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The computation of electromagnetic (EM) fields, for 1-D layered earth model, requires evaluation
of Hankel Transform (HT) of the EM kernel function. The digital filtering is the most widely used
technique to evaluate HT integrals. However, it has some obvious shortcomings. We present an
alternative scheme, based on an orthonormal exponential approximation of the kernel function,
for evaluating HT integrals. This approximation of the kernel function was chosen because the
analytical solution of HT of an exponential function is readily available in literature. This expansion
reduces the integral to a simple algebraic sum. The implementation of such a scheme requires
that the weights and the exponents of the exponential function be estimated. The exponents were
estimated through a guided search algorithm while the weights were obtained using Marquardt
matrix inversion method. The algorithm was tested on analytical HT pairs available in literature.
The results are compared with those obtained using the digital filtering technique with Anderson
filters. The field curves for four types (A-, K-, H- and Q-type) of 3-layer earth models are generated
using the present scheme and compared with the corresponding curves obtained using the Anderson

scheme. It is concluded that the present scheme is more accurate than the Anderson scheme.

1. Introduction

Electromagnetic (EM) depth sounding is, under
favourable conditions, extremely useful in petro-
leum exploration, groundwater exploration, per-
mafrost thickness determination exploration of
geothermal resources, and foundation engineering
problems. However, for data interpretation one
needs fast and efficient computations of geoelec-
tromagnetic anomaly equations. These equations
appear as Hankel Transform (HT) (also known as
Bessel Transform) integral of the form:

B(r) = / GO, (Ar)dA. (1)

Here J,(Ar) is a Bessel function of real order v of
the first kind and it exhibits decaying, oscillatory
behaviour for increasing argument along the real

axis, r is usually the horizontal spacing, G()\) is
referred to as kernel function as it appears under
the integral sign. For most physical problems, the
order of the Bessel function is an integer, and only
0 and 1 need to be considered. The higher order
Bessel functions are related to these by standard
recursion formulae. Integrals of the form (1) can
be evaluated in closed form only for a restricted set
of kernel functions (Watson 1962) and a recourse
to numerical methods is necessary for the study of
real problems (Chave 1983). The oscillatory nature
of J, and the infinite range of the integral renders
its numerical evaluation difficult. For details of the
currently used techniques for numerical evalua-
tion of this integral, one can refer to Frischknecht
(1967); Anderson (1979, 1982); Kaufman and
Keller (1983); Nabighian (1988).

The popular approach to the computation of HT
is the application of digital linear filter method ini-
tially suggested by Kunetz (1966) and developed
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Figure 1. Plots of real part of EM resistivity transform showing their similarity to the dc resistivity transform curve.

by Ghosh (1971a, b) for real kernel functions. The
linear filter approach was extended for a complex
kernel by Koefoed et al (1972). The pre-linear fil-
ter attempts of computations may be found in
Wait (1955, 1958), Keller and Frischknecht (1966),
Frischknecht (1967), Vanyan (1967). In the filter
approach suitable changes of the independent vari-
ables r and A in equation (1) transforms the direct
integrals into a convolution integral. The Bessel
function of the new variable plays the role of a
filter through which the kernel function is passed as
the signal to get the transformed result as the fil-
ter output. Since the work of Koefoed et al (1972),
significant improvements have been made by var-
ious workers in the design of filters. The filter
design criteria are primarily ad hoc and are dis-
cussed by Anderson (1979) while introducing his
set of digital filters. He claimed reasonable accu-
racy by considering monotonic, rapidly decreasing
kernel functions at moderate values of r. The key
to successful numerical evaluation of equation (1)
lies in defining appropriate filter weights that can
be used for a wide variety of input—output pairs.
Anderson (1979) has taken 283 filter weights, which
increase the efficiency of computation in compar-
ison to old numerical methods. Further develop-
ment by Anderson (1982) was to include adaptive
and lagged convolution to minimize kernel func-
tion evaluations. An alternative approach for com-
puting optimal filter coefficients was proposed by
Johansen and Sorensen (1979) and by Christensen
(1990). This approach even provides a priori error
estimates of filters. However, it has been noticed
that for some types of problems the digital filter
method is less useful, examples occur at very small
values of the range r, where the kernel functions

may be changing rapidly when compared to the
Bessel function, and when high numerical precision
is required (Chave 1983).

Sri Niwas and Israil (1986) noticed similar short-
comings while using Ghosh (1971a, b) filters. They
presented an alternative efficient approach for
computation of HT in dc resistivity methods by
approximating HT kernel as a superposition of
exponential terms. This reduces the integral to a
simple algebraic sum. They used 12 coefficients of
approximation, which is very small in comparison
to Anderson’s 283 filter weights. Thus the compu-
tations required are extensively reduced. Success
of this approach in dc, motivated us to extend this
scheme further to EM problems. This view was fur-
ther supported by the similarity in behaviour of
the dc kernel and resistivity curves to the real and
imaginary components of EM kernel of layered half
space and the field of homogeneous half space.

To implement the scheme, we started with some
analytical HT pairs. Five such integrals were also
used by Anderson (1979). We also implemented our
scheme on the EM field of Vertical Magnetic Dipole
(VMD) over a homogeneous half space model, its
analytical solution is available in literature and for
an exhaustive study of this scheme we used a con-
stant function (unity) as integrand of approxima-
tion. In total we used eight analytical integral pairs.

2. Behaviour of EM kernel and field

The EM kernel and field behaviours for vari-
ous layered half-space models were used to study
the kernel function curves. For example, the
real and imaginary part of kernel curves for



Fast Hankel Transform

269

-0.05 4

-0.1

-0.15 4

-0.2

Imag(1+Rte)Ain Volts

-0.25 4

-0.3 4

- —K-Type
- Homog

—*%— A-Type

-0.35

0.001 0.01 0.1

Nin 1/m

Figure 2.

3-layer sequences of A-type (o7 > 09 > 03), K-type
(o1 > 09<03), H-type (01 < 09 > 03), and Q-type
(01 < 09 < 03) earth models are computed for real
and imaginary parts of the field due to a VMD
source on a homogeneous half-space model. If
we compare these results with the corresponding
direct current (dc) source results, it is evident
that variation of the real part of the EM kernel
shows the same behaviour as the A-type curves of
the dc kernels (figure 1) while the curves of the
imaginary part of the EM kernel shows the same
behaviour as the H-type curves of the dc kernels
(figure 2). The variation of the imaginary part of
the EM field due to a VMD source on a homoge-
neous half-space model, shows similarity with the
de resistivity curves (figures 1-2). After establish-
ing that the variation of the EM kernel and field is
similar to the dc kernel and resistivity curves, we
took up the task of developing the scheme for EM
computations.

The scheme has been applied to the computation
of electric field component due to a VMD source
over a layered earth. The fields, having time depen-
dence €™, are obtained by solving the following
equation for vector potential A,

V2A + kA= S. (2)

S is the source term, and k is the wave number.
However, for a VMD source over a layered earth,
the vector potential A has only one non-zero com-
ponent A, and thus equation (2) becomes a scalar
potential equation. For a VMD source over a lay-
ered earth only E4 component of the field is non-
zero. Hence, from now onwards only 4 component
of the field will be used as electric field. The electric
field at height z for a VMD of moment, m, situated

Plots of imaginary part of EM resistivity transform showing their similarity to dc resistivity transform.

at height h over a layered half space, is given by
—éom

Ey(r) = pm

[e*uo(erh) + Rteeuo(27h):|

0
2

« 2—J1 (). (3)

Here, R;., the reflection function of layered earth,
is given as (Ward and Hohmann 1988),

Y, - Y,
Rte = 0 Al 9 (4)
Yo+ Y,
with
Yo = . (intrinsic admittance of free space). (5)
0

For an N-layer model f/l, the surface admittance
of the first layer, is given as

Yy +Y; tanh(uyd;)
Y, + Y, tanh(u,d,) '

Yi=Y (6)

For an arbitrary layer n(1 < n < N) the interface
admittance will be
N Yn+1 + Y, tanh(u,d,)

Y, =Y, - : (7)
Y, + Y, tanh(u,d,)

Finally, for the half-space, the admittance is given
as

YN - YN'
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Here,
Y, =",
Zn
Un = /(A = k),
N =k +E,
ki = wQunz—:n — Wy Ty R — Wy Oy,
w=2nf,
2o = 1who,
Zn = W[y,

and f is frequency of the source field while u,,,
€n, 0, and d,, are magnetic permeability, electric
permitivity, conductivity and thickness of the nth
layer. It may be added here that magnetic perme-
ability for all layers is assumed to be pg, the per-
meability of vacuum. Further, z is depth up to top
of the layer, X\ is integral parameter, r is spacing
between source and receiver.

Y: is determined recursively by starting at the
deepest layer and iterating upwards. For calcula-
tions, it may be desirable to formulate the tanh
term in terms of negative exponentials for greater
numerical stability.

If the source and the receiver are on the surface
of the earth, then h and z are set to zero and wuy
becomes A. Now equation (3) reduces to

o0

(1+ RN (M)A, (8)

—,i'om
4

Ey(r) =

0

For homogeneous half space the field integral is
analytical and its solution is given as
Ey(r) =

[3— (3+3ikr — k*r®)e™""] . (9)

27701"4
For details of derivation of the above equations one
can refer to Nabighian (1988). The behaviours of
the EM kernel and field were studied before imple-
mentation of the scheme.

3. Exponential approximation
scheme (EAS)

The kernel in equation (1) when approximated as
a superposition of exponential terms, enables eval-
uation of the integral in an analytical form. So, let
the kernel be approximated as

N
= g a;e N,
i=1

(10)
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Here, a;s are the coefficients of superposition and
€;8 are parameters of approximation. For the set
of M different A\ values, the equation (10) can be
written in matrix form as

G = Ma. (11)
Here a is the column vector of coefficients of
approximation for the NV e-values and G is the col-
umn vector of kernel values for the M A-values. The
elements of the M x N matrix M are given as,
M

L EiAj
Ji :

When this approximated kernel is substituted in
the integral, the field is transformed as,

o0

:Z%/ —=A T, (Ar)dA.

=1

(12)

This integral can be evaluated using the Lipschitz
integral,

oo

/e_EAJV (Ar)d\ =

0

vl
Ve + 12 Vel +rl+e|

(13)
If v = 1 then,
T 1 r
—eX
e N Jy (Ar)dA =
/ 1) Ve2+r2y/e2+r2+e
0
(14)
Now equation (12) can be written as
al 1 T
E,(r)= a; . 15
»(7) ; Ver+ri /e +r2+g =

For the set of P different values of r, this equation
can be written in matrix form,

E=Na, (16)

where, FE is the column vector of the field values
for the P r-values and the elements of the P x N
matrix IN are given as,

Nji: 1 Tj .
\/E? + 13 \/Ef + it

The exponential scheme can be used for solving
either the forward (computation of field values
from given kernel values) or the inverse (compu-
tation of kernel values from given field values)
problem. For the forward or the inverse case the
coefficient vector a is evaluated through Mar-
quardt inversion of equation (11) or (16). This
vector is then used either in equation (16) or in
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equation (11) to compute either the field vec-
tor E or the kernel vector G. In the half-space
case, the approximated field values are compared
with the true analytical field values obtained
using equation (9). The absolute and relative root
mean square (RMS) errors are estimated using the
following formulae:

Abs error; = abs(True value; — Approx. value,),

(17)

b .
Rel error; = —o o 0 (18)

True value;’

M (abs error;)?
Absolute RMS error = Z — " (19)

M

M

Z (Rel error;)?

Relative RMS error = . (20)

4. Development of EAS-software

In order to define the exponential terms in the
interpolant and the matrix elements, the ¢;’s
should be known a priori. These values were esti-
mated through a guided search subjected to mini-
mum RMS error. For the search of € values, we have
chosen the 5 analytical integrals given by Ander-
son (1979) along with the two integrals of real and
imaginary parts of EM fields due to a VMD on a
homogeneous half-space model. For an exhaustive
study the integral for unity, an extreme case, was
also included. These eight analytical integral pairs
are given below:

oo

) 1 —r?
Aexp(—A%)Jo (Ar)dX\ = P — )
0

Integral 1 (21)

[ 2 2 r —r?
A% exp (—/\ ) J1 (Ar)d\ = 1P )>
0

Integral 2 (22)

o0

/exp (=A) J1 (Ar)dX =

0

Vi+r2-1
rv14+7r2

Integral 3 (23)
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r
0//\exp (—2A) Jl ()\7’) d\ = m,
Integral 4 (24)
/ooe (=2X) Jo (Ar) dA !
xp (— = ,
b ’ At
0
Integral 5 (25)
Ey(r) = === [ (14 Ri)AJ () dA
0
_(__™ _ o122\ —ikr
—< 27701"4) [3 (3+3zkr k:r)e ]
Integrals 6 (real) and 7 (imaginary)
(26-27)
and
! 1
AJi(Ar)dh = o Integral 8 (28)

0

4.1 Search for epsilon

We started with the Geometric Progression (GP)
range of ¢, used by Sri Niwas and Israil (1986) for
the dc resistivity case. The GP set used was 0.2
(2.0) 409.6, where 0.2 is the first value, 2.0 is the
common ratio and 409.6 is the last 12th point in
the series. With this range of values none of the
integrals could be matched with the corresponding
analytical value. We gradually increased the num-
ber of € values from 12 to 51 and reduced the com-
mon ratio from 2 to 1.2. The initial value taken
was 0.5. We fixed the range of A-values taken in
log-series in the practical range. The first value was
0.001, number of points per decade was 12, the last
value was 14.678 and the total number of points
was 51.

After experimenting with different sets of ¢ val-
ues, we found that with the GP set of 51 values in
the range 0.5 (1.2) 4550.2, the third (equation 23),
fourth (equation 24) and fifth (equation 25) inte-
grals were matched with the corresponding analy-
tical values while all the other integrals were not.
To reproduce the Anderson results, the integrals
were evaluated at the same r values as used by
Anderson (1979).

To compare the results of the VMD field the
practical range of r values were taken in log series.
The first value was 1.0, number of points per
decade was 10, the last value was 1000 and the
total number of points used was 31.
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Table 1. Relative error for the first five integrals using FAS.

r Integral 1 Integral 2 Integral 3 Integral 4 Integral 5
1.00FE — 04 6.38E — 06 4.39E — 04 3.71E — 08 5.39F — 08 2.76E — 10
1.00F — 03 6.38E — 06 4.39E — 04 4.08E — 08 5.39F — 08 2.76E — 10
5.00F — 03 6.37TE — 06 4.39FE — 04 4.06E — 08 5.38E — 08 2.75E — 10
1.00FE — 02 6.33E — 06 4.37TE — 04 4.04E — 08 5.36E — 08 2.73E — 10
5.00E — 02 5.14F — 06 3.80FE — 04 3.50F — 08 4.65E — 08 2.06F — 10
1.00F — 01 2.42F — 06 2.37TE — 04 2.14E — 08 2.88E — 08 5.06FE — 11
5.00E — 01 1.09E — 06 5.11F — 06 3.30E — 10 5.51F — 10 2.79F — 11
1.00E + 00 1.79E — 06 1.39E — 06 1.14E — 10 1.57E — 10 6.50F — 12
2.00E + 00 3.80F — 06 7.36FE — 07 2.71F — 11 5.39F — 11 7.16FE — 12
Table 2. Relative error for the first five integrals using the Anderson scheme.

r Integral 1 Integral 2 Integral 3 Integral 4 Integral 5
1.00FE — 04 1.07E — 06 2.18E — 07 3.64E — 07 1.46FE — 07 2.81E — 05
1.00F — 03 4.77TE — 07 0.00FE + 00 3.64E — 07 0.00FE + 00 2.62E — 06
5.00E — 03 1.07E — 07 2.79E — 07 3.64E — 07 4.66E — 07 5.96F — 07
1.00F — 02 1.10FE — 07 1.86F — 07 3.64E — 07 9.31E — 08 7.15E — 07
5.00E — 02 1.19FE — 07 2.24F — 07 3.64E — 07 0.00FE + 00 2.38FE — 07
1.00F — 01 1.20F — 07 1.49FE — 07 3.64E — 07 748FE — 08 1.19FE — 07
5.00F — 01 1.27FE — 07 1.27FE — 07 3.64E — 07 5.88F — 07 0.00E + 00
1.00E + 00 3.83FE — 07 2.45E — 06 3.64E — 07 1.67E — 07 2.67TE — 07
2.00F + 00 1.86E — 06 5.91F — 06 3.64E — 07 8.43E — 07 8.43E — 08

4.2 Gram Schmidt’s orthonormalization

While looking for possible causes for the mis-
match of remaining integrals, we discovered that
the matrix, M, was highly unstable with its
determinant value being of the order of 107280,
To overcome this problem, we employed the Gram
Schmidt’s Orthonormalization (GSO) of the expo-
nential functions. For implementation of GSO
scheme one can refer Press et al (1993). Application
of GSO enhanced the determinant value to 10725,
The results were improved significantly. All the five
integrals of Anderson were now matched. However,
the other three integrals were still not matching.

4.3 Use of mutual coupling ratio

When we further searched for possible causes
of error, it was discovered that the geometrical
spreading (1/r?) factor in equation (27) was
making the field values to be very large at too low
or too high r values. To remove this effect, we used
the mutual coupling ratio defined as the ratio of the
EM field in medium with the field in vacuum. The
field in vacuum is only generated by the source and
is referred to as the primary field and is given by

(0) _ Wwhom
¢ 4mr2

When the electric field component given in equa-
tion (27) was normalized with the primary field

E (29)

given by equation (29), the geometrical spreading
effect was removed. The normalized field ey(r) is

given as
o0

PSRy AR

0
2

« X Ow)dn,

Uop

(30)
For a homogeneous half space the normalized

analytical field is now given as

eg(r) = kQZTQ [3 - (3 + 3ikr — kQTQ) e—ikr} ‘

(31)

Here k? = —iwugo.

On applying the EAS scheme on the normalized
electric fields, the imaginary part of the field was
matched but the real part of the field and the inte-
gral for unity were still not matching.

4.4 Choice of integrand

From a study of the integral of unity, equation (28),
we found that the A term as integrand was resulting
in poor approximation. To avoid this numerical
problem, we removed the A term from the inte-
grand and merged it with the Bessel function. Thus
a new analytical solution, given below, was used
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Figure 3.

The relative errors in the real and imaginary components of the electric field of a half space due to a VMD

source using the Anderson scheme (Re— AND and Im_AND) and the EAS (Re_EAS and Im_EAS).
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Figure 4. The real component of the normalized electric

field of a half space due to a VMD source using different
integrands in the EAS. RTE is Rrg and LAM is A.
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Figure 5. The imaginary component of the normalized elec-
tric field of a half space due to a VMD source using different
integrands in the EAS. RTE is Rrg and LAM is A.

for the integral

o0

/e’\EA Jy (Ar) dX =

0

r

@

2.B+00 —A—AND —B—EAS
s
w
[
2 1.E+00 -
&
0]
4
I
0.E+00 T
1.E+00 1.E+01 1.E+02 1.E+03
r(m)
Figure 6. The relative errors in the computation of unity

integral using the Anderson scheme (AND) and the EAS
(EAS).

This change in the integrand function signifi-
cantly improved the results of the integral for unity.
Taking cue from this, we applied the same changes
in the kernel of the field integral letting only R,.
constitute the integrand and incorporating the A
term with the Bessel function. The integral for
unity term is separately evaluated analytically and
added. Now the real part of the field was also
matched.

5. Evaluation of EAS
5.1 Integrals used by Anderson (1979)

We compared the results given by Anderson
(1979) for the five analytical integrals with the
corresponding EAS computed results. The relative
errors for these five integrals for the two schemes
are given in tables 1-2.

From these two tables it is evident that the two
schemes yield values of the same order for the first
two integrals while for the last three integrals EAS
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Figure 7. The real and imaginary normalized electric field
curves of A-type 3-layer model computed using the Anderson
scheme (Re—AND and Im_AND) and the EAS (Re_EAS
and Im_EAS).
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Figure 8. The real and imaginary normalized electric
field curves of K-type 3-layer model computed using the
Anderson scheme (Re—AND and Im_AND) and the EAS
(Re—EAS and Im_EAS).

yields better results than those from the Anderson
scheme.

5.2 Electric field e, for a homogeneous
half space

The EAS and Anderson schemes were also com-
pared for the EM field of a homogeneous half
space of 1 Ohmm resistivity due to a VMD source
of frequency 250Hz. The relative errors in the
two cases for both real and imaginary components
are given in figure 3. It is evident from this fig-
ure that the EAS results are comparable with the
Anderson results for the low (<10m) r values
while the former is better for the larger (>10m)
r values.

5.3 Choice of integrand

The relative errors for the real and imaginary parts
of the e, field using different integrand functions
for approximation in the EAS are given in figures 4
and 5. From these figures it is clear that the inte-
grand function Ry, yields the best results.

— & —Re(AND) —a—Re(EAS) — ¥ —Im(AND) - - x- - Im(EAS)

1.5

Normalized E
o
(¢}

0
-0.5 + : : ]
1.E+00 1.E+01 1.E+02 1.E+03
r(m)
Figure 9. The real and imaginary normalized electric

field curves of Q-type 3-layer model computed using the
Anderson scheme (Re—AND and Im_AND) and the EAS
(Re—EAS and Im_EAS).
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Normalized E

0 4

-0.5
1.E+00

Figure 10. The real and imaginary normalized electric field
curves of H-type 3-layer model computed using the Anderson
scheme (Re—AND and Im_AND) and the EAS (Re_EAS
and Im_EAS).

5.4 Extreme case — unity integral

EAS was also compared with the Anderson scheme
for the analytical unity integral. In this case the
integrand is unity and hence it amounts to inte-
gral of Bessel function only. The approximation
of a constant function (unity) is always suscepti-
ble to large oscillations if the scheme is not stable.
The relative errors for this integral using the two
schemes are given in figure 6. It is evident that
the EAS results are far better than the Anderson
scheme results.

5.5 3-layer models

To further check the stability of EAS scheme,
we generated and compared the results for differ-
ent 3-layered half-space models of A, K, H and
Q type. The frequency of VMD source was taken
as 250 Hz. The model parameters used are given
below:
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The real and imaginary normalized electric field curves of 3-layer high resistivity contrast model

(1,100,1 Ohm m), computed using the EAS (Re—EAS and Im_EAS).

A-type H-type K-type Q-type
Layer  Thickness Res Res Res Res
(m) (@m)  (Q@m) (Qm) (Qm)
1 5.0 0.01 0.1 0.01 1.0
2 5.0 0.1 0.01 0.1 0.1
3 Half space 1.0 0.1 0.01 0.01

The real and imaginary components evaluated
using the two schemes are given in figures 7-10 for
the A, Q, K and H-type models respectively. The
imaginary component of the field evaluated using
the Anderson scheme for the three-layer models
tend to deviate significantly from the true value
at large values of r, while the EAS gives smooth
curves in the entire range of r values.

In order to see the impact of high resistivity con-
trast on the stability of EAS scheme, the response
of a 3-layer model with resistivities 1, 100 and
1Ohmm was computed and is presented in fig-
ure 11. It is clear that the pattern is still well
behaved.

6. Conclusions

The exponential approximation of the EM kernel
leads to an efficient scheme of HT computation.
The Gram Schmidt’s orthogonalization of expo-
nential functions significantly improves the stabil-
ity of the coefficient matrix. The use of mutual
coupling ratio data further improves the versatility
of EAS. The stability of the EAS scheme in case
of high resistivity contrast models is illustrated by
the well-behaved nature of the responses.

Out of the several possible ways of choosing the
integrand in the field integral (30), the choice of
R;. as integrand yields the best results.

Finally, it may be emphasized that the EAS coef-
ficient matrix when inverted and stored for a given
set of r values needs a simple matrix multiplica-
tion step to transform field to kernel and vice versa.
Such a multiplication will require only 51 multi-
plications for the present set up in comparison to
the 283 point convolution in the Anderson scheme
making the former more efficient.
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