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The northeast (NE) monsoon season (October, November and December) is the major period of rainfall
activity over south peninsular India. This study is mainly focused on the prediction of northeast monsoon
rainfall using lead-1 products (forecasts for the season issued in beginning of September) of seven general
circulation models (GCMs). An examination of the performances of these GCMs during hindcast runs
(1982–2008) indicates that these models are not able to simulate the observed interannual variability
of rainfall. Inaccurate response of the models to sea surface temperatures may be one of the probable
reasons for the poor performance of these models to predict seasonal mean rainfall anomalies over the
study domain. An attempt has been made to improve the accuracy of predicted rainfall using three
different multi-model ensemble (MME) schemes, viz., simple arithmetic mean of models (EM), principal
component regression (PCR) and singular value decomposition based multiple linear regressions (SVD).
It is found out that among these three schemes, SVD based MME has more skill than other MME
schemes as well as member models.

1. Introduction

The northeast (NE) monsoon season (October,
November and December) is the period of major
rainfall activity over south peninsula of India, par-
ticularly in Andhra Pradesh, Rayalaseema, Tamil
Nadu and Pondicherry. This season is also known
as the winter monsoon (Nageswara Rao 1999) and
post-monsoon season (Singh and Sontakke 1999).
The NE monsoon season contributes to about 50%
of annual rainfall in the east coast of Indian penin-
sula (Kumar et al 2007). During southwest mon-
soon, there is not much rain over this region as
this is the rain shadow region of the Western Ghats
mountains along the west coast of India. When

the southwest monsoon retreats, pressure and wind
distribution reverses at the beginning of October,
a trough of low pressure becomes established in the
south Bay of Bengal. The passage of easterly low-
pressure waves occasionally intensifies this trough.
Depressions and cyclonic storms also occasionally
form in the trough of low pressure over the south
Bay of Bengal. Due to this type of situations, equa-
torial maritime air moves towards south India, and
causes widespread rainfall (Kripalani and Kumar
2004). The rainfall during this period is of immense
societal significance to 150 million people as it sup-
ports the main cultivation season known as Maha
in Sri Lanka and Rabi in southern India (Zubair
2002).
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Eventhough interannual variation and predic-
tion of the southwest monsoon has been widely
studied, as documented by numerous publications,
the NE monsoon over south peninsular India
has received much less attention, with a limited
number of studies (e.g., Doraiswamy 1946; Rao
and Jagannathan 1953; Rao 1963; Ramaswamy
1972; Srinivasan and Ramamurthy 1973; Dhar and
Rakecha 1983; Krishnan 1984; Raj and Jamadar
1990; Sridharan and Muthusamy 1990; Singh and
Sontakke 1999; Kripalani et al 2004; Zubair and
Ropelewski 2006; Kumar et al 2007; Nayagam et al
2009). Some of these studies have discussed about
global teleconnection patterns related to NE mon-
soon. Kripalani and Kumar (2004) found a direct
relationship between Indian Ocean Dipole (IOD)
and NE monsoon, suggesting that the positive
(negative) phase enhances (suppresses) the north-
east monsoon activity. Studies have shown that the
rainfall over the southern part of India, during the
NE monsoon season increases with El Niño events
(Dhar and Rakecha 1983; Singh and Sontakke
1999). In their study, Zubair and Ropelewski
(2006) have explained the relationship between
El-Niño Southern Oscillation (ENSO) and NE
monsoon over peninsular India and Sri Lanka.
Balachandran et al (2006) defined a zonal temper-
ature anomaly gradient index (ZTAGI) between
eastern equatorial Pacific and western equatorial
Pacific and found a stable significant inverse rela-
tionship with NE monsoon rainfall. In a recent
study, the spatial and temporal variability of rain-
fall over peninsular India during the NE monsoon
season has been discussed (Nayagam et al 2009). In
this study, the dominant modes of the NE monsoon
rainfall were identified using Empirical Orthogonal
Function (EOF) analysis and the power over the
identified scales was extracted using wavelet anal-
ysis. They found that the dominant frequencies in
the 2–8 year band are the 4-year period and the
8-year period. Zubair and Ropelewski (2006) con-
cluded that if peninsular India is considered as a
single entity, there has been a remarkable rise in the
correlation of the NE monsoon rainfall and ENSO.
This regional rise may be attributed to a slight
enhancement of the low-level circulation in recent
decades during the NE monsoon that leads to rela-
tive increase in the orographic component of rain-
fall. Further Zubair and Ropelewski (2006) found
that the intensification of the ENSO–NE monsoon
rainfall relationship is modest and within the his-
torical record but stands in contrast to the weak-
ening relationship in summer. The intensification
of the circulation is consistent with the warming
of surface temperatures over the tropical Indian
Ocean in recent decades.

For predicting southwest monsoon rainfall
over India, many statistical/empirical forecasting

models (Thapliyal 1981; Gowariker et al 1991;
Sahai et al 2003; Rajeevan et al 2006a) have been
developed and used. But there are no such stud-
ies about the prediction of NE monsoon. For long
range forecasting purpose, IMD has used a statis-
tical model based on east Pacific wind at 850 hPa,
north India wind at 200 hPa, south Indian Ocean
wind at 200 hPa and Nino 3.4 SST indices as pre-
dictors (source: IMD). There are several studies
on prediction of south–west monsoon using general
circulation models (GCMs) and their multimodel
ensemble (MME) forecast (Palmer et al 2004;
Kumar et al 2005; Wang et al 2005; Krishnamurti
et al 2006; Chakraborty and Krishnamurti 2009).
However, no systematic study has been made on
the skill of global dynamic models as far as seasonal
NE monsoon rainfall predictions are concerned.
No attempt has been made so far to examine the
usability of MME techniques for the prediction of
NE monsoon rainfall over India.

This study is mainly focused on prediction
of NE monsoon rainfall in seasonal timescale
using three different MME schemes using seven
different GCMs for 27 years (1982–2008) with
lead-1 products, i.e., predictions for the season
made in the beginning of September. Section 2
describes the models used and the three differ-
ent MME schemes. Section 3 has the results and
discussions. The study has been concluded in
section 4.

2. Data and methodology

2.1 Observed data

For observed rainfall, the 1.00 × 1.00 gridded data-
sets (Rajeevan et al 2006b) have been used. Area
averaged time series are made on seven meteoro-
logical subdivisions, viz., north interior Karnataka,
coastal Karnataka, south interior Karnatka,
Kerala, Tamil Nadu, Rayalaseema and coastal
Andhra Pradesh. The intercorrelations between
the rainfall of these seven meteorological subdi-
visions are positive and highly significant which
indicate that the rainfall over the different mete-
orological subdivisions varies in the same sense.
The NE monsoon rainfall averaged over the region
is also significantly correlated with those of sub-
divisional rainfall. This shows that the region
selected represents the core of NE monsoon rain-
fall (Nayagam et al 2009). Thus, the whole of this
region can be considered to be fairly coherent.
The observed sea surface temperatures (SST) are
from Reynolds and Smith (1994) and wind data
used in the study are based on NOAA NCEP-DOE
Reanalysis-2 (Kanamitsu et al 2002).
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2.2 GCM/AOGCM products

Hindcast runs (lead-1 for October–November–
December of 1982 to 2008) from seven global
models have been used in this study. These mod-
els are NCEP climate forecast system (CFS), the
latest version of the NCAR Community Climate
Model (CCM3.6), International Research Institute
of Climate and Society (IRI) ECHAM4.5 (E4p5),
IRI mixed layer coupled model ECHAM4.5-GML
(GML), IRI coupled models ECHAM4P5-MOM3-
AC1 (CPL-AC1) and ECHAM4P5-MOM3-DC2
(CPL-DC2) and IRI 2 tier ECHAM4.5-CFS SST
(E4p5-CFS). The details of these models are dis-
cussed in Kar et al (2011). Table 1 represents a
brief summary of each model including references
of relevant literature. The CFS runs were made
at NCEP, USA and other models were run at
International Research Institute (IRI). The initial
conditions for CFS model runs (ensemble mem-
bers) are from August and September of each
year. The two-tier models run at IRI use monthly
SST forecasts based on August SST. The atmo-
spheric initial conditions are from September. The
AGCMs use initialization of atmospheric fields
from long historical runs with observed SST on
September 1 of other years/ensemble members.
There is no atmospheric or land surface ini-
tialization to analyzed observations, and the
atmospheric initial conditions are essentially ran-
dom for the calendar date. The one-tier models
use ocean data assimilation, but again there is
no atmospheric or land surface data assimilation.
The model data have been downloaded from IRI
(http://portal.iri.columbia.edu/portal/server.pt).
For this study the average of multiple ensemble
members has been used for each model. Before
applying MME methods, the ensemble mean
prediction of rainfall by each model was bilinear
interpolated to a common 1.00 × 1.00 grid which

is comparable to the resolution of the observed
data.

2.3 Multi-model ensemble schemes

In this study, three different MME schemes are uti-
lized. The following are the brief description of the
MME methods utilized here.

2.3.1 MME using simple arithmetic mean

Simplest of the MME schemes is based on simple
averaging of all the individual models. Hagedorn
et al (2005) have described the rationale behind
the success of such MME techniques for seasonal
prediction. In the present study, the method of
carrying out MME by simple arithmetic mean of
individual models is being referred to as EM. In
this method, all the individual member models
have been assigned same weight while carrying out
ensemble average.

2.3.2 MME using principal component regression

This method involves principal component regres-
sion (PCR) for finding a weighted multi-model
ensemble mean. The main advantage of principal
component regression is that it orthogonalises the
predictors in which multi-collinearity between pre-
dictors automatically get removed. Fekedulegn et al
(2002) have explained this method in detail. PCR
procedure is a multiple linear regression problem
in principal component space. In this method, at
first, principal component (PC) analysis is done
on models’ rainfall and only such models which
explain a high amount of variance are retained for

Table 1. Description of member models used in MME.

Ensemble

Model Resolution AGCM OGCM member Reference

CFS (T62) 1.80 × 1.80 GFS MOM3 15 Saha et al (2006)

CCM3.6 (T42) 2.70 × 2.80 CCM3.6 Constructed analog SST 24 Hurrell et al (1998)

E4p5 (ca sst) (T42) 2.70 × 2.80 ECHAM4p5 Constructed analog SST 24 Roeckner et al (1996)

GML (T42) 2.70 × 2.80 ECHAM4p5 CFS-predicted SSTs prescribed 12 Roeckner et al (1996); Lee and

over the tropical Pacific De Witt (2009)

basin (semi-coupled)

CPL-AC1 (T42) 2.70 × 2.80 ECHAM4p5 MOM3 (anomaly-coupled) 24 Roeckner et al (1996); Pacanowski

and Griffes (1998)

CPL-DC2 (T42) 2.70 × 2.80 ECHAM4p5 MOM3 (direct-coupled) 12 Roeckner et al (1996); Pacanowski

and Griffes (1998)

E4p5-CFS (T42) 2.70 × 2.80 ECHAM4p5 CFS-predicted SST 24 Roeckner et al (1996)
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further simple multiple linear regression. In our
case, first four PCs (explaining about 80% vari-
ance) have been selected for the regression. The
above-mentioned procedure is carried out in leave
one out cross-validation where forecasted year
has been successively withheld from the training
dataset, and the remaining 26 years (as total length
of data is 27 years) have been used for calculation.

2.3.3 MME using singular value decomposition

For carrying out weighted multi-model ensemble
mean, multiple regression method has been
employed. Singular value decomposition (SVD) has
been employed for the computation of the regres-
sion coefficients (referred to as SVD scheme in the
following text). The advantage of SVD method
is that it removes the singular matrix problem
while calculating covariance among models which
cannot be entirely solved with the Gauss–Jordan
elimination method. The details of the method are
explained in Yun et al (2003). In this method,
the model forecasts are regressed in the training
period with the observed counterpart to obtain
weights:

E =
N∑

t=1

(S′
t − O′

t)
2
,

where E is the error term that is minimized to
obtain the weights, N is the length of the training
dataset. S′

t and O′
t are the predicted and observed

rainfall anomalies, respectively, at training time t.
The outcome of this regression is statistical weights
Wi (i = 1, 2,. . . ,M ; M being the number of
models) assigned to every model. These weights are
then passed on to the forecast phase to construct
the final SVD predicted anomalies (S ):

S =
M∑

i=1

WiFi,

where Fi are the forecasted anomalies from indi-
vidual models.

Leave one out cross-validation technique has
been used in which, each year has been succes-
sively withheld from the training dataset, and the
remaining 26 years have been used for calculation
of the model and observed statistics. This means
and regression coefficients are used for calculat-
ing the forecast for the verification year (the year
that was withheld). The model weights are the
most important outcome of this SVD based mul-
tiple regression method. Similar method has been
employed by Kar et al (2011) for the computa-
tion of weights for the individual models for July
rainfall.

3. Results and discussion

3.1 Skill of individual GCMs

The observed spatial distribution of seasonal
rainfall climatology over the above-stated (in
section 2) seven meteorological subdivisions is
shown in figure 1. During October, November
December months, most parts of peninsular India
get more than 1.5 mm/day rainfall. Tamil Nadu
receives the largest amount of rainfall (about 3 to
5 mm/day) among all the subdivisions. The cli-
matology of area averaged rainfall over peninsular
India from observation and individual models are
shown in figure 2(a). The observed climatological
(based on 27 years) rainfall is 3.5 mm/day. Among
the models, the rainfall climatology of CFS is
more closer to observation. Except CCM3, remain-
ing models underestimate the rainfall amounts.
The interannual variability (standard deviation)
of rainfall from observation and individual mod-
els have also been calculated for the region and
are shown in figure 2(b). The observed interan-
nual variability of rainfall is about 0.85 mm/day.
Interannual variability simulated by all the mod-
els is much less than that of observation. It is
expected that the IAV in the ensemble mean rain-
fall would be smaller than that observed, because
the average of multiple ensemble members has been
taken which reduces the total variance. In order
to examine the mean standard deviation (IAV) of
the ensemble members, for each model and ensem-
ble members, interannual variability has been com-
puted (figure not shown). It is seen that the IAV
values of ensemble members of the models are
closer to that of observation. For, the CFS model
are marginally larger than that of the observation
while other models have IAV values marginally
smaller than that of observed IAV.

Rainfall Climatology (OND) mm/day

Figure 1. Climatology of observed rainfall over the south
peninsular India during NE monsoon season.
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Climatology

Interannual Variability

(a)

(b)

Figure 2. (a) Climatology (mm/day) and (b) interannual
variability (IAV) (mm/day) of rainfall over peninsular India
in October–November–December from IMD observed data
and the model hindcast runs for 1982 to 2008.

The temporal correlations between the observed
seasonal rainfall (area averaged) and the model
results have been computed for the 27 (1982–2008)
years of hindcast runs and are shown in figure 3(a).
It may be noted that for statistically significant
correlation (95% confidence interval) for 27 years
of study, it is expected that the correlation mag-
nitude should be at least 0.32. Except CCM3 and
E4p5-CFS model, all other models show negative
correlation. Root mean square errors (RMSE) from
individual model is shown in figure 3(b) which indi-
cates that all the models have large errors. Average
RMSE of all the models is 1.5 mm/day. Equi-
table threat score (ETS) measures the fraction
of observed and/or forecast events that were cor-
rectly predicted, adjusted for hits associated with
random chance and has been computed for each
model for the domain averaged rainfall. The ETS
is defined as:

ETS =
(H − Hr)

(H + M + F − Hr)

where

Hr = (H + M) ∗ (H + F ) /T

H, M , and F are hits, misses and false alarm for
each category. Hr is the hits due to random chance
and T is the total number of events. ETS ranges
from −0.33 to 1 with ETS = 0 indicating no skill
in predictions. Several threshold values have been
used in the study and the ETS values are shown in
figure 3(c). It is seen from the figure that individual
member models have very poor skill in predicting
the seasonal mean rainfall values.

Poor performances by these models to simu-
late NE monsoon rainfall could be due to several
reasons. Most of the models used in the present
study have coarse horizontal resolution (either T42
or T62). Whereas, it is expected that large-scale
anomalies can get predicted by such coarse resolu-
tion models, the details of rainfall variability over
the peninsular region of India may not get prop-
erly resolved by them. In a 2-tier modelling system,
the predicted sea surface temperatures (SSTs) are

(a)

(b)

(c)

Correlation

RMSE

Equitable Threat Score(ETS)

Figure 3. (a) Correlation, (b) root mean square error, and
(c) the equitable threat score between rainfall from obser-
vation and models as well as MME schemes.
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prescribed to atmospheric GCM and in 1-tier sys-
tem, the SSTs evolve as a part of coupled ocean–
atmosphere system. One of the factors that affect
IAV of model simulated rainfall is the way a model
responds to interannually varying SSTs. In addi-
tion, the internal dynamics of the models and some
other boundary forcing may also affect the IAV in
rainfall (Kar et al 2001).

Correlations between observed area averaged
northeast monsoon rainfall over peninsular India
and global SST have been calculated. The same
field for each model with corresponding SSTs have
also been computed and are shown in figure 4. It is
noticed that there is a significant positive relation-
ship between eastern equatorial Pacific SSTs and
observed rainfall. Zubair and Ropelewski (2006)
have noted about the increase in strength of this
positive correlation since 1980. Positive correla-
tion is also noticed in the Bay of Bengal and in
the South China Sea. It is noticed that even if
the SST predictions by individual models are rea-
sonably good (figure not shown), the SST–rainfall
(over peninsular India) remote response is not well

simulated by these models as shown in figure 4.
Most of the models fail to capture the positive rela-
tionship between rainfall over southern India and
SST over eastern equatorial Pacific except CPL-DC2.
In order to examine the reason for such behaviour
of this model, rainfall anomaly of each ensemble
member of this model has been examined (figure
not shown). It is seen that the ensemble members
show wide range of variability, indicating the inter-
nally generated variability in the model is quite
large and dominate the SST-forced variability. As a
result, the model does not produce large variability
in its ensemble mean. Moreover, the model’s rain-
fall has large correlations with central north Pacific
SST and southwest Indian Ocean which are not
observed. Therefore, while the ensemble mean (the
signal part as a result of externally forced variabil-
ity) shows a good correlation with the SST forcing,
interannual variability of the model’s rainfall does
not agree with that of observation.

In this study, years when rainfall anomaly (nor-
malized) is between ±1 standard deviation are con-
sidered as normal years, and all other years are

Obs Rain & SST CFS Rain & SST

CCM3 Rain & SST E4p5 Rain & SST

GML Rain & SST CPL –AC1 Rain & SST 

CPL-DC2 Rain & SST E4p5-CFS Rain & SST

Figure 4. Correlation of the October–November–December rainfall over peninsular India with observed SST and model
predicted rainfall with model SSTs. Areas with correlation values with >0.2 have been shaded.
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considered as typical years when either flood or
drought occurred. Some of these are extreme north-
east monsoon years with significantly less rain-
fall (1982, 1988, 1989 and 2005), and in some
years, more than normal rainfall occurred (1987,
1993, 1996, 1997 and 1998). Some of these typ-
ical years may also be characterized as El Niño
year (1987), La Niña year (1988) and Indian Ocean
dipole year (1982, 1996, 1997, 1998). In order to

examine the large-scale circulation features pre-
dicted by the models for these years, wind anoma-
lies at 200 hPa from observation and models were
studied in detail. Composite zonal wind anomalies
(U) at 200 hPa for the above-normal years, below-
normal years and their differences are shown in fig-
ure 5. Westerly winds in the mid-latitude regions of
both the hemispheres and easterlies in the tropical
belt is the major climatological observed pattern at

(a) (b) 

(c) (d) 

(e) (f)  

Above Normal (obs) Below Normal (obs) 

Above – Below (obs) Above – Below (CFS) 

Above – Below (CPL-AC1) Above – Below (GML) 
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20N
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20S
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30N

20N

10N

10S

20S

30S

EQ

Figure 5. Composite of observed zonal winds at 200 hPa for above and below normal rainfall years (a and b), their observed
difference (c) and difference seen in CFS, CPL-AC1 and GML models respectively (d, e, f).
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200 hPa. In the above-normal years, stronger west-
erlies prevail over the latitude band of 20◦–30◦N,
as compared to below-normal years. At 850 hPa,
stronger easterlies over the Indian Ocean and Bay
of Bengal extending over to southern Indian penin-
sula are noticed in the composite difference plot
(figure not shown). Corresponding to stronger con-
vergence and convection in the region, a series of
cyclonic and anti-cyclonic circulations are noticed
at 200 hPa in the northern hemisphere. The com-
posite difference of U at 200 hPa from CFS, CPL-
AC1 and GML are also shown in figure 5. It is
seen that location and intensity of westerly maxima
are not simulated by these models correctly. West-
erly winds from CFS model are very strong, espe-
cially over India in above-normal years but these
are weaker than observation in other two models.
This indicates that the lower level convergence and
intense convection in these models are not brought
out well for these contrasting years.

From the above discussions, it is concluded that
the models have large errors in predicting rain-
fall over the peninsular India correctly in hindcast
mode. Therefore, it is considered appropriate to
use statistical post-processing techniques to prop-
erly correct the rainfall forecasts from these models
and combine them using MME techniques to make
more reliable forecasts.

3.2 Skill of MME schemes

Leave one out cross-validation technique has
been used for all these above-mentioned methods
(section 2.3) in which, each year has been succes-
sively withheld from the training dataset, and the

remaining 26 years (as data length is 27 years)
have been used for calculation of the model and
observed statistics, i.e., the seasonal means and
regression coefficients. These means and regression
coefficients are used for calculating the forecast for
the verification year (the year that was withheld).

Skill of individual member models in terms of
temporal correlation, RMSE and ETS discussed
in the earlier sections showed that the member
models have poor skill in simulating the northeast
monsoon. The temporal correlation coefficients and
RMSE obtained from the three different MME
schemes, viz., EM, PCR and SVD are shown in
figure 3(a and b), respectively. It is seen from
figure 3(a) that the correlation of EM is still very
low. EM scheme is based on simple averaging of
model, i.e., giving equal weight to each model. As
a result, a good model gets the same weight as
a model with low skill in this method. It may be
noted that as five out of seven models show nega-
tive correlation in predicting NE monsoon rainfall,
the EM scheme is not able to enhance the skill.
PCR based MME provides some improvement over
the EM scheme and shows positive correlation skill
but it is not significant. The SVD scheme has the
best skill among all the three MME schemes. The
correlation coefficient obtained by using the SVD
scheme is not only higher than member models and
other MME schemes, it is also statistically signif-
icant. From figure 3(b), it is seen that the RMSE
of rainfall obtained from SVD based MME scheme
is also lesser than all the models as well as EM
and PCR schemes. Examination of ETS values for
the MME schemes in figure 3(c) shows that the
MME schemes have improved upon the individ-
ual member models. The PCR and SVD schemes
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Figure 6. Rainfall anomalies (mm/day) from observation and three MME schemes for NE monsoon season over peninsular
India during 1982–2008.
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perform better than the simple MME carried out
using equal weights to the member models. Over-
all, the SVD scheme has the best skill during the
period of study. In PCR and SVD methods, weights
are given to member models on the basis of their
skill in training period (using leave one out cross-
validation). The main difference is, PCR ortho-
gonalises predictors (here models) and reduces the
number of predictors by selecting first few modes
which explain most of the variance, while in SVD
based regression all the predictors (here the mod-
els) are used to find regression coefficients using
decomposition of covariance matrix.

3.3 Skill of MME prediction in some typical years

During the study period (i.e., 1982–2008), less
than normal (below normal) rainfall occurred over
the NE monsoon domain in 1982, 1988, 1989 and
2005 and rainfall was above normal in 1987, 1993,
1996, 1997 and 1998. In the previous section, it
was noted that SVD based MME has significantly
more skill than other MME schemes. The main
purpose of the present section is to compare the
rainfall anomalies from the three MME schemes
for these below-normal and above-normal north-
east monsoon years. Observed rainfall anomalies
(mm/day) and anomalies from the MME schemes
for the NE monsoon seasons over peninsular India
for each year are shown in figure 6. The signs of
rainfall anomalies from the EM scheme for most of
the below-normal as well as above-normal years do
not match with that of observed anomalies while
PCR and SVD schemes have higher skill in pre-
dicting rainfall anomalies for these years. But all
the MME schemes fail to predict rainfall anomalies
of 1982. Magnitude-wise rainfall anomalies from
SVD is closer to the observation than that from
the PCR.

4. Summary and conclusion

The post-monsoon or northeast monsoon season
is the major period of rainfall activity over south
peninsula, particularly in north interior Karnataka,
coastal Karnataka, south interior Karnataka, Ker-
ala, Tamil Nadu, Rayalaseema and coastal Andhra
Pradesh. Agricultural activity of these subdivi-
sions (mainly Tamil Nadu) is extremely dependent
on the amount of rainfall received in this season.
Although there are some studies related to variabil-
ity and teleconnections, no such studies exist for
the prediction of NE monsoon rainfall over penin-
sular India. This study is mainly focused on predic-
tion of seasonal mean rainfall anomalies during NE
monsoon seasons using products from seven global

dynamical models with 1-lead (forecasts prepared
in beginning of September).

Examination of performances of these GCMs
during hindcast runs (1982–2008) indicate that
they are not able to simulate the observed interan-
nual variability. This could be because of the fact
that most of the models used in the present study
have coarse resolution (T42 or T62). Whereas it
is expected that large scale anomalies can get pre-
dicted by such coarse resolution models, the details
of rainfall variability over the peninsular Indian
region can not get resolved by them. Another
probable reason for the poor performance is the
fact that the atmospheric model do not respond
in a correct manner to the prescribed predicted
SSTs used in 2-tier systems, or the evolution of
SSTs in coupled models do not agree with the
observed SSTs. It is also seen that the large-scale
anomaly patterns are not brought out by these
models. Therefore, statistical post-processing was
carried out for bias correction and optimum pre-
diction by combination of all these available mod-
els. Three different MME schemes, viz., EM, PCR
and SVD have been evaluated. It is noticed that
as EM is simple arithmetic mean of model, its per-
formance is not good compared to other schemes
based on weighted multi-model ensemble. SVD
schemes are more skillful than PCR in the hindacst
period. There are few typical (extremely above or
below normal rainfall) NE monsoon years during
the study period. SVD scheme has higher skill to
capture the pattern of these typical years than
remaining methods.

The objective of post-processing the model prod-
ucts using SVD scheme is to remove the statistical
bias if any in model predictions and to reduce mean
square error so that the weighted multi-model
ensemble predictions are closer to the observed val-
ues in the training period. The regression coeffi-
cients are then used to build the predictions as if
entire training period decides the mean bias of the
model. If the statistical properties of the model is
such that the weight computed by the model dur-
ing the training period is valid for the forecasted
period, the weighted multi-model ensemble mean
would provide the best predictions. It is seen in
our study that this is indeed the case and the SVD
scheme provides the best skill.

It may be noted that total period of data used
in this study is only from 1982 to 2008 which
may not be very large for the estimation of regres-
sion coefficients. The large set of hindcasts helps
to get optimum weight for the models in SVD
scheme. Limited size of the hindcasts is also a chal-
lenge for training in multiple regression schemes.
However, regressions will suffer from the decadal
changes associated with global warming and asso-
ciated teleconnections if a longer hindcast dataset



804 Nachiketa Acharya et al

is used. Therefore, it is not just the hindcast length,
but other options such as improving the mod-
els, data assimilation, etc. should also be consid-
ered which enhanced the skill of SVD based MME
schemes.
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