − ρω2

k2
{
ημ1 (1 + az) − ρgz

2

}

]

ϕ (z) = 0

(15)

Now, substituting ϕ (z) = ϕ1 (δ) where

δ =
2k
[
ημ1 (1 + az) + 1

2
{P1 + (P1b − gρ) z}

]
[
ημ1a + 1

2
(P1b − gρ)

]

in equation (15), it may be reduced to

d2ϕ1 (δ)
dδ2

+
(

1
4δ2

+
R

δ
− A

)
ϕ1 (δ) = 0 (16)
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where

R =
P1
2μ1

+ c2

c2
1

2
{

η
(

a
k

)
+ 1

2

(
P1
μ1

b
k
− G
)}

−
1
2

(
P1
2μ1

) (
b
k

) (
η + P1

2μ1

)

{
η
(

a
k

)
+ 1

2

(
P1
μ1

b
k
− G
)}2 ,

A =
1
4
−

1
2

(
P1
2μ1

) (
b
k

)

{
η
(

a
k

)
+ 1

2

(
P1
μ1

b
k
− G
)}

c = (ω/k)1/2 is the velocity of the torsional surface
wave. c1 = (μ1/ρ1)

1/2 is the velocity of the shear
wave in the half-space. G = (gρ/μ1k) is Biot’s
gravity parameter.

Equation (16) is known as the Whittaker’s equa-
tion, whose solution may be given by (Whittaker
and Watson 1990)

ϕ1 (δ) = D1 W(R/2
√

A),0

(
2
√

A · δ
)

+ D2 W−(R/2
√

A),0

(
−2

√
A · δ
)

.

Since the solution should vanish at z → ∞ (i.e., for
δ → ∞), we may take the solution as:

ϕ1 (δ) = D1 W(R/2
√

A),0

(
2
√

A · δ
)

.

Expanding the Whittaker function up to linear
terms, equation (13) takes the form

v = v1 (say)

=
D1 e−

√
Aδ
(
2
√

A · δ
) R

2
√

A

[
ημ1 (1 + az) + 1

2
{P1 + (P1b − gρ) z}

]1/2

×

⎧
⎪⎨

⎪⎩
1 −

(
R

2
√

A
− 1

2

)2

2
√

Aδ

⎫
⎪⎬

⎪⎭
J1 (kr) eiωt. (17)

4. Boundary conditions

The following boundary conditions must be satisfied

(i) At the free surface z=−H, the stress is van-
ishing so that

v0 = 0 at z = −H.

(ii) The continuity of the displacement requires
that

v0 = v1 at z = 0.

(iii) At the interface z=0, the continuity of the
stress requires that

L0

∂v0

∂z
= μ1

∂v1

∂z
at z = 0.

Using boundary condition (i), equation (9) reduces
to equation (18)

A1e
(m1+

1
2α)H + A2e

−(m1− 1
2α)H = 0. (18)

Using boundary condition (ii) in equation (9) and
equation (17), we get equation (19)

A1

1√
L0

+ A2

1√
L0

= D1 · S1 (19)

where

S1 =
e−

√
Aδ
(
2
√

Aδ
) R

2
√

A

(
ημ1 + P1

2

)1/2

⎧
⎪⎨

⎪⎩
1 −

(
R

2
√

A
− 1

2

)2

2
√

Aδ

⎫
⎪⎬

⎪⎭
.

Using boundary condition (iii) in equation (9) and
equation (17), we get equation (20).

−
√

L0

(
m1 +

1
2α

)
A1 +

√
L0

(
m1 −

1
2α

)
A2

= μ1D1S2 (20)

where

S2 = −e−
√

Aδ ·2k
√

A·
(

ημ1 +
P1

2

)−1/2

×
(
2
√

Aδ
) R

2
√

A

⎧
⎪⎨

⎪⎩
1 −

(
R

2
√

A
− 1

2

)2

2
√

Aδ

⎫
⎪⎬

⎪⎭

+ 2kR e−
√

Aδ

(
ημ1 +

P1

2

)−1/2(
2
√

Aδ
) R

2
√

A
−1

×

⎧
⎪⎨

⎪⎩
1 −

(
R

2
√

A
− 1

2

)2

2
√

Aδ

⎫
⎪⎬

⎪⎭

+ e−
√

Aδ · 2k ·
(

ημ1 +
P1

2

)−1/2 (
2
√

Aδ
) R

2
√

A

×

⎧
⎪⎨

⎪⎩

(
R

2
√

A
− 1

2

)2

2
√

Aδ2

⎫
⎪⎬

⎪⎭

− 1
2
e−

√
Aδ

(
ημ1 +

P1

2

)−3/2 (
2
√

Aδ
) R

2
√

A

×
{

ημ1a +
1
2

(P1b − gρ)
}
⎧
⎪⎨

⎪⎩
1−

(
R

2
√

A
− 1

2

)2

2
√

Aδ

⎫
⎪⎬

⎪⎭
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Eliminating A1, A2 and D1 using equations (18)–
(20), we get

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

e(m1+
1
2α)H e−(m1− 1

2α)H 0
1√
L0

1√
L0

S1

−
√

L0

(
m1 +

1
2α

) √
L0

(
m1 −

1
2α

)
μ1S2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=0

On expanding the determinant, we get

cot

(

kH

√
N0

L0

(
c2

c2
0

− 1
)
− 1

4α2k2

)

=
1

2αk
+ μ1

L0

(
S2
S1k

)

√
N0
L0

(
c2

c2
0
− 1
)
− 1

4α2k2

(21)

where

S2

S1k
= −2

√
A+

R√
Aδ

+
2
(

R

2
√

A
− 1

2

)2

δ

{
2
√

Aδ −
(

R

2
√

A
− 1

2

)2
}

− 1
2

[
η
(

a
k

)
+
(

1
2

P1
μ1

) (
b
k

)
− 1

2
G
]

(
η + P1

2μ1

) .

Equation (21) gives the required dispersion equa-
tion of torsional surface wave in an inhomogeneous
anisotropic earth’s crustal layer over a dry sandy
mantle when the upper boundary assumed to be
rigid.

5. Particular cases

Case I: When (1/α)→0, i.e., the directional
rigidities and density becomes constant, then
equation (21) reduces to

cot

(

kH

√
N0

L0

(
c2

c2
0

− 1
))

=
μ1

(
S2
S1k

)

L0

√
N0
L0

(
c2

c2
0
− 1
) ,

which is the dispersion equation of torsional surface
wave in an anisotropic homogeneous layer under
the effect of rigid boundary.

Case II: When a → 0 and b → 0, i.e., when
the half-space is homogeneous under the effect of

constant initial stress P1, then the equation (21)
becomes

cot

(

kH

√
N0

L0

(
c2

c2
0

− 1
)
− 1

4α2k2

)

=
1

2αk
+ μ1

L0
B1

√
N0
L0

(
c2

c2
0
− 1
)
− 1

4α2k2

where

B1 = −1 +
1
2

(
P1
2μ1

+ c2

c2
1

)

(
η + P1

2μ1

)

+

(
P1
2μ1

+ c2

c2
1

+ G
2

)2

2
(
η + P1

2μ1

){
4
(
η + P1

2μ1

)
+ 1

G

(
P1
2μ1

+ c2

c2
1

+ G
2

)2
}

+
1
4

G
(
η + P1

2μ1

)

which is a dispersion equation of torsional surface
wave in an inhomogeneous anisotropic layer over
a homogeneous isotropic half-space when upper
boundary plane is rigid.

Case III: When α → ∞ and N0 = L0, i.e., the
layer is homogeneous and isotropic

cot

(

kH

√(
c2

c2
0

− 1
))

=
μ1

L0

(
S2
S1k

)

√(
c2

c2
0
− 1
) .

This gives the dispersion equation of torsional sur-
face wave in a homogeneous isotropic layer over a
dry sandy mantle.

Case IV: When α→∞, a→0, P1→0 and N0 =
L0, i.e., the layer and the half-space both are
homogeneous

cot

(

kH

√(
c2

c2
0

− 1
))

=
μ1

L0

√(
c2

c2
1
− 1
)

√(
1 − c2

c2
0

) ,

which is a well known classical equation Love wave
under the effect of rigid boundary (Love 1944).

6. Numerical results and discussion

Based on the dispersion equation (21), numeri-
cal results are provided to show the propagation
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Table 1. Values of various dimensionless parameters.

Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8

P1/2μ1 – – 0.2 0.2 0.2 0.4 0.4

a/k 0.2 0.2 – 0.2 0.2 0.2 0.2

b/k 1.5 1.5 1.5 – 1.5 1.5 1.5

αk 1.2 1.2 1.2 1.2 – 1.2 1.2

G 0.5 0.5 0.5 0.5 0.5 – 0.5

η 1.0 1.0 1.0 1.0 1.0 1.0 –
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1 0.2

2 0.4
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Figure 2. Dimensionless phase velocity vs. dimensionless
wave number demonstrating the influence of compressive
initial stress.

characteristics of torsional surface wave in the con-
sidered layer over a dry sandy mantle under the
effect of gravity, initial stress and rigid bound-
ary. The expansion of Whittaker function is taken
as WR,0 (z) = e−z/2zR{1 − (R − 0.5)2/1!z}. The
numerical data of various elastic constants and
parameters have been taken from Gubbins (1990).
In all the figures, curves have been plotted with
vertical axis as dimensionless phase velocity (c2

0/c2
1)

against horizontal axis as dimensionless wave num-
ber kH. It has been found that with the increase of
wave number, the phase velocity decreases rapidly
in each of the figures under the considered values
of various parameters. The main attention is paid
on the influence of sandy parameter (η) and Biot’s
gravity parameter (G) along with the effect of inho-
mogeneity factor αk, a/k, b/k and dimensionless
initial stress (P1/2μ1) (as given in table 1). The val-
ues of (c2

0/c2
1) , N0/L0 and μ1/L0 have been taken

as 0.2, 0.7 and 1.8, respectively in all the figures.
Figure 2 discusses the dispersion curves for tor-

sional surface wave when compressive initial stress
(P1/2μ1 > 0) has been taken into account in the
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Figure 3. Dimensionless phase velocity vs. dimensionless
wave number demonstrating the effect of tensile initial
stress.

dry sandy mantle under the effect of gravity and
rigid boundary. The value of P1/2μ1 for curve no.
1, no. 2, no. 3, no. 4 and no. 5 has been taken as
0.2, 0.4, 0.6, 0.8 and 1.0, respectively. Following
observations and effects are obtained under the
above-considered values:

• As the compressive initial stress increases, the
dimensionless phase velocity (c2

0/c2
1) increases at

a particular wave number.
• The curves are accumulating at kH=2.5 show-

ing that although the compressive initial stress
varies, velocity remains constant at that partic-
ular wave number.

• The curves being little far apart from each other
at lower phase velocity reveal that compressive
initial stress has much dominance at large values
of wave number.

Figure 3 shows the effect of tensile initial stress
(P1/2μ1 < 0) in the dry sandy mantle under the
effect of gravity and rigid boundary. Here, the value
of tensile initial stress P1/2μ1 for curve no. 1, no. 2,
no. 3, no. 4 and no. 5 have been taken as −0.1,
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−0.2, −0.3, −0.4 and −0.5, respectively. Following
observations have been made:

• It has been observed that decrease in tensile
initial stress decreases the velocity of torsional
surface wave at the same frequency.

• Here, the curves seem converging at kH = 3.5
thereby making the phase velocity constant at
c2/c2

0 = 3.5 at various magnitude of tensile initial
stress. Whereas its dominant effect is visible at
higher phase velocity and lower wave number.
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Figure 4. Dimensionless phase velocity vs. dimensionless
wave number demonstrating the influence of inhomogeneity
associated with rigidity of the half-space.
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Figure 5. Dimensionless phase velocity vs. dimensionless
wave number demonstrating the effect of inhomogeneity
associated with initial stress of the half-space.

Figure 4 has been plotted to have a better under-
standing of the effect of the inhomogeneity param-
eter (a/k) incorporated in the modulus of rigidity
on the torsional wave velocity. The value of (a/k)
has been varied from 0.2 to 1 (i.e., 0.2 for curve no.
1, 0.4 for curve no. 2, 0.6 for curve no. 3, 0.8 for
curve no. 4 and 1.0 for curve no. 5). We observed
that

• As the dimensionless inhomogeneity factor (a/k)
increases, the phase velocity of torsional surface
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Figure 6. Dimensionless phase velocity vs. dimensionless
wave number demonstrating the influence of inhomogeneity
associated with the layer.
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Figure 7. Dimensionless phase velocity vs. dimensionless
wave number demonstrating the effect of Biot’s gravity
parameter.
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wave at a particular frequency also increases,
which justifies the fact that velocity of the sur-
face wave is directly proportional to the rigidity
of the medium.

• The curves shift closer to each other as the value
of (a/k) increases, reveals that it has a negligible
effect for the higher magnitude.
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2.5

3

3.5

4

4.5

5

5.5

6

kH

c2 /c
02

1 2 3 4 5

Curve
no.

η

1 1.0

2 2.0

3 2.5

4 3.5

Figure 8. Dimensionless phase velocity vs. dimension-
less wave number demonstrating the influence of sandy
parameter.

In figure 5, an attempt has been made to come
out with effect of inhomogeneity factor (b/k). The
value of (b/k) for curve no. 1, no. 2, no. 3, no. 4
and no. 5 are considered as 1.5, 2.0, 2.5, 3.0 and
3.5. It has been found that:

• Torsional wave velocity increases for the increas-
ing value of (b/k) at a particular frequency,
prominent effect of which is visible at higher
frequency.

• Similar to figure 2, here also the curves
are accumulating at a single point denoting
although inhomogeneity parameter b/k varies,
phase velocity remains constant for the same
frequency.

Figure 6 signifies the effect of inhomogeneity factor
αk present in the directional rigidities and density
of the layer. The value of αk for curve no. 1, no. 2,
no. 3, no. 4 and no. 5 has been taken as 1.2, 1.4,
1.6, 1.8 and 2.0, respectively. Following conclusions
may be drawn from the figure:

• These curves show that the phase velocity
of torsional surface wave decreases remarkably
as the value of αk increases from 1.2 to 2.0.

• The curvature of the curves being equally apart
shows the predominant influence of the inhomo-
geneity parameter associated with the layer.

Figure 7 shows the study of phase velocity under
a wide range of Biot’s gravity parameter G. Here

Figure 9. Snapshot of graphical user interface (GUI) developed in MATLAB 7.5.
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the value of G for curve no.1, no. 2, no. 3, no. 4
and no. 5 are taken as 1.2, 1.4, 1.6, 1.8 and 2.0,
respectively. It has been observed that

• The phase velocity of torsional surface wave in
the layer increases significantly as the value of G
increases in the above-mentioned range.

• The effect of dimensionless gravity parameter G
almost vanishes as it approaches kH = 6.0.

• The curves being steeper between kH = 1.0 and
3.0 shows that G has a perfect influence over the
phase velocity of torsional surface wave.

Figure 8 describes the effect of sandy parameter
η on the velocity of torsional surface wave for the
various values of η, i.e., 1.0, 2.0, 2.5 and 3.5 for
curve nos. 1–4, respectively. Following results may
be drawn:

• The curves reflect that in the presence of com-
pressive initial stress and the rigid bound-
ary plane, as the value of sandy parameter η
increases, the phase velocity of torsional wave
also increases.

• For η = 1, the medium turn out to be perfect
elastic thereby allowing torsional surface wave
to propagate with least velocity as compared to
other values of η (i.e., 2.0, 2.5, 3.5) for which the
medium becomes dry and sandy. Hence it can be
concluded that under the above-considered value
of various parameters, the possibility of torsional
wave propagation in the layer is least when the
half-space is elastic as compared to the case when
the half-space is dry and sandy.

Figure 9 represents a screenshot of graphical user
interface (GUI) software in MATLAB demonstrat-
ing the graph plotted in figure 2 as a sample. This
GUI generalizes the finding of the present paper
by allowing one to vary the ranges of different
dimensionless parameter and also by providing dif-
ferent values to the various parameters involved.
This will help one to observe the variation on the
phase velocity of torsional surface wave against
dimensionless wave number.

7. Conclusion

Propagation of torsional surface wave in an inho-
mogeneous anisotropic earth’s crustal layer over a
dry sandy mantle when upper boundary plane is
rigid has been investigated analytically. The dis-
persion equation thus obtained in a closed form
reduces into classical equation of Love wave when
inhomogeneity parameters and initial stress is
neglected thereby validating the solution of the
problem discussed. We find that as the compressive
initial stress increases, the phase velocity increases

and as the tensile initial stress decreases the phase
velocity also decreases. It is also found that the
increasing value of inhomogeneity factor in rigid-
ity and initial stress decreases the phase velocity
of the torsional surface wave. The effect of Biot’s
gravity parameter has also come out prominently.
It has been studied that as the value of Biot’s grav-
ity parameter increases, the velocity also increases.
Study has also been made on sandy parameter and
found that under a rigid boundary plane, torsional
surface wave propagates with more ease when the
half-space is dry and sandy rather than being elas-
tic. Graphical user interface software has been
developed in MATLAB to generalize the results of
figures 2–8 so as to study the effect of compres-
sive initial stress, tensile initial stress, inhomogene-
ity parameter and wave number on phase velocity
of torsional wave with various sets of values. The
present study may be useful for the study of seismic
waves generated by artificial explosions.
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