A new ionospheric tomographic algorithm — constrained

multiplicative algebraic reconstruction
technique (CMART)

WEN DEBAOY2* and Liu SANZHI?

LSchool of Traffic and Transportation Engineering, Changsha University of Science & Technology,
Changsha 410 004, China.
2Key Laboratory of Dynamic Geodesy, Institute of Geodesy and Geophysics, Chinese Academy of Sciences,
Wuhan 430 077, China.
3 Department of Surveying, Tongji University Shanghai, Shanghai 200 092, China.
*e-mail: wdbwhigg@163.com

For the limitation of the conventional multiplicative algebraic reconstruction technique (MART),
a constrained MART (CMART) is proposed in this paper. In the new tomographic algorithm,
a popular two-dimensional multi-point finite difference approximation of the second order Laplacian
operator is used to smooth the electron density field. The feasibility and superiority of the new
method are demonstrated by using the numerical simulation experiment. Finally, the CMART
is used to reconstruct the regional electron density field by using the actual GNSS data under
geomagnetic quiet and disturbed days. The available ionosonde data from Beijing station further

validates the superiority of the new method.

1. Introduction

Methods of satellite radio tomography of the
ionosphere have been under intense development
in recent years. The first suggestions that sate-
llite navigation system could be used for such
a purpose were made more than 20 years ago
(Austen et al 1988). Then many experimental
tomographic campaigns were conducted (Andreeva
et al 1990; Kunitsyn and Tereshchenko 1992;
Kunitake et al 1995; Markkanen et al 1995; Mitchell
et al 1995; Pryse et al 1995; Huang et al 1998).
In these studies, the used observation data are
radio signal from Navy Navigation Satellite System
(NNSS). Although these studies are useful for
understanding the ionospheric structure, only two-
dimensional ionospheric structure within a cross
section of latitude and height can be obtained.
However, three-dimensional ionospheric electron
density (IED) distributions are very crucial to

obtain high-precision ionospheric delay correc-
tion. The present development of Global Naviga-
tion Satellite Systems (GNSS) receivers, both on
ground and onboard satellites, and the advent of
new GNSS satellite constellations is opening a new
era for ionosphere imaging by increasing greatly
the amount of data available for retrieval of time
varying three-dimensional electron density distri-
butions (Wen 2007, 2010; Wen et al 2007a; Garcia
and Crespon 2008).

Unlike traditional computer tomographic prob-
lems widely used in medical applications, where
transform-based reconstruction techniques are
popular (Kak and Slaney 1988), many GNSS-
based ionosphere tomographic methods are based
on ray approximation. The main reason is that we
usually do not have the freedom to choose mea-
surement ray paths crossing the region of interest
in GNSS-based ionospheric tomography. GNSS-
based ionospheric tomography typically solves the
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ill-conditioned inverse problem by a direct or
iterative inversion of the ray projection matrices.
In addition to the incomplete ray geometry, back-
ground noise and measurement noise are inevitably
attached to the observed phase difference and
Faraday rotation. Therefore, radio tomography is
more ill-posed compared to the widely known com-
puter tomography in medical applications (Zhai
and Cummer 2005).

To resolve the ill-posed problem in GNSS-based
ionospheric tomography, a number of tomographic
algorithms have been developed in the past. One
of the conventional algorithms is MART because
of its rapid convergence. However, MART incorpo-
rates prior information into each pixel to cope with
the ill-posed problem. For those pixels without any
ray paths crossing them in the probed region, the
final results are the same as the initial values,
which are obtained from empirical ionospheric
models that reflect month-average variation of the
ionosphere, so the reconstruction accuracy can be
severely limited. For the above problem, Pryse et al
(1998) presented a scheme based on singular value
decomposition (SVD) followed by MART, which is
defined as a combined algorithm (CA) in this work.
Although this method improves the accuracy of the
reconstructed IED, the computational efficiency is
low because of the sparsity and the large dimension
of the coefficient matrix. In order to resolve the
limitations of the conventional tomographic algo-
rithms, a CMART is presented in this paper. In this
new method, the constraint is imposed according
to the two-dimensional multi-point finite differ-
ence approximation of the second order Laplacian
operator in the horizontal direction. Numerical
simulation experiment has demonstrated the feasi-
bility of the new method and its superiority to
the above algorithms. Finally, the new method is
applied to reconstruct the IED distributions using
the regional GNSS observation (i.e., GPS) over
China.

2. Tomographic formulation

As is well known, one measurable parameter of
the ionosphere is the total electron content (TEC),
which is the line integral of IED along ray propa-
gation path. It can be written as (Wen et al 2007b,
2008):

TEC = /l N(s)ds, (1)

where N (s) is the electron density along the propa-

gation path [ between a satellite and a receiver.
In general, TEC along some path can be approxi-

mated as a finite sum of shorter integrals along
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segments of [;. To simplify the computation, the
reconstructed region is first discretized into some
small pixels. Assuming the distribution of elec-
tron density to be uniform in discrete regions,
equation (1) can be formulated as:

yi:ZAijxj+eia i=12...,m. (2

j=1

Equation (2) can be generally written in a simple
matrix notation as:

ymxl - Amxn‘rnxl + em><17 (3)

where n is the number of voxels in the image, m is
the number of TEC measurements, y is a column
vector of the m known TEC measurements, A is
a matrix containing all the lengths of the m ray
paths traversing the corresponding n voxels, x is
the vector consisting of all the unknown electron
densities in all the voxels, and e is a column
vector associated with the discretization errors and
measurement noises.

3. Constrained MART

To reconstruct the IED distribution, a reason-
able algorithm should be selected. MART is very
attractive due to its advantage over algebraic
reconstruction technique in determining the elec-
tron densities to avoid unreasonable negative
values and rapid convergence. In general, the
MART algorithm is iterated cyclically and can
be implemented as follows:

?*1 is the jth member of the vector of pixels

2**1 k is the number of changes to z, a; is the ith
row of matrix A, A\, is the relaxation parameter.
The exponent is normalized and bounded such that
0<A\A;; <1

As described above, MART has its disadvantage
when it is applied to reconstruct the electron den-
sity distribution in the probed region. To resolve
the problem, we introduce additional equations and
include them as constraints in this research. These
constraints impose smoothness on the IED field.
The additional equations can be expressed in a
matrix notation as:

where x

lenxnxl = 0 (5)
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Figure 1. The sketch for creating of two-dimensional con-
straint matrix.

The selection of the matrix B is very important in
equation (5). Generally, any physically reasonable
information, expressed in the form of a finite dif-
ference equation, can be transferred. Treating the
ionosphere as a smooth field is a reasonable way to
simplify the discussion. A popular two-dimensional
nine-point finite difference approximation of the
second order Laplacian operator is used through-
out in this work.

Figure 1 shows the representative sketch for
creating a two-dimensional constraint matrix.
According to the basic constraint rules, for those
pixels that lie at the center of the probed region
(i.e., 5th pixel in figure 1), the constraint is given
by using the following two-dimensional nine-point
finite difference approximation of the second order
Laplacian operator:

-1|-1|-1
Lo=|-1| 8|-1|.
—-1|-1|-1

The operator has to be adjusted accordingly when
the pixels locate at the edge of the probed region.
For those pixels lying on the four corners of each
layer, the operators are given in L; (i.e., the 7th
pixel in figure 1), L, (i.e., the 9th pixel in figure 1),
L3 (i.e., the first pixel in figure 1) and L, (i.e., the
third pixel in figure 1), respectively.

—1]-1 —1]-1

L - L =
! 301 711 3
3[—1 1] 3
R B B} S B )

However, for those pixels lying on the edge rather
than the corner, the operators are given in Lj (i.e.,
the 8th pixel in figure 1), Lg (i.e., the 2nd pixel in
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figure 1), Ly (i.e., the 4th pixel in figure 1) and Lg
(i.e., the 6th pixel in figure 1), respectively.

L5:_1 —1|-1 L6:—1 9|—1
-1 5|—1 —1|—-1|-1
—1|-1 —1|-1

L7: 5(—1 Lg: -1 5.
—1]-1 —1]-1

As for other layers, the operators are given by
using the above rules. According to the operators,
the constrained matrix B in equation (5) can be
created reasonably.

4. Numerical simulation experiment

To examine the feasibility and superiority of the
new method in comparison with the MART algo-
rithm, a simulation scheme is devised. The simula-
tion procedure was as follows:

e In this simulated experiment, the latitude ranged
from 30°N to 40°N, the longitude ranged from
115°E to 125°E, and the height ranged from 100
to 1000 km in steps of 15km. The discretized
interval in latitude and longitude is 0.5° and 1°,
respectively.

e In a selected reference frame and time period,
the actual positions of GNSS satellites and avail-
able 52 ground observation stations are used to
create the projection matrix A.

e The IED at the center of each pixel is gene-
rated from the TRI2007 model and considered as
the mean IED value of the corresponding pixel.
The simulated time period is 05:40-06:00UT,
10 April 2009. The discrete density distribution
is represented by Zgm., and then the simulated
TEC value ysm, without noise is computed by
using the following equation:

Ysimu = A * Lsimu- (6)

e Taking the reality into account, a small
amount of random noise eg,,, should be added
to the simulated TEC values ysm,. One can then
obtain:

ynois - ysimu + €Csimu - (7)

e CMART, MART and CA are used to invert the
IED from the simulated TEC with noise in equa-
tion (7), respectively. The final estimate x.y is
then obtained.
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Comparison between the electron density distribution of the model data (blue) and the corresponding

distributions of the electron density reconstructed by the two algorithms (red) (a) CMART and (b) MART. The unit of

ionospheric electron density is 10116/ m®.

According to the above interval, the probed
region is discretized into 14091 pixels. Figure 2(a
and b) shows the comparisons between the tomo-
graphic results of CMART and MART with those
obtained from IRI2007 model, respectively. From
figure 2(a), it can be seen that the tomogrpahic
results of CMART algorithm agree better than
those obtained from MART algorithm, the retrieval
of electron density distribution in the reconstructed
region was very similar to that given by IRI2007
model, and the density values were modified with
the information from the neighbouring ones by
the Laplacian constraint as expected. This demon-
strated the feasibility of CMART to reconstruct
IED distribution. The average density error of
CMART reconstruction is 7.4 x 10°e/m®, which
is very small compared with the peak density of
8.97 x 10 ¢/m”. However, the average density of

MART is 7.72 x 10 e/m’, which is larger than
the average error of CMART. The error compari-
son of two reconstruction algorithms validated that
CMART was superior to MART algorithm.

To simplify the description, in the following
section, one-iteration means that all available
rays are used to wupdate the reconstruction
once. Figure 3 shows the comparisons between
the images obtained from IRI 2007 model and the
reconstructed results of five-iteration of the
CMART and the CA before the iteration con-
verges. From figure 3, it can be seen that the recon-
structed image of the CMART is closer to the
image obtained from IRI 2007 model than that
reconstructed from the CA. The comparison vali-
dates that the CMART has the higher compu-
tational efficiency and the better reconstruction
quality than the CA.

Figure 4 illustrates the comparisons between the
images obtained from IRI 2007 model and the
reconstructed results of the CMART and the CA.
Figure 4(b) represents the reconstructed image of
ten-iteration of the CMART, and figure 4(c) shows
the reconstructed results of twenty-three iteration
of the CA. From figure 4, we can see that the recon-
structed image of ten-iteration of the CMART is
similar to the image obtained from IRI 2007 model.
However, the CA consumes twenty-three iterations.
This fact further demonstrates that the CMART
is higher than the method adopted by Pryse et al
(1998) in computational efficiency.

5. TED reconstruction based on actual
GNSS observations

5.1 Tomographic reconstruction of IED
during geomagnetic quiet day

In this section, CMART was applied to the actual
GNSS observation data obtained from 60 differ-
ent receivers of Continuously Operating Reference
System (CORS) of Jiangsu province and Shanghai
city. Observation data obtained within 30 minutes
every hour on 22 December 2008 are analyzed to
investigate the effects of diurnal variations in the
ionosphere. Some examples of the diurnal vari-
ations of the IED distribution at 116.5°E are shown
in figure 5. The altitude ranges from 100 to 1000 km
in the actual computation. Taking the small vari-
ation of electron density value between 700 and
1000 km into account, the altitude ranges from
100 to 700km in the figure 5. From figure 5, we
can see that the IED reaches the maximum at
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Figure 3. Numerical ionospheric model and images recon-
structed through five-iteration by the CMART and the CA.
The unit of IED is 10** ¢/m®. (a) Original IED image from
the IRI 2007 model; (b) reconstructed image using CMART
algorithm; and (c) reconstructed image using CA.

05:00 UT (13:00 local time (LT)) and the mini-
mum occurs at 21:00 UT (05:00 LT). The IED dis-
tributions in the south are larger than those in
the north from 01:00 UT (09:00 LT) to 09:00 UT
(17:00 LT). At 13:00 UT (21:00 LT), the IED values
in the south tends to coincide with those in the
north, and then the IED distributions in the south
are smaller than those in the north from 17:00 UT
(01:00 LT) to 21:00 UT (05:00 LT). It reflects the
fact that there exists a close relationship between
the variations of IED and the latitude. Meanwhile,
it can also be seen that the distribution of TED
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Figure 4. Numerical ionospheric model and images recon-
structed after iteration is converged by using the CMART
and the CA. The unit of TED is 10'! e/m®. (a) Original TED
image from the IRI 2007 model; (b) reconstructed image of
ten iterations using CMART; and (c) reconstructed image
of twenty-three iterations using CA.

varies from small to large value, and then it varies
from large to small value. Using this new method
proposed by this paper, the TED distributions of
other days in 2008 are reconstructed, and the above
rules can also be verified.

Figure 6 shows a comparison of GNSS-derived
and ionosonde-derived vertical electron density
profiles over Beijing ionosonde station in China
at 05:00UT and 09:00UT. The comparisons
demonstrated the reliability of the tomographic
results based on CMART by using actual GNSS
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observations. Meanwhile, it can be seen that the
profiles obtained from CMART are more close
to the ionosonde than those from MART as a
whole. This fact further validated the superiority
of CMART to the MART.

6. Tomographic reconstruction of IED
during geomagnetic storm

In order to further demonstrate the performance
of CMART under geomagnetic disturbance con-
dition, the GPS data on October 20, 2003 were
used to reconstruct the IED distribution. Interest
is focused on this day since a severe geomagnetic
storm event happened. The maximum of Kp index

is 9 and the minimum is —5. Figure 7 showed the
reconstruction images of IED distribution for three
time periods on this day. From the images, it can
be seen that the obvious disturbed structure of
the ionosphere appeared during geomagnetic storm
occurring. This demonstrated that the CMART
can also be used to handle perturbation.

7. Conclusions

A constrained MART algorithm is introduced for
IED tomographic reconstruction. The CMART
imposes a constraint according to the smoothness
of neighbour pixels and overcomes the disadvan-
tages of the MART to some extent. Numerical
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simulations based IRI2007 model were presented
and the feasibility of the new method is vali-
dated, and then we showed that this new method
is superior to the conventional MART algorithm
using numerical simulation. The accuracy of IED
obtained from CMART is obviously improved, and
the computational efficiency of the CMART is
higher than the CA. Finally, the new method is
successfully applied to the tomographic reconstruc-
tion of IED distributions using actual GNSS obser-
vation data from the CORS of jiangsu province and
Shanghai city. Meanwhile, the CMART is demon-
strated to be applied to handle perturbation during
geomagnetic storm occurring.

In this research, the effects of plasmasphere can
not be considered. To evaluate the effects of plas-
masphere on the reconstructed results, we need to
further improve the model of the plasmasphere.
In the future, the new method can be extended
to four-dimensional tomographic reconstruction by
considering the time evolution of the ionosphere.

Acknowledgements

This research is supported by the National Natural
Science Foundation of China (Grant no. 40804002),
the National Science Fund for Distinguished Young
Scholars of China (Grant no. 40625013) and the
Scientific Research Fund of Hunan Provincial Edu-
cation Department (09B007). The authors would
also like to thank the anonymous reviewers for their
constructive suggestions towards the improvement
of this paper.

References

Austen J R, Franke S J and Liu C H 1988 Ionospheric
imaging using computerized tomography; Radio Sci. 23
299-307.

Andreeva E S, Franke S J and Yeh K C 1990 Radio tomo-
graphic reconstruction of ionization dip in the plasma
near the Earth; J. Fxp. Theor. Phys. Lett. 52 145-148.

Garcia R and Crespon F 2008 Radio tomography of the
ionophere: Analysis of an underdetermined, ill-posed



496

inverse problem and regional application; Radio Sci. 43
RS2014, doi:10.1029/2007 RS003714.

Huang C S, Sofko G and Kelley M 1998 Numerical simula-
tions of midlatitude ionospheric perturbations produced
by gravity waves; J. Geophys. Res. 103 6977—-6989.

Kak A and Slaney M 1988 Principles of computerized
tomographic imaging; Soc. for Indust. and Appl. Math.
Philadelphia, Pa.

Kunitake M, Ohtaka K, Maruyama T, Tokumaru M,
Marioka A and Wantabe S 1995 Tomographic imaging
of the ionosphere over Japan by the modified truncated
SVD method; Ann. Geophys. 13 1303-1310.

Kunitsyn V E and Tereshchenko E D 1992 Radio tomo-
graphy of the ionosphere; IEEE Antennas Propagat. Mag.
34 22-32.

Markkanen M, Lehtinen M, Nygren T, Pirttila J,
Henelius P, Vilenius E, Tereshchenko E D and
Lhuduk B Z 1995 Bayesian approach to satellite radio
tomography with applications in the Scandinavian sector;
Ann. Geophys. 13 1277-1287.

Mitchell C N, Jones D G, Kersley L, Pryse S E and
Walker L K 1995 Imaging of field-aligned structures in
the auroral ionosphere; Ann. Geophys. 13 1311-1319.

Pryse S E, Mitchell C N, Heaton J A T and Kersley L
1995 Traveling ionospheric disturbances imaged by tomo-
graphic techniques; Ann. Geophys. 13 1325-1342.

Wen Debao and Liv Sanzhi

Pryse S E, Kersley S, Mitchell C N, Spencer P S J and
Willams M J 1998 A comparison of reconstruction tech-
niques used in ionospheric tomography; Radio Sci. 33
1767-1779.

Wen D B 2007 Imaging the ionospheric electron density
using a combined tomographic algorithm; In: Proc. ION
GNSS, FortWorth, TX, September, pp. 2337-2345.

Wen D B 2010 The research progress of computerized
ionospheric tomography technique; Bull. Nat. Sci. Found.
China 24 17-20.

Wen D B, Yuan Y B, Ou J K, Huo X L and Zhang K F
2007a Three dimensional ionospheric tomography by an
improved algebraic reconstruction technique; GPS Solu.
11 251-258.

Wen D B, Yuan Y B and Ou J K 2007b Monitoring the
three-dimensional ionospheric electron density distribu-
tion using GPS observations over China; J. Earth Syst.
Sci. 116(3) 235-244.

Wen D B, Yuan Y B, Ou J K and Zhang K F 2008
A hybrid reconstruction algorithm for three dimensional
ionospheric tomography; IEEE Trans. Geosci. Remote
Sensing 46 1733-1738.

Zhai Y and Cumme S 2005 A flexible and robust direct
reconstruction method for agnetospheric radio tomo-
graphy; Radio Sci. 40 RS3004, doi: 10.1029/2004RS
003100.

MS received 19 December 2009; revised 10 May 2010; accepted 15 May 2010




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


