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Wave propagation is studied in a general anisotropic poroelastic solid saturated with a viscous
fluid flowing through its pores of anisotropic permeability. The extended version of Biot’s theory
is used to derive a system of modified Christoffel equations for the propagation of plane harmonic
waves in such media. The non-trivial solution of this system is ensured by a biquadratic equation
whose roots represent the complex velocities of four attenuating quasi-waves in the medium. These
complex velocities define phase velocity and attenuation of each quasi-wave propagating along a
given phase direction in three-dimensional space. The solution itself defines the polarisations of the
quasi-waves along with phase shift. The variations of polarisations of quasi-waves with their phase
direction, are computed for a realistic numerical model.

1. Introduction

The mechanical behaviour of porous media is
important in the seismic exploration, specially,
for the closer description of physical phenom-
ena around the oil reservoirs. To infer hydraulic
transport properties of reservoir rocks from seis-
mic data is a difficult but important aspect of
exploration studies. A reservoir is, no doubt, a
fluid-saturated porous solid medium pervaded by
aligned cracks. In the presence of aligned cracks,
an elastic medium behaves anisotropic to wave
propagation (Crampin 1981). Reservoir rocks also
exhibit a strong anisotropy in permeability of pores
(i.e., hydraulic anisotropy). The porosity and per-
meability are the fundamental parameters that
are economically important in oil production. The
porosity of a solid is the most important geomet-
rical property to hold a fluid. The permeability is
an equally important physical property of a porous
medium to conduct fluid flow in its pores.

The full-dynamic theory for wave propagation
in fluid-saturated porous media was developed by
Biot (1956). Biot used Lagrange’s equations to
derive a set of coupled differential equations that

govern the motions of solid and fluid phases. Biot
(1962a) extended the acoustic propagation theory
in the wider context of the mechanics of porous
media. Biot (1962b) developed new features of
the extended theory, in more detail. This theory
is obtained through a new and simplified deriva-
tion of the fundamental equations of poroelastic
propagation. This also provides an exact proce-
dure for the evaluation of the dynamic proper-
ties of the fluid motion relative to the solid. Since
then, most of the studies on propagation in porous
media are based on Biot’s theories. The presence
of viscosity in the pore-fluid and its effects on
wave phenomena are also studied. Deresiewicz and
Rice (1962) studied reflection of plane waves in
the elastic frame of porous solid saturated with a
viscous fluid. Sharma and Gogna (1991) discussed
wave propagation in porous solid with a viscoelas-
tic frame filled with a viscous fluid. In recent years,
Gurevich (2002) discussed the elastic wave attenu-
ation in porous rock saturated with viscous pore-
fluid. For the anisotropic propagation, the author
(Sharma 2004a) used Biot’s 1956 theory to study
the phase velocities and attenuations of quasi-
waves in a general anisotropic porous solid with
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anisotropic permeability controlling the flow of vis-
cous fluid in its pores. In another paper (Sharma
2004b), author used Biot’s 1956 theory to study
velocities and polarisation in anisotropic porous
solid saturated with non-viscous fluid. The present
study, also, discusses the polarisations of quasi-
waves in poroelastic solid but with viscous fluid
saturating the porous solid. The presence of viscos-
ity in saturating fluid results in frequency depen-
dent propagation. Moreover, mathematical model
for wave propagation in dissipative porous medium
is derived from the Biot theory of 1962 which,
as said earlier, is a refined and extended version
of the Biot 1956 theory. Effects of symmetries in
hydraulic and elastic anisotropies on polarisations
of quasi-waves are studied numerically, for differ-
ent frequency regimes of Biot’s theory.

Slowness (or velocity) and polarisation are two
important tools to study the wave propagation
properties in anisotropic media. The velocity
anisotropy is often considered to be an obvious
indicator of anisotropy. However, the velocity vari-
ations which are averaged over very long paths
are not of much use in studying a local structure.
Moreover, the complicated structure of the earth
inhibits our ability to obtain accurate measure-
ments of velocity over a range of directions in a
material. This makes velocity anisotropy difficult
to observe. An easily observable and distinctive
feature of wave propagation in anisotropic solids is
the deviation of particle displacements from the ray
path. The polarisations of direct arrivals are more
sensitive to the local properties of a medium. So,
within a few wave-lengths of the recording station,
the diagnostic effect of anisotropy is better repre-
sented by the polarisation anomalies than spatial
dispersion of velocities. These anomalies contain
information about the nature of anisotropic align-
ments and in some cases may indicate the depth of
the anisotropic layer. Some of the studies relating
the polarisation vectors to the physical and dynam-
ical properties of the elastic media are discussed in
Sharma (2004b).

2. Anisotropic poroelastic propagation:
Biot (1962) theory

Following Biot (1962a, b), a set of differential
equations governs the particle motion in a general
anisotropic porous solid frame saturated by a vis-
cous fluid in its pores of anisotropic permeability.
These equations, in the absence of body forces, are
given by

, . ..
CijkiUk,ji + MWk jk = PU; + P,

MyjUy,ij + Rwg ix = pyil; + iy + prijiy, (1)
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where u; are the components of the average dis-
placements for the solid and w; are the compo-
nents of displacement of fluid relative to the solid.
The repeated (dummy) index implies summation,
dot represents (partial) time derivative and comma
before an index denotes partial space differentia-
tion. The elastic constants of the porous aggregate,
Cin» are related to the elastic constants of porous
matrix (¢;jr), by

C;jkl = Cijrr + F(myj6p + mpdi; — fRO;0k). (2)

The elastic constant R measures the pressure to be
exerted on the fluid to push its unit volume into
the porous matrix. The elastic (m;;) and inertial
(gi;) parameters control the anisotropic coupling
between fluid and solid phases. Another tensor r;;
steers the generalized Darcy’s law for fluid—solid
coupling and represents the inverse of anisotropic
permeability (x;;) tensor. All these tensors are
symmetric. The p and p; are densities of porous
aggregate and pore fluid, respectively. Depending
upon frequency (w), viscosity (1) and permeability
tensor Y, dissipation is represented by a matrix

H -1
bl 3)

d=1

where, x, is normalization factor of permeability
tensor XY = XoXa- Xa 1S the normalized anisotropic
permeability tensor (Rasolofosaon and Zinszner
2002). This expression of d is valid, only, for the
low-frequency range, where the flow in the pores
are of Poiseuille type. For higher frequencies, a
correction factor (Deresiewicz and Rice 1962) is
applied to dynamic viscosity u, replacing it by
wF (k). With a denoting the linear dimension of
pores, the Kk = a/wpy/p. F(K), a complex function
of frequency w, is defined through different expres-
sions for k < 1 (i.e., highly viscous fluid and/or
smaller pores) and k > 1 (i.e., low viscosity fluid
and/or wider pores).

For the propagation of plane waves, consider the
harmonic solution

u; = Sjexp{iw(przr — 1)}, (=1, 2, 3),

w; = Fyexpliw(perr, — 1)}, (G =1, 2, 3), (4)

where, w is angular frequency and (pi,ps,ps) is
slowness vector. In terms of phase velocity v, the
slowness (p1, pa, p3s) = N/v, where, the real row
matrix N = (ny, ng, n3) represents the direction
of phase propagation for homogeneous waves. Sub-
stituting (4) in (1), yields a system of six homoge-
neous equations in Sy, S,, S3;, Fi, Fy, F3. This
larger system is manipulated (Sharma 2004a),



Polarisations of quasi-waves

LF(Q=10)

Figure 1(a).

HF1(Q=.1; k=.1)

413

HF2(Q=.1; k=10)

P
OO T,
SFSETTATTI

Polar angle (6;) variations of fluid discharge in dissipative dolomite (anisotropic poroelastic medium) with

phase direction (0, ¢), in different frequency regimes (LF: Q = 10; HF1: Q = 0.1, x = 0.1; HF2: Q = 0.1, x = 10); all

angles are in degrees.

to get a system of Christoffel equations, given by
(for h = (1/R)ps?)

Wiij = O, (Z = 1, 2, 3),

D; D,

W = D;h+D,+ + . (5
! *“doh+d, " h(doh + dy) 5)

and an expression (for M = (1/R){m;}),

w; = Fijuj7 (’l = ]., 2, 3)7
r—— | @h+oN'NM
 d,h+d,y
1 ,
—¥ + E‘I’N NM] , (6)

relating the relative fluid displacement (w) to the
solid displacement (u). The coefficient matrices
D;, (j =1,2,3,4), are explained as follows:

1
D, = -1+ Xy
Py do

1 d;
Dy=7Z+— | X5 — —X; ]:
2 + d. 2 d. 1>,

dy d;
= Xa — _ )
Dy = X5 - (Xz dOX1> ;
D, = MN N¥N NM. (7)

The symmetric matrix Z = {c;;un;n,}. The dissi-
pation matrix d is used to define another symmet-
ric matrix

1
Y =—q+d, (8)
P

where, matrix q = {¢;;}. The elements of symmet-
ric matrix W, are, then, obtained in cyclic order
from two of its elements given by

Wy, = 2Yo3n9n3 — Y22n:2), - Y:asng

and

_ 2
Wog = Y23n1 + Yiingng — Yo nsng — Yainon,.

Other variables are expressed as follows:

d, = det(Y); ®=adj(Y); dy=-N&N;

X, =®; X,=_—(MNN®+ N NM);

X3 = —(MN N&+W¥N NM) + MN N&N NM.
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HF2(Q=.1; k=10)

Figure 1(b).

Azimuth (¢;) variations of fluid discharge in dissipative dolomite with phase direction (6, ¢), in different

frequency regimes (LF: Q = 10; HF1: Q = 0.1, x = 0.1; HF2: Q = 0.10, x = 10); all angles are in degrees.

In terms of characteristic frequency (w.) of Biot’s
theory, the dissipation matrix is written as

Q

d= Z?X(;la (9)
where, the dimensionless parameter 2 = (w./w)
decides the frequency regime. The value of Q >
1 ensures the Poiseuille flow of pore-fluid and
represents the low frequency regimes of Biot’s
theory. The high-frequency regime is represented
by € < 1. The non-trivial solution of the sys-
tem of equations (5) is ensured by a complex
biquadratic equation in h = (psv?/R). The four
complex roots of this equation define the exis-
tence of four attenuating quasi-waves in the dis-
sipative poroelastic solid. Let h;, (j=1, 2, 3, 4),
denote the roots of this equation. The complex
phase velocities of the four waves, given by v; =
V (Rh;/p22), (7 = 1,2,3,4), will be varying with
the direction of phase propagation. The com-
plex velocity of a quasi-wave ‘j’, ie., v, =

vgr + wy, defines the phase propagation veloc-
ity V; = (vk + v})/vg and attenuation qual-
ity factor Q;l = —2vr/vg for the corresponding
wave.

3. Polarisation

For a quasi-wave of complex velocity v, the system
of homogeneous complex equations (5) is solved for

a non-trivial solution. Such a solution, in the form
(S1, S2, S3), defines the polarisation of this quasi-
wave. The complex components of polarisation vec-
tor are resolved as S; = R;e’*, (j =1,2,3). The
non-zero real values of ¢; implies that the plane
of constant phase is shifted by (&, &, &) in
three-dimensional space. The displacement compo-
nents in the solid phase are, now, written as:

(j=1, 2, 3).
(10)

Taking the real parts of the expressions on the
right side of these equations, the polarisation of the
quasi-wave is represented by a vector (P, Py, P3).
Its components are given by

1
u; =R; exp {zw <Unkxk—t> —l—z{j] ;

P; = Rjcos(§; +X), (1=1,2, 3);

Ur
X = —_ -1, 11
w(v%—i—v%nkwk ) ( )

where, vr and v; are real and imaginary parts of
complex velocity v of the quasi-wave. The polar-
isations of quasi-waves vary with the direction
of phase propagation N. The averaged particle
motion (w) of the fluid particles flowing out of
porous matrix is expressed through a polarisation

vector (Q1,Q2, Qs), given by
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Effect of elastic anisotropy on the polar angle variations (0;) of pore-fluid discharge with phase direction

(0, &), in dissipative dolomite (TCS: Z1 = Z2 = 1; MCS: Z1 =0, Z2 = 1; ORS: Z1 = Z> = 0; Regime: LF); all angles are

in degrees.

3
Q; = ZRk[Re(ij) cos(& + X)
h—1

+ Im(T;,) sin(&, + X)) (12)

The wave propagation in anisotropic poroelastic
medium is not similar to that in anisotropic elastic
medium. For instance, the propagation vectors of
quasi-waves in anisotropic porous medium are not
the eigen-vectors of a real symmetric positive defi-
nite matrix. This implies that these polarisation
vectors may not, necessarily, be orthogonal to each
other. Moreover, the presence of viscosity in the
pore-fluid is accompanied by attenuation and dis-
sipation. In a porous medium, the motion of fluid
particles is different from solid particles and it
varies with the phase direction when the solid is
anisotropic. These variations can only be analyzed
numerically for a particular model of anisotropic
porous solid.

4. Numerical computation and
discussion

The analytical expressions derived in section 2
define a general mathematical model for homoge-
neous wave propagation in anisotropic porous solid
saturated with a viscous fluid. Section 3 explains

the polarisations of quasi-waves in a dissipative
medium. The expressions in these sections can be
combined to compute the effects of

e clastic anisotropy
poroelastic solid;

e viscosity of pore fluid;

e hydraulic (permeability) anisotropy of different
symmetries;

e size and shape of pores;

e porosity of saturated porous solid;

e wave frequency;

(different symmetries) of

on the polarisations of quasi-waves in the poroelas-
tic medium. The present numerical work is, how-
ever, restricted to study the effects of viscosity
(through frequency regimes) and symmetries in
elastic and hydraulic anisotropies. Triclinic, mono-
clinic and orthorhombic symmetries are consi-
dered. To deflate the numerical output, the
polarisation anomalies are computed only for the
relative motion (i.e., w) between fluid and solid
particles of the porous aggregate. The impor-
tance of this relative motion (i.e., drainage) lies
with its direct relation to the hydraulic trans-
port properties of porous rocks. The direction of
polarisation vector (@, Q2, @3), for the quasi-
wave ‘k’, is denoted by (0, ¢x), where 6 rep-
resents the polar angle and ¢, is the azimuth
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Figure 2(b).

Effect of elastic anisotropy on azimuth variations (¢;) of pore-fluid discharge with phase direction (6, ¢), in

dissipative dolomite (T'CS: Z; = Z, = 1; MCS: Z; =0, Z, = 1; ORS: Z; = Z> = 0; Regime: LF); all angles are in degrees.

with 1-direction. The polarisation anomalies in a
real crystal may be a useful study. Elastic matrix
(GPa) for Dolomite, an anisotropic reservoir rock,
following Rasolofosaon and Zinszner (2002), is
written as

c11 = 65.53 c12 = 9.77 c13 = 12.19;
c14 = 0.187; ci5 = —0.812y ¢4 =2.9475;
Cap = 50.77 co3 = 11.61 coy =—0.0921;
cos = —0.5072; cos = —0.192, c33 = 60.11;
3y = —1.612; c3s = 1.787, c36 = 0.8475;
Cyq = 23.51 cys = 1.492, cie =—1.1774;
css = 24.57 cs6 = 0.267; ces = 20.21.

The density of this 23% porous material saturated
with a fluid of density 980 kg/m3 is 2423 kg/mg.
The values (GPa) chosen for elastic coupling
parameters are M = 0.33M, and dynamic coup-
ling is assumed to be given by q = prMa, where,
the matrix M, = {1, —0.1Z,, 0.27;; —0.1Z,, 1.1,
0.15Zy; 0.2Z; — 0.15Z;, 0.9} represent a gen-
eral anisotropic elastic coupling between fluid
and solid constituents of porous aggregate. The

value assumed for R = 10 GPa. The anisotropic
permeability tensor for Dolomite is given by, x, =
{0.96, —0.087,, —0.06Z;; —0.08Z5, 0.72, 0.017;;
—0.067,, 0.01Z;, 0.73}. Identity matrix for
X« Tepresents the isotropic permeability. These
anisotropic tensors with value of Z, =72,=1
define the triclinic system of anisotropy. The mon-
oclinic symmetry is represented by Z; =0, Z, =1
and the wvalues Z;=7,=0 represent the
orthorhombic symmetry.

In the low-frequency wave propagation regime
of Biot’s theory, the Poiseuille flow (w <« w,) in
pores is ensured by the value of Q = 10. Similarly,
) = 0.1 represents the high-frequency regime of
Biot’s theory. Three propagation regimes are iden-
tified. One is the low-frequency regime (LF). The
high frequency regimes are divided into two parts,
one (HF1) with x = 0.1 (i.e., smaller pores and/or
high viscosity of pore-fluid) and other (HF2) with
k=10 (i.e., wider pores and/or low viscosity of
pore-fluid).

Using the above numerical values, the directions,
(0x, ¢1), are computed for the four quasi-waves
represented by k£ =1,2,3,4. The phase direction
(0, ¢) varies from (0,0) to (90°, 90°). Details are
as follows.

4.1 Polarisations in propagation regimes

For the three propagation regimes, the polarisa-
tions (0, ¢x); k =1,2,3,4, are computed for the
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four quasi-waves along the given phase directions
(0, ¢). Both, elastic and hydraulic, anisotropies
are of general type (i.e., triclinic anisotropy). The
variations in polar angles () with phase direction
are plotted in figure 1(a) and azimuth (¢,) vari-
ations are plotted in figure 1(b). Going through
the plots in these figures, it may be observed that
frequency has little effect on the amount of polar-
isations but the effect is quite significant on the
variations of the polarisation with phase direc-
tion. The slowest quasi-wave (i.e., 6, ¢,) is an
exception in suffering most with the frequency
change.

4.2 Polarisations with elastic anisotropy

The plots in figure 2(a) exhibit the polar angle
variations with the phase direction in three major
symmetries, (i.e., triclinic, monoclinic, orthorhom-
bic), of elastic anisotropy. The corresponding vari-
ations in azimuths of quasi-waves are plotted
in figure 2(b). The hydraulic anisotropy is of
orthorhombic type. The propagation regime is
LF. The effect of relaxing elastic anisotropy is
observed more on the variations of polarisations
and little on the magnitude. The slowest quasi-
wave, i.e., (0s, ¢4), is the most sensitive to elastic
anisotropy.

Effect of hydraulic anisotropy on the polar angle variations (6;) of pore-fluid discharge with phase direction
(0, ¢), in dissipative dolomite (TCS: Z1 = Z> = 1; MCS: Z1 =0, Z2 = 1;

ORS: Z1 = Z> = 0, Regime: HF1); all angles

4.3 Polarisations with hydraulic anisotropy

The elastic anisotropy is with orthorhombic sym-
metry. The propagation regime is HF'1. The polar-
isations are plotted for three major symmetries
of hydraulic anisotropy. The plots in figure 3(a)
exhibit polar angle variations and those, in fig-
ure 3(b), represent azimuth variations in the par-
ticle motions due to the propagation of each of
the four quasi-waves. The plots in these figures
may be observed to note only the small effect of
hydraulic anisotropy on the magnitude and varia-
tions of polarisations.

5. Conclusions

The numerical results in the previous section were
computed only for a particular but realistic model.
The discussion of these results may not qualify
for the quantitative generalization. To summa-
rize the qualitative effects of anisotropy, frequency,
and viscosity, the observations from the numer-
ical results may be interpreted for the following
conclusions.

e The particle motions of the quasi-waves are not
even near to mutual orthogonal.
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Effect of hydraulic anisotropy on azimuth variations (¢;) of pore-fluid discharge with phase direction (6, ¢),

in dissipative dolomite (TCS: Z; = Z2 = 1; MCS: Z1 =0, Z2 = 1; ORS: Z1 = Z> = 0 Regime: HF1); all angles are in

degrees.

e The presence of anisotropy changes the rela-
tive motion between fluid and solid particles of
porous aggregate. The particles of the two con-
stituents will no longer be moving parallel to
each other, for any of the quasi-wave.

e It is, perhaps, the quasi-wave corresponding to
slow P-wave of Biot’s theory, which is very sen-
sitive to the anisotropy of porous frame and the
wave-frequency.

e The directional difference between the motions
of fluid and solid particles may be less sensitive
to the symmetries of hydraulic anisotropy.

This work studies wave propagation in a realistic
medium keeping in mind the general physical prop-
erties of porous rocks. The mathematical model
derived relates the seismic properties of reservoir
rocks to their lithological and production prop-
erties. This study may be helpful to prospective
seismologists working to improve oil recovery. The
difference in polarisations of two constituents of a
poroelastic solid may help to diagnose the type and
amount of anisotropy in porous rocks. The study
of anisotropic poroelasticity may also be impor-
tant for understanding the mechanical behaviour
of composite materials leading to enormous appli-
cations in non-destructive testing/evaluation stud-
ies (Braga 1990; Buden and Datta 1990; Chai and
Wu 1994; Wu and Wu 2000).
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