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It is important to evaluate the information content of remote sensing data in order to synthetically use
multi-source remote sensing data to improve the accuracy and consistency of land surface parameter
retrieval. This paper presents a technique for information content evaluation of multi-spectral/angular
remote sensing data for the leaf area index (LAI) inversion, the method of entropy-difference analysis.
The proposed method is based on a numerical evaluation of the entropy of the observed dataset to learn
how much variation in observation is caused by the variation in LAI. The relationship between remote
sensing information and the LAI inversion accuracy is validated based on the model-simulated canopy
reflectance data and the experiment data. We make the following observation: the larger the entropy-
difference for canopy reflectance data, the higher the LAI inversion accuracy. That is, choosing a good
combination of observation angles is sometimes more important than simply increasing the number of
observations. The presented technique may be useful in designing and evaluating quantitative remote
sensing algorithms and products.

1. Introduction

The leaf area index (LAI) is one of the key ecolog-
ical parameters used not only for global-scale, but
also for local-scale vegetation monitoring (Yang
et al 2007; Gao et al 2008). Remote sensing has
been demonstrated to have wide applicability in
mapping the LAI over large areas. Recent advances
have shown that it is possible to combine mul-
tiple source reflectance data to improve product
accuracy and reduce the missing data frequency
(Deng et al 2006). Currently, vegetation canopy
reflectance is measured by a variety of sensors
mounted on aircrafts and satellites (Canisius et al
2010). Both directional and spectra information

are very important for inferring canopy properties
based on radiative transfer models (Bicheron and
Leroy 1999).

In fact, the available remote sensing data are
usually correlated when the bandpass and view
angles are similar. To reduce data redundancies,
it is important to select the optimal wavelength
and view angle while maintaining the desirable
LAI inversion accuracy. The optimal selection for
multi-band/angle remote sensing data could be
done using sensitivity analysis methods (Goel and
Strebel 1983; Privette et al 1996; Yao et al 2008),
iterative inversion techniques (Gao and Lesht 1997;
Weiss et al 2000; Lozano et al 2009), or infor-
mation content-based methods (Jin et al 2002).
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The sensitivity analysis indicates which band or
direction is most sensitive to a particular para-
meter of the model. However, when we use a com-
bination of multiple remote sensing observations
to invert more than one parameter, the correla-
tions within the data samples and the entangling
effects among the parameters must be considered.
As a result, this complicated problem may be dis-
entangled by sensitivity analysis alone, but this
strategy is not straightforward according to current
knowledge. Although it is possible to study opti-
mal data selection by iterative inversion techniques
(Gao and Lesht 1997; Weiss et al 2000; Lozano
et al 2009), the result will be specific to the par-
ticular dataset, and an enormous amount of calcu-
lation is needed. Jin et al (2002) investigated the
inversion results for different remote sensing data
based on a linear kernel-driven model to explore
the information content. However, the informa-
tion content for the nonlinear physical model is
limited.

The LAI inversions based on multi-source remote
sensing data require an information content evalu-
ation to determine the data optimal selection and
to reduce data redundancy without losing the para-
meter inversion accuracy. Here, we propose a tech-
nique called the entropy-difference analysis, which
is based on the information theory, to evaluate the
information content of remote sensing data for the
LAI inversion.

2. The entropy-difference analysis method

2.1 Entropy-difference definition for
canopy reflectance data

Entropy is often taken as the amount of related
information for a random variable in the infor-
mation theory. Shannon’s information entropy
(Woodbury and Ulrych 1993) is applied to calcu-
late entropy here. Generally, the observed canopy
reflectance data in a spectral band at n fixed
sun-view configuration are assumed to be one of
the random signals that obey the n-dimensional
Gaussian distribution. The entropy of canopy
reflectance data can be calculated as follows:

H (rCR) =
1
2

log |M | + n

2
log (2πe) (1)

where rCR denotes the random signal of directional
canopy reflectance, rCR=(rCR1 , rCR2 , . . . , rCRn

), and
n is the number of sun-view samples in canopy
reflectance data. We say that rCR is a random
sample in the set of all possible values of canopy

reflectance data, rCR ∈ Ω, where Ω denotes the set
of all possible values. In this view, the statistics
of rCR can be derived. M is the covariance
matrix of rCR, and |M | denotes the determin-
ant of the covariance matrix M . π and e are
constants.

The entropy-difference (ΔH) with respect to the
LAI inversion in remote sensing is computed based
on the following formula:

ΔH = H2 − H1 =
1
2

log
|M2|
|M1|

(2)

where H2 refers to the entropy when rCR∈Ω2. Ω2

denotes the set of all possible values of canopy
reflectance data in the natural state. H1 refers to
the entropy when rCR ∈ Ω1. Ω1 is a subset of Ω2

in which the LAI is fixed to the value of a priori
mean, i.e., Ω1 = {rCR|rCR ∈ Ω2 and LAI = LAI0}.
|M2| and |M1| are the determinants correspond-
ing to H2 and H1, respectively. The larger the
entropy-difference is, the more information for
the LAI is contained in the canopy reflectance
data.

2.2 Understanding entropy-difference
in view of the BRDF model

The BRDF model for canopy reflectance can be
written as:

Ri = R (X, P, θv (i) , θs (i) , ϕ (i)) (3)

where Ri denotes the directional canopy
reflectance. i indicates the solar/view directions,
and i=1, 2, . . . , n. X is a vector of unknown para-
meters that we are trying to retrieve by inverting
the BRDF model based on a set of observed
canopy reflectances. P is a vector of parameters
that can be fixed (either known or insensitive in
the model). θv(i), θs(i) and ϕ(i) are the view
zenith, solar zenith and relative azimuth angles
for observation i, respectively.

For the sake of simplifying our analysis, we
introduce a linear approximation to the canopy
reflectance model. That is, Δ (Δ = X − X0) is
small enough so that near the a priori mean vector
X0, using linear approximation, the BRDF model
can be rewritten as:

Ri = R′ (X0, P, θv (i) , θs (i) , ϕ (i)) (X − X0)

+ R (X0, P, θv (i) , θs (i) , ϕ (i)) (4)

where R′ is the BRDF model partial derivatives
for X0.
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A sample of the observed value of canopy
reflectance can be written as:

R̂ = R′ (X0, P, θv (i) , θs (i) , ϕ (i) (X − X0 )

+R (X0, P, θv (i) , θs (i) , ϕ (i)) + ξ (5)

where ξ refers to the noise in the observed data,
which we assume is Gaussian noise with a zero
mean and standard deviation σξ. To simplify the
formula, we define

Bi = R̂ − R (X0, P, θv (i) , θs (i) , ϕ (i)) ,

Ai = R′ (X0, P, θv (i) , θs (i) , ϕ (i)) ,

i = 1, 2, . . . , n (6)

when B is the observation vector, B is the vector
of Bi, A means the sensitivity matrix, and A is the
vector of Ai. Equation (5) can then be rewritten as:

B = AY + ξ (7)

Here, we call Y the vector of unknown parameters,
and Y = X − X0.

For the sake of simplification and without loss of
generality, we consider the BRDF model to have
only two unknown parameters. The first one is
our target parameter (LAI), and the second one is
a disturbance parameter to the inversion process.
The other parameters are assumed to be constants.
When there are two unknown parameters in the
vector Y, equation (7) can be written as:

B = (A1 A2)
(

Y1

Y2

)
+ ξ. (8)

When the target parameter (LAI) is fixed to its a
priori mean value (LAI0), Y1 is zero and equation
(8) becomes:

B = (A1 A2)
(

0
Y2

)
+ ξ. (9)

Equations (8) and (9) are the starting equations to
derive the entropy-difference formula.

The covariance matrix for the canopy reflectance
data (rCR) can be explicitly calculated as follows:

M = Cov (B) = σ2
1A1A

T
1 + σ2

2A2A
T
2 + σ2

ξI (10)

where σ1, σ2 and σξ are the standard deviations of
the unknown parameters Y1, Y2 and ξ, respectively.
I is an identity matrix.

When entropy-difference is computed, two cases
will be considered here; i.e., for the angle consti-
tution of the remote sensing data, there are two
or three angles in the canopy reflectance data. We

take only these cases as an example because the
formula for data of more angles is similar to that
used for this case.

Based on equations (2), (8), (9) and (10), when
there are two angles in the canopy reflectance data,
the entropy-difference is calculated by:

ΔH =
1
2

log

⎛
⎜⎜⎜⎜⎜⎝

[
(A1,2A2,1 − A1,1A2,2)

2
σ2

1σ
2
2

+
(
A2

2,2 + A2
2,1

)2
σ2

ξσ
2
2

+
(
A2

1,1 + A2
1,2

)
σ2

ξσ
2
1 + σ2

ξσ
2
ξ

]
[(

A2
2,1 + A2

2,2

)
σ2

2 + σ2
ξ

]
σ2

ξ

⎞
⎟⎟⎟⎟⎟⎠

. (11)

When there are three angles in the canopy
reflectance data, the entropy-difference is calcu-
lated by:

ΔH =
1
2

log

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

{[
(A1,3A2,2−A1,2A2,3)

2

+ (A2,1A1,3 − A1,1A2,3)
2

+ (A2,1A1,2 − A1,1A2,2)
2
]
σ2

1σ
2
2

+
(
A2

1,1 + A2
1,2 + A2

1,3

)
σ2

ξσ
2
1

+
(
A2

2,1 + A2
2,2 + A2

2,3

)
σ2

ξσ
2
2

+σ2
ξσ

2
ξ

}
[(

A2
2,1 + A2

2,2 + A2
2,3

)
σ2

2 + σ2
ξ

]
σ2

ξ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)
where σ1, σ2, and σξ are the standard deviations
of the target parameter, the disturbance para-
meter, and the noise in the observation, respec-
tively. Ai,j indicates the parameter sensitivity
of the canopy reflectance model, i indicates the
parameter, and j indicates the observation angle.
A1,2A2,1 − A1,1A2,2 and (A1,3A2,2 − A1,2A2,3)

2 +
(A2,1A1,3 − A1,1A2,3)

2 + (A2,1A1,2 − A1,1A2,2)
2 cor-

respond to the correlation sensitivity for the
two/three unknown parameters. A2

1,1 + A2
1,2 and

A2
1,1 + A2

1,2 + A2
1,3 correspond to the sensitivity

of the target parameter (LAI). A2
2,2 + A2

2,1 and
A2

2,1 + A2
2,2 + A2

2,3 correspond to the sensitivity of
the disturbance parameter.

From equations (11) and (12), the factors
affecting the entropy difference for the canopy
reflectance data can be expressed explicitly as
follows:

The first and important factor is the data qual-
ity (σξ), which is represented by the SNR (signal-
to-noise ratio) of the sensor. The second factor
is the uncertainty range of model parameters,
which varies because of the diversity of the sur-
face. Third, the sensitivities of parameters in the
BRDF model, which indicate the parameters’ role
in the model are important. Last, the correlation
between the sensitivity of the parameters affects
the information content in the canopy reflectance
data.
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3. Application of the LAI inversion

Entropy-difference is a quantitative measurement
of the information content in canopy reflectance
data with respect to parameter inversion. One key
question is whether canopy reflectance data with
more information content will result in the higher
accuracy of the LAI estimation. In this section, we
will investigate this argument.

3.1 Model and inversion method

The canopy BRDF model used here is a typical
radiative transfer model, SAIL (Verhoef 1984). The
SAIL model was chosen because it has not only
been widely tested but also offers a good repre-
sentation of a homogeneous canopy with a limited
number of input parameters and a reasonable com-
putation time (Goel and Deering 1989; Major et al
1992).

The input parameters in the SAIL model are the
following:

• spectral parameters: leaf reflectance (ρl) and
transmittance (τ l), soil reflectance (ρs), and ratio
of diffuse to direct irradiation (SKYL)

• structural parameters: leaf area index (LAI) and
leaf inclination angle distribution (LAD)

• solar/view geometry: solar zenith angle (SZA),
solar azimuth angle (SAA), view zenith angle
(VZA), and view azimuth angle (VAA).

Model inversion in remote sensing usually causes
ill-posed problems. The Bayes theory is a good
way to incorporate a priori knowledge into model
inversion (Yao et al 2008; Li et al 2001). The
Bayesian inversion method is used in this paper.
The parameters with large uncertainty range and
large sensitivity should be inverted (Goel and
Strebel 1983). Based on analysis with field mea-
sured canopy reflectance data, we chose the LAI
and soil reflectance ρs as the two parameters that
need to be inverted. We assume that in addi-
tion to random noise, the uncertainty of the LAI
and ρs cause the variation in the observed canopy
reflectance data.

In this study, we considered three typical
crop growth stages: the early growth stage, the
advanced growth stage, and the fully developed
canopy stage. In the early growth stage, which
includes the seedling stage, the trileaf stage, and
the ten leaf stage, the a priori mean of LAI is
0.5 and the ground is partially covered by leaf.
In the advanced growth stage, including the elon-
gation stage, the a priori mean of LAI is 2 and
the ground is almost covered by leaf. In the fully
developed canopy stage, which comprises the late
elongation stage, the pregnation stage, and the

tasseling stage, the a priori mean of LAI is 4,
the ground is all covered by leaf, and the canopy
reflectance is saturated with respect to LAI inver-
sion according to the literature (Bicheron and
Leroy 1999; Weiss et al 2000).

For a typical crop land, LAI is distributed in
some uncertain range according to the growth
stage of the crop. Soil reflectance has a range of
variation too because of the soil type diversity,
texture, and the soil moisture difference. Consider-
ing the diversity of the natural surface, we inves-
tigated two typical settings of uncertainty (dis-
tinguished by their standard deviations) for LAI
(stds. are 0.293 and 0.1465) and the soil reflectance
(stds. are 0.01466 and 0.005857). As to the noises
in canopy reflectance data, we assumed that they
have a Gaussian distribution. The combinations of
these cases result in eight cases of uncertainty set-
tings (see table 1). In table 1, ε represents the rela-
tive noise level with respect to the average canopy
reflectance. It means that the standard deviation of
noise in a spectral band is the product of ε and the
average canopy reflectance in this spectral band if
there is no noise.

Other parameters of the model are the same as
those in Yao et al (2008). That is, the solar zenith
and azimuth angles are 22.12◦ and 135.32◦, respec-
tively. Spectral properties of corn leaf and soil were
measured with the Analytical Spectral Devices
(ASD 2000) which covers the spectrum range of
0.35–2.5 μm. The most commonly used bands for
vegetation monitoring are red and near-infrared
(NIR) bands. The reflectance and transmittance
of the leaf (ρl and τ l) are 0.079 and 0.036 in red
band, and 0.431 and 0.530 in NIR band. The mean
reflectance of soil is 0.163 in red band and 0.209
in NIR band, but its actual value is randomly dis-
tributed according to table 1. The SKYL is set to
0.12 in both red and NIR bands. LAI values are also
randomly generated according to the three growth
stages (early growth stage; advanced growth stage;
fully developed canopy) and the standard devia-
tion in table 1. Leaf angel distribution (LAD) is

Table 1. Eight cases for uncertainty of parameters for
entropy-difference calculation.

Std. of

Case no. LAI ρsoil ε (%)

I 0.293 0.01466 0.005

II 0.293 0.005857 0.005

III 0.1465 0.01466 0.005

IV 0.1465 0.005857 0.005

V 0.293 0.01466 1

VI 0.293 0.005857 1

VII 0.1465 0.01466 1

VIII 0.1465 0.005857 1
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fixed to its measured value for corn leaf in Huailai
RS Experiment Station, and is expressed by the
ellipsoidal distribution function (Campbell 1985).

3.2 Information content distribution

To examine the distribution of information content
with respect to view angle, the entropy differences
of canopy reflectance data for NIR bands in the
principal plane (the std. of LAI, ρsoil and ε (%)
is 0.293, 0.01466 and 0.005, respectively) are pre-
sented in figure 1, illustrating the information dis-
tribution for the first angle, the second angle (based
on the first optimal angle), and the third angle
(based on the first and second optimal angles).

For information content distribution of one view
angle, when the a priori mean LAI is low (0.5,
early growth stage), the entropy-difference gener-
ally increases with a larger view zenith angle, so
the optimal angle occurs at the large view zenith
angle. When the a priori mean LAI is high (2 and
4, advanced and fully developed growth stages),
the trend is different. With increasing view zenith
angle, the entropy difference increases, reaching the
maximum value at a certain view zenith angle and
then decreases. The optimal angle does not occur
at the largest view zenith angle, which means that

Figure 1. The information content distribution for the NIR
band in the principal plane for different crop growth stages.
Note: Solar azimuth angle and zenith angle are 135.32 and
22.12, respectively. A negative view zenith angle indicates a
backward viewing direction and a positive view zenith angle
indicates a forward viewing direction.
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Figure 2. Scatter-plot between the entropy-difference value
(information content) and RMSE for different crop growth
stages (mean LAI is 0.5, 2 and 4). Note: The optimised
configurations in the whole view hemisphere are denoted as
‘S-max-2’ and ‘S-max-3’ for using 2 and 3 samples, respec-
tively; the optimised configurations for the MODIS sun/view
angles are denoted as ‘M-max-2’ and ‘M-max-3’ for using 2
and 3 samples, respectively; the random angle samples from
the MODIS images composite are denoted as ‘M-random-2’
and ‘M-random-3’ for using 2 and 3 samples, respectively.
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the larger the a priori mean LAI value is, the
smaller the first optimal view zenith angle.

For the information content distribution of the
second view angle, the entropy-difference of the
second angle is quite different than that of the first
angle: the entropy-difference is larger when the sec-
ond angle is close to the nadir. Thus, the entropy-
difference is maximised when the second angle is
complementary to the first angle. It is also worth-
while to mention that the entropy-difference of the
2-angle dataset is always larger than the 1-angle
dataset. Moreover, the entropy-difference is larger
when the a priori mean LAI is low than when the
a priori mean LAI is high.

For the information content distribution of the
third view angle, the overall entropy-difference is
larger than that of the 2-angle dataset. Addition-
ally, the information contained in the reflectance
data for the low a priori mean LAI is larger than
that for the high a priori mean LAI. At this time,
the optimal angle configuration favours a large
view zenith angle. When the a priori mean LAI
is 4, the change in the entropy-difference is small
with respect to the third angle, which may be
explained by the fact that the LAI is saturated to
the directional canopy reflectance.

3.3 Application based on simulated data

To clearly reveal the relationship between the
information content of canopy reflectance data
and inversion accuracy, the inversions were per-
formed using an optimised angle sample config-
uration and random samples. A set of observed
canopy reflectance data is simulated for each
view angle with the canopy BRDF model, with
parameter settings according to certain a priori
knowledge of the model parameters’ distribution.

Then, the entropy-difference is computed for each
view angle, and its maximum value indicates the
optimal view angle. When there are two or more
angles in canopy reflectance data, a recursive strat-
egy is adopted to simplify the searching process.
That is, to find the optimal angle configuration for
the canopy reflectance data containing two sam-
ples, we fix the first angle to the optimal angle,
which has been selected for the one-sample data,
and then search the viewing hemisphere for the sec-
ond optimal angle, which in combination with the
first angle will generate the maximum entropy dif-
ference value. For three or more angles, the optimal
angle is selected in a similar way.

We consider two situations for view angle opti-
misation – one is to optimise the whole viewing
hemisphere (the angle is set as 5◦ increments of
the zenith angle from 0◦ to 80◦ and 20◦ incre-
ments of the relative azimuth angle from 0◦ to
360◦; this is an ideal situation but not very prac-
tical), the other is to optimise within several view
angles that are currently available. As for the
datasets optimised within certain available angles,
for example, the view angles of 16-day MODIS
(Moderate-resolution Imaging Spectroradiometer)
images, compositions are used for a view angle
optimisation experiment.

The settings of uncertainty in figure 2 are as
follows: the std. for the LAI and ρs is 0.293 and
0.01466, respectively; and the relative noise level
with respect to the average canopy reflectance
is 0.005%. For each simulation, we created hun-
dred datasets, with different noises according to
the noise distribution. The RMSE is computed
based on the inverted LAI for each of the hun-
dred datasets to indicate the inversion accuracy
of the parameters. The scatter-plot between the
entropy-difference value (ΔH) and the RMSE of
the LAI inversion for the NIR band is illustrated in

Table 2. The optimal angle configuration for NIR bands.

Optimal for hemisphere Optimal for MODIS

Growth stages Angular set (VAA/VZA) (SAA/SZA/VAA/VZA)

LAI=0.5 1st angle 135.32/80 133.28/36.95/90.53/64.34

2nd angle 315.32/20 162.05/29.87/285.49/15.7

3rd angle 135.32/70 134.05/35.25/91.58/61.26

LAI=2 1st angle 135.32/70 133.28/36.95/90.53/64.34

2nd angle 315.32/5 156.25/30.26/112.29/3.16

3rd angle 315.32/50 140.04/32.66/95.36/48.67

LAI=4 1st angle 135.32/65 149.16/32.42/98.7/29.75

2nd angle 135.32/0 143.94/33.18/97.2/43.23

3rd angle 315.32/45 140.04/32.66/95.36/48.67

Note: SAA/SZA/VAA/VZA correspond to solar azimuth angle, solar zenith angle, view azimuth angle, and view
zenith angle, respectively. SAA and SZA for the optimal of the hemisphere are 135.32 and 22.12, respectively.
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figure 2. The optimal angle configuration in figure 2
is shown in table 2.

From figure 2, we can see that the larger the
entropy-difference for canopy reflectance data, the
higher the inversion accuracy for the LAI. The
inversion RMSE of the LAI is inversely propor-
tional to the entropy-difference value. Throughout
our extended test, this trend exists for band con-
figurations, data quality, and a priori knowledge.
We also observe that in the case of both 2-angle
and 3-angle samples, the optimal configurations
always have higher entropy-differences than the
random samples and smaller RMSE for LAI inver-
sion. Furthermore, the optimal configurations in
the whole viewing hemisphere are better than the
optimal configurations in the 16 MODIS sun/view
geometries.

The entropy-difference of 3-angle data is gen-
erally higher than that of 2-angle data, but this
trend is far from a strict law. In many cases, the
optimal configuration of two angles has a larger
entropy-difference than some random datasets of
three angles. This is especially true when the LAI
is high. Hence, it is more necessary to choose
reflectance data with a good angle combination
to invert parameters than simply to increase data
containing the number of angles.

3.4 Application based on experiment data

In order to validate the relationship between the
reflectance data information content and the LAI
inversion accuracy, LAI is also inverted based
on the multi-angular and multi-spectral canopy
reflectance data of corn for different growth stages
measured in Heihe River Basin, the second largest
inland river basin in the arid regions of north-
western China (Gansu province). Various corn
canopy biophysical parameters and spectral data
were measured for typical growth stages at the
Yingke sites (E100.410444, N38.857056) from May
to July 2008. Because of the weather conditions,
we obtained the experiment measurement on May
30, June 22 and July 1, 2008. Parameter mea-
surements include LAI, LAD, soil moisture, leaf
hemisphere reflectance, leaf hemisphere transmit-
tance, soil reflectance, SKYL, canopy bidirectional
reflectance, etc. The measurement methods are the
same as those in Yao et al (2008).

LAI is inverted based on different canopy
reflectance datasets containing different informa-
tion, namely all canopy reflectance measurements,
optimal canopy reflectance data, and randomly
selected canopy reflectance data. Here, there are 56
datasets for all canopy reflectance measurements.
For the optimal data combination, we considered
three situations, containing 1, 2 and 3 datasets,
respectively. As to each randomly selected dataset,

there are many combinations and LAI is inverted
for every combination. For all the inverted LAIs, we
computed the mean and standard deviation. The
comparison of true LAI with the inverted LAI is
shown in figure 3.

From figure 3, we can see that the inverted LAI
for all the reflectance measurements is consistent
with the field measured LAI. The LAI inversion
accuracy for the optimal datasets is also very high,
especially for the dataset that contains three sub-
sets of canopy reflectance data. Considering the
balance between the computation time and the
inversion accuracy, the optimal data is preferred
to all the measurement data. In contrast with the
optimal data, the accuracy for the random datasets
is lower than that for the optimal datasets. So the

(a).5-30,2008

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3

Number of data

LAI

(b) 6-22,2008

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3
Number of data

LAI

(c) 7-01,2008

0

1

2

3

4

5

6

7

1 2 3

Number of data

LAI

true LAI LAI for all data

LAI for optimal data LAI for random data

Figure 3. The comparison of field measured LAI with the
inverted LAI for different data combination from field
canopy reflectance measurement.
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LAI inversion based on the optimal data is promis-
ing for the experiment measurement of canopy
reflectance data.

4. Discussion

There are several assumptions made in this paper.
To derive the formula in section 2.2, we assume
that the BRDF model could be approximated
locally by a linear model and that a priori knowl-
edge for the target or non-target parameters is
sufficient to maintain the validity of the linear
approximation. However, entropy-difference calcu-
lation does not rely on linear approximation; lin-
ear approximation in section 2.2 is adopted only to
simplify our analysis. Entropy-difference is derived
from the statistics of canopy reflectance data,
either measured or simulated from the BRDF
model. Thus, cases of nonlinear BRDF models and
poor a priori knowledge can be analysed as well.

In this paper, we considered the homogeneous
canopies that are described by the SAIL model and
focused only on top-of-canopy reflectance data. In
fact, the entropy-difference analysis can be adapted
to any type of land cover provided there is a canopy
reflectance model to link the surface parameters
and the remote sensing measurement. Atmospheric
effects can be considered in two possible ways: (1)
to make atmospheric correction to remote sensing
data and treat the correction error as noise; and
(2) to use the coupled canopy-atmosphere canopy
reflectance model. Future work should include a
similar analysis for other canopies with other mod-
els, with and without atmospheric scattering.

The illumination of the entropy-difference
method is based on simulated reflectance data from
the canopy reflectance model. If the canopy model
is suitable to describe the radiative process of the
canopy, then it can be used to simulate the canopy
reflectance data and select an optimal configura-
tion. The factors related to the entropy-difference
method, such as the a priori estimates and the
canopy reflectance model, can affect the estimates
of optimum view directions. Furthermore, differ-
ent targets have different optimal angle/spectral
combinations. However, the optimal angle selec-
tion method proposed here can be used for dif-
ferent canopy models and targets. Other canopy
targets and models will be explored in the near
future work.

5. Conclusion

With the growing number of satellite-borne multi-
angular (e.g., MISR, ATSR) or wide-angle (e.g.,
MODIS, VEGETATION) sensors in operation, we

face questions such as the following: Are more
samples always better or is there a configuration
with fewer number of samples but more informa-
tion for model inversion? Entropy-difference is a
powerful analysis tool for evaluating multi-angle
reflectance data and for solving the multi-variable
inversion problems. The method can be applied
from the spectral point of view. We can see that
the optimal configuration of two angles is actu-
ally better than numerous random configurations
of three angles with respect to the LAI inversion.
The entropy-difference method provides a quanti-
tative criterion for judging canopy reflectance data.
The reflectance data are fully exploited considering
the information content within data.
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