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Microwave sensor MSMR (Multifrequency Scanning Microwave Radiometer) data onboard
Oceansat-1 was used for retrieval of monthly averages of near surface specific humidity (Qa) and
air temperature (Ta) by means of Artificial Neural Network (ANN). The MSMR measures the
microwave radiances in 8 channels at frequencies of 6.6, 10.7, 18 and 21 GHz for both vertical and
horizontal polarizations.

The artificial neural networks (ANN) technique is employed to find the transfer function relating
the input MSMR observed brightness temperatures and output (Qa and Ta) parameters. Input data
consist of nearly 28 months (June 1999 – September 2001) of monthly averages of MSMR observed
brightness temperature and surface marine observations of Qa and Ta from Comprehensive Ocean-
Atmosphere Data Set (COADS).

The performance of the algorithm is assessed with independent surface marine observations.
The results indicate that the combination of MSMR observed brightness temperatures as input
parameters provides reasonable estimates of monthly averaged surface parameters. The global root
mean square (rms) differences are 1.0◦C and 1.1 g kg−1 for air temperature and surface specific
humidity respectively.

1. Introduction

Surface latent heat flux (LHF), is one of the domi-
nant components in the surface energy balance and
plays a key role in both the hydrological cycle and
in coupling the ocean and atmosphere (Peixoto and
Oort 1992). In the past it has been necessary to
rely exclusively on the in situ observations to esti-
mate this important parameter. However, with the
advent of satellite technology, there are unique and
complementary ways to remotely derive surface
heat fluxes. Satellite observations have high spatial
and temporal resolution and hence are best suited
for studying the large-scale phenomenon. The sur-
face latent heat flux can be computed using bulk
formula (Schulz et al 1997) in which the SST, wind
speed, near surface specific humidity (Qa) and air
temperature (Ta) must be known. The principal

issue with the satellite method (bulk formula),
however, is that accurate estimations of near sur-
face specific humidity (Qa) and air temperature
(Ta) are not directly available from remote sensing
measurements.

India has launched several remote sensing satel-
lites under the series of IRS satellites. IRS-P4
satellite is the fourth satellite launched by the
Indian launch vehicle PSLV from Shriharikota,
India. This satellite is also known as Oceansat-1.
Both the names are interchangeably used for this
satellite. This satellite carries two oceanographic
play-loads, an ocean color monitor (OCM) and
a multi-frequency scanning microwave radiometer
(MSMR). The multi-frequency scanning microwave
radiometer onboard IRS P4 has the capability of
global coverage with two-day repetivity. MSMR is
an eight band (four frequency in dual polariza-
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tions) passive microwave radiometer with a con-
ical scan mechanism. MSMR provides measure-
ments of brightness temperature at 6.6, 10.7, 18,
and 21 GHz frequencies in both horizontal and ver-
tical polarizations. The brightness temperature of
the ocean is a function of ocean temperature and
emissivity. The emissivity depends upon the sea
surface temperature, wind speed and also on sen-
sors parameters (frequency, polarization and view-
ing angle). When measured from space, the ocean
brightness temperature is modified by transmis-
sion through atmosphere, whose primary variables
of importance to surface microwave observations
are water vapour, cloud liquid water and rain-
fall. In order to determine sea surface temperature,
corrections are necessary for these variables. The
microwave absorption spectrum of water vapour
has a resonance at 22 GHz. Thus, measurements
at or near this frequency (e.g., 21 GHz for MSMR)
are sensitive to variation in total atmospheric
water vapour. The operational geophysical para-
meters available from MSMR measurements are
wind speed, cloud liquid water, integrated water
vapour and sea surface temperature over global
oceans. For retrieval of geophysical parameters
from MSMR brightness temperature, a variety of
theoretical approaches have been utilized. These
include the radiative transfer simulation of a
variety of atmospheres and then followed by
development of retrieval algorithms (Gohil et al
2000).

Use of vertically integrated water vapour content
(W ) as a predictor is a common way to deter-
mine the near surface specific humidity from satel-
lite measurements. The correlation between both
these quantities depends heavily on the time scale
considered. The method of Liu (1986) (hereafter
L86) determines the monthly marine surface-layer
humidity with a simple polynomial regression ofQa

versus W (total precipitable water). This simple
formula can be used with any retrieval algorithm
which determines W . Unfortunately, errors in Qa

originating from the Qa-W relation can result in
large errors in latent heat flux. This was shown by
Esbensen et al (1993), who compared one year of
LHF derived from satellite data using the Qa-W
relation with in situ estimates from COADS obser-
vations. He showed systematic error of over 2 g/kg
in the satellite estimates (L86) of monthly averages
Qa.

Since air temperature (Ta) is key to climate stud-
ies, the search for improved approaches to deter-
mine it from space is an active research topic. Few
attempts (Jourdan and Gautier 1995; Konda et al
1996) have been made on the estimation of near
surface air temperature (Ta) from satellite data. A
very simple method is to assume slightly unstable
conditions (Schulz et al 1997) at any location at

any time and set Ta = SST − 1, where SST is sea
surface temperature. Another simple method is to
compute Ta from the retrieved Qa assuming a con-
stant relative humidity, e.g., 80% (Liu 1988), or
using climatological relative humidity. This might
be accurate enough to compute exchange coeffi-
cients but seems to be too rough to determine sen-
sible heat flux.

Therefore, it is clear from the above discussion
that, though progress has been made in the esti-
mation of Qa and Ta yet some methods need to
be explored in order to make suitable flux com-
putation from satellite data more accurate. There
has been an increasing interest in recent years
in the use of artificial neural networks (ANN) as
applied to satellite remote sensing retrievals (Jung
et al 1998). The ANN algorithms have two salient
and attractive features, ANN algorithms are not
only computationally efficient, but they are also
very useful in representing nonlinear relationships
among a set of parameters. Recently Jones et al
(1999) tried to invert monthly mean Ta from SSM/I
(Special Sensor Microwave Imager) measurements
of total precipitable water, W , and sea surface
temperature, SST, analysis from NCEP (National
Centre for Environmental Prediction) using neural
network techniques. The global rms was stated to
be 0.72◦ ± 0.38◦C.

Motivated by the present status of the satellite
retrieval of Qa and Ta, this paper describes ANN
methodology to determine monthly averages of Qa

and Ta from MSMR measured brightness tempera-
tures of eight channels, TB6v, TB6h, TB10v, TB10h,
TB18v, TB18h, TB21v, and TB21h.

2. Materials used

The algorithm developed in this study used
monthly mean averages of MSMR brightness tem-
peratures to determine Qa and Ta. The data record
spans the 28 months from June 1999 through Sep-
tember 2001, and is available on a global grid of
1.5◦ latitude by 1.5◦ longitude resolutions.

In order to develop and evaluate the new
methodology, Qa and Ta observations from ship
reports of Comprehensive Ocean-Atmosphere
Data Set (COADS) for the period June 1999
to September 2001 over global oceans were
used. As an outcome of joint efforts of sev-
eral organizations, namely National Oceanic and
Atmospheric Administration (NOAA), National
Climate Data Centre (NCDC), Cooperative Insti-
tute of Research in Environmental Sciences
(CIRES), and National Centre for Atmospheric
Research (NCAR), the Comprehensive Ocean-
Atmosphere Data Set (COADS) was archived. For
the first time, the most efficient and up to date
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Figure 1. Total number of Qa observations in the sample-I dataset.

techniques have been used to compile all avail-
able oceanic and atmospheric data over the world
oceans (Fletcher et al 1983; Oort et al 1987). The
COADS consists of mean monthly marine surface
wind speed, Sea Surface Temperature (SST), near
surface specific humidity (Qa) and near surface air
temperature (Ta), compiled and checked for qual-
ity. A large number of studies have been carried
with this data in order to study the influence of
oceans on climate variability (Oort et al 1987; and
others).

The collocated datasets of MSMR observed
brightness temperatures, Qa (COADS) and Ta

(COADS) were initially divided into two subsam-
ples. The June 1999 – May 2000 period is des-
ignated as sample-I (S-I), and used to train the
neural network. Similarly, the June 2000 – Sep-
tember 2001 period was designated as sample-II
(S-II) and reserved for evaluating the performance
of the methodology (hereafter the ANN method).
Figure 1 shows the total number of COADS obser-
vations in sample-I (used to train neural network).
Maximum number of observations are available
in the north Atlantic and Pacific Ocean. One
can observe unsampled regions in central Pacific,
Indian Ocean and the region beyond 40◦S is com-
pletely unsampled.

3. Artificial Neural Network (ANN)

In general, a neural network is a computer model
composed of individual processing elements called
neurons. The neurons are connected by links in
term of weights. Each neuron in one layer has direct
connection to the neurons of the subsequent layer.

These layers are referred to as an input layer, hid-
den layer or an output layer. Generally NN is char-
acterized by its topology, namely, the number of
input, output and hidden neurons and how they are
interconnected. The multi-layer perceptron (MLP)
class of networks consists of multiple layers of com-
putational units, usually interconnected in a feed-
forward way.

Multi-layer networks use a variety of learn-
ing techniques, the most popular being back-
propagation (Miller and Emery 1997). It minimizes
the error between the target output (Qa, Ta) and
the inputs (functions of TB’s) on the data of so
called training dataset (S-I) using some predefined
error function. By various techniques the error is
then fed back through the network. Using this
information, the algorithm adjusts the weights of
each connection in order to reduce the value of the
error-function by some small amount. After repeat-
ing this process for a sufficiently large number of
training cycles the network will usually converge
to some state where the error of the calculations is
minimum. Thus one can say that the network has
learned a certain target function. To adjust weights
properly one applies a general method for nonlin-
ear optimization task such as a gradient descent.
For this the derivation of the error-function with
respect to the network weights is calculated and
the weights are then changed as such that the error
decreases (thus going downhill on the surface of the
error function). For this reason back-propagation
can only be applied on networks with differen-
tiable activation function. The sigmoid, hyperbolic
tangent and the gaussian function are the most
common choices (Rumelhart et al 1986). For most
modeling tasks, the sigmoid function are the base-
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line model to measure results. A general rule of
thumb is that the sigmoid will produce the most
accurate model; but be slower learning. One advan-
tage is that it has a very simple derivative. Acti-
vation functions for the hidden units are needed
to introduce nonlinearity into the network. With-
out nonlinearity, hidden units would not make nets
more powerful than just plain perceptrons. It is the
nonlinearity (i.e., capability to represent nonlinear
functions) that makes multilayer networks so pow-
erful.

3.1 Training stage and methodology

An ANN algorithm is applied to derive transfer
functions relating the MSMR observed brightness
temperature (input) to the ocean surface parame-
ters, near surface specific humidity and air tem-
perature (outputs). The training cycle involved
forward feeding of TB’s values in the training set
from the input layer to output layer to calculate the
Qa and Ta mapping errors. MLP is accomplished
by iterative adjustment of the weights associated
with each connection in the network. The updat-
ing algorithm designed for the MLP is based on
the back-propagation rule developed by Rumelhart
et al (1986), which updates the weights in the net-
work.

A back-propagation network is trained by super-
vised learning where the sample-I dataset is
used. The network is presented with a series of
input/output combinations each consisting of an
input TB’s and output Qa or Ta. The target output
is the desired response to the given input vector.
The output z, is to be compared with the desired
target value d, and their differences e = d− z,
will be computed. The net function uij(x) is the
weighted sum of the ith input to the jth hidden
units:

uij(x) =
n∑

i=1

wjixi = Wx, (1)

where x0 = 1, W is the weight matrix, and x =
[1x1x2 . . . xn]T is the input vector. Here n, is num-
ber of input. The output zj(x) is obtained from
the uij(x) via an activation function ψ(u) (sigmoid
function):

zj = ψ(u) =
1

1 + e−uij
. (2)

Given a set of training samples {(x(k), d(k)); 1 ≤
k ≤ K}, the error back-propagation training
begins by feeding all K inputs through the MLP
(multi layer perceptron) network and computing
the corresponding output {z(k); 1 ≤ k ≤ K}. The

aim of learning is to minimize the instantaneous
square error of the output signal computed as:

E =
1
2

K∑

k=1

(d(k) − z(k))2 =
1
2
[e(k)]2. (3)

Adjusting the weight matrix W carries out
minimization of E. This leads to a nonlinear
optimization problem. There are numerous nonlin-
ear optimization algorithms available to solve this
problem. The minimization is done by the gradient
descent method, where back-propagation involves
the chain rule to back-propagate errors from the
network’s outputs to each of the network’s weights
(Fausett 1994). Use of gradient based techniques
to minimize the error function, needs to solve
dE/dwji for all layers, through repetitive use of
the chain rule of differentiation. Finally the weight
update at every epoch “t” is given by iterative for-
mula.

wij(t+ 1) = wij(t) + η
dE

dwij

, (4)

where η is the learning rate. In the above equation
dE/dwji can be expressed as:

dE

dwij

= −2
K∑

k=1

δj(k)xi(k), (5)

δj(k) is called delta error of jth hidden layer. For a
sigmoid activation function the δj(k) can be com-
puted as:

δj(k) =
∂E

∂uij

= [d(k) − z(k)] · z(k) · [1 − z(k)].

(6)

Each time the weights are updated it is called
an epoch (local iteration). Here each input/output
combination of the training samples is trained
to update the weight until the minimum desired
response is obtained. This may require several
epochs to attain the minimum error-limit. When
the S-I dataset (1 ≤ k ≤ K) is trained once, then
one pass of training is over, many such passes are
required to train the NN for minimization. The
term global iteration is the cumulative sum of local
iteration over the entire training passes. For each
pass the r.m.s is calculated between the desire
and the instant retrieved output. Such cases are
shown in figures 3(a) and 3(b). In the minimiza-
tion process, the error limit used was 0.003 with
a learning rate of 0.7. Thus the back-propagation
formula computes the delta error from the output
layer back towards the input layer, in a layer-by-
layer manner.
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Table 1. Evolution of Qa and Ta, r.m.s error minimiza-
tion for the training data (sample I) for different NN con-
figuration.

Neural
network

configuration

Global iterations

2000 200000 400000

Ta Qa Ta Qa Ta Qa

8-8-1 4.00 3.36 1.56 1.63 1.14 1.40
8-15-1 3.25 3.49 1.25 1.49 1.10 1.30
8-20-1 2.19 3.59 1.19 1.34 1.10 1.27

8-8-8-1 3.39 3.32 1.19 1.45 1.12 1.44
8-15-15-1 2.96 2.02 1.19 1.56 1.12 1.22
8-20-20-1 2.64 3.15 1.09 1.28 1.08 1.17

8-8-8-8-1 2.71 2.25 1.08 1.10 1.08 1.11
8-15-15-15-1 2.51 2.40 1.09 1.10 1.08 1.12
8-20-20-20-1 2.69 2.27 1.20 1.12 1.18 1.13

In the present study, Qa and Ta have been
retrieved individually from MSMR data. Different
neural network configurations were used to investi-
gate the best configuration yielding minimum r.m.s
error. NN with eight neurons in input layer with
1 to 3 hidden layers each containing 8 to 20 neu-
rons and one output neuron for Qa and Ta indi-
vidually has been considered. Variations of r.m.s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The structure of 5 layers feed-forward neural network and the details of single neuron.

with the global iterations for such cases are shown
in table 1. A large number of epochs are consid-
ered and checked for global minimization to pre-
vent over or under training of NN. From table 1
it can be seen that for Ta, 2 layers-20 neurons per
each hidden layer shows minimum r.m.s error after
training for about 3 × 105 epochs, and for the Qa,
3 layers-15 neurons per each hidden layer shows
minimum r.m.s error again after training for about
the same epochs, we could select different network
configurations for different parameters, In table 1
the MLP with 3-hidden layers each containing 8-
neurons shows minimum r.m.s error and better
convergence for both the parameters (Qa and Ta).
Thus the 8-8-8-8-1x architecture has been consid-
ered as the final NN model (figure 2), with eight
input MSMR TB’s and outputs as either, Qa or Ta.

The sample-II dataset was used to evaluate the
training performance of the NN, TB’s values were
forwarded through NN and the outputs in the out-
put layer were calculated. The r.m.s values were
computed on both sample-I and on the sample-
II dataset as shown in table 2. An NN with the
minimum r.m.s was selected for the final MSMR
algorithms. There is no evidence to conclude that
the smallest r.m.s S-I may ensure a better NN per-
formance. The increase in the r.m.s S-I for decrease
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Table 2. Evolution of Qa and Ta, r.m.s error on sample I
and sample II dataset for 8-8-8-8-1 × NN model.

Neural
network

configuration
8-8-8-8-1

Global iterations

2000 200000 400000

Ta Qa Ta Qa Ta Qa

Sample I 2.71 2.25 1.08 1.10 1.08 1.11
Sample II 2.72 2.21 1.06 1.09 1.09 1.12

Figure 3. Rms error versus global iteration for 8-8-8-8-1 ANN configuration for two data set in sample-I, (a) humidity,
(b) air temperature.

r.m.s in r.m.s S-II could show an over training
rather than a good training with general patterns
for a successful generalization.

The MSMR measured brightness temperatures
at 6.6 and 10.7 GHz are sensitive to the SST.
Brightness temperatures at 18 and 21 GHz are sen-
sitive to the atmospheric water vapour (W ). Air
temperature and near surface specific humidity
are strongly related (Jones et al 1999) to the sea
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surface temperature and atmospheric water
vapour. Therefore Qa and Ta are sensitive to all
the brightness temperatures. Hence better perfor-
mance was achieved when all MSMR brightness
temperatures were used.

To see the impact of a number of data points
to train the network, two datasets from sample I;
seven months and twelve months respectively were
selected. Figures (3a and 3b) show the r.m.s error
for Qa and Ta, versus global iteration for these

Figure 4. Scatter plot of monthly averaged surface specific humidity from ANN methodology and COADS measurements.

Figure 5. Scatter plot of monthly averaged air temperature from ANN methodology and COADS measurements.

two datasets. In these figures the dotted line cor-
responds to twelve months and the solid line cor-
responds to seven months data in sample I. From
these figures it is clear that the accuracy is similar
in both the cases. If a small data set contains all
variability of the parameters the inclusion of more
number of data points does not affect the NN per-
formances much. The source code for the algorithm
is written in ‘C’, to run under Unix platform with
memory requirement of about 256 MB.
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4. Results

The methodology described above was tested by
applying the algorithm to the sample II data.
Taking COADS as our standard, we compared
ANN derived Qa and Ta with Qa and Ta given in

Figure 6. Monthly averaged Qa (g/kg), (a) the ANN retrieved, (b) COADS observed, and (c) the COADS-minus-ANN
retrieved, during January.

COADS. Figure 4 shows scatter plot of monthly
averages surface specific humidity from COADS
versus ANN retrieval. The rms difference between
ANN and COADS Qa is 1.1 g/kg. The ANN
retrieved Qa get saturated beyond 20 g/kg. Thus,
the retrieved Qa is underestimated over the warm
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Figure 7. Same as figure 6 but for air temperature (◦C).



98 Randhir Singh et al

pool region (western Pacific and over eastern
Indian Ocean). The retrieved Qa overestimates
for Qa < 13, particularly in western boundary
current areas (such as the Kuroshio and Gulf
Stream) during winter. Figure 5 shows the scat-
ter plot of monthly averages of air temperature
from COADS versus the ANN retrieval. The rms
difference between ANN and COADS Ta is 1.0◦C.
The retrieved Ta overestimates for Ta < 10◦C, but
underestimates for Ta > 29◦C.

This saturation beyond 20 g/kg in Qa and 29◦C
in Ta is because of very few values of these orders
in the sample I (training data). As we have seen in
figure 1, most of the data during the training phase
is from north Atlantic and north Pacific Ocean.
These oceans do not have such high values of Qa

and Ta.
A better understanding of spatial distribution

is given by looking at figures 6 and 7. In fig-
ures 6 and 7, the upper panel (a) is obtained
using satellite (ANN retrieved), the middle panel
(b) is obtained with COADS data, and the bot-
tom one (c) is COADS-minus-ANN. Figure 6 shows
the geographical distribution of Qa during Jan-
uary 2000. The spatial coverage differs strongly
between satellite and in situ (COADS) maps, espe-
cially in the southern hemisphere, and prevents any
comparison between the two-Qa estimates south of
40◦S.

Qualitatively the agreement between the maps
is good in the sense that similar structures are
found at the same location. In both the cases high
humidity was found in the ITCZ region and to the
north of the equator, the South Pacific Conver-
gence Zone (SPCZ) running southwest from New
Guinea, and the warm pool in the western Pacific

Figure 8. Locations for producing time series for selected regions are shown in black boxes.

and eastern Indian Oceans. The overall pattern in
both cases is matching well.

The systematic negative differences (figure 6c)
are mainly concentrated in high-evaporation
regions during winter. Systematic positive differ-
ences are mainly concentrated over south Indian
Ocean, central Pacific and south Atlantic Ocean.
The differences between these two estimates are
within ± 0.6 g/kg over most of the north Pacific
and Atlantic Oceans, although small pockets of dif-
ferences more than 1 g/kg are evident very near to
the coast over these oceans. These large differences
are due to the land influence on the brightness tem-
perature. Another region of large differences (more
than ± 1 g/kg) are south Indian and south-central
Pacific Ocean. Over these oceans it is very difficult
to judge the accuracy of retrieved Qa because the
ship observations are very less.

Figure 7 shows the geographical distribution of
Ta during January 2000. The most important fea-
ture of the air temperature distribution is the large
east west gradient in the Pacific Ocean. Further
there exists the warm pool region in the western
Pacific and eastern Indian Ocean. The maximum
differences between COADS given temperature
and temperature obtained from ANN are in the
warm pool region of western Pacific Ocean. The
ANN retrievals show less aerial extension of west-
ern Pacific Ocean warm pool region compared to
COADS. Large differences (figure 7c) between the
COADS observed and ANN retrieved air tempera-
ture are found in southern Indian Ocean and over
south-central Pacific Ocean. The differences are
within ± 0.5◦ over most of the northern Atlantic
and Pacific Ocean. Similar to Qa, in Ta also large
differences are observed in southern hemisphere.
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Figure 9. Time series of spatial averages of monthly averages of surface specific humidity (g/kg) at different regions.

Finally the ANN algorithm was applied to the
entire record of MSMR observed brightness tem-
perature (June 1999 – September 2001) in order
to achieve a broader prospective of the time vari-
ability during the data record. Figure 8 shows the
domain used to get spatial averages to produce
time series at different locations. Figure 9 shows
the time series of Qa averaged over different regions
(shown in figure 8). Good agreement over the whole
period is observed between ANN method (dot-
ted line) and COADS (solid line) over the entire
region. Likewise, the time series of Ta (figure 10)
shows good agreement between COADS and ANN
retrieval.

5. Conclusions

Near surface specific humidity (Qa) and air tem-
perature (Ta) are important parameters for the
calculation of surface heat fluxes. A method for
using microwave brightness temperature observa-
tion to estimate Qa and Ta has been presented.
The innovative aspect of this study is the ANN
approach with satellite observed microwave bright-
ness temperature.

The evaluation of the method shows good agree-
ment with the surface marine observation not used
in the development of algorithm. The global rms
error in Qa is 1.1 g/kg. Likewise, the global rms
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Figure 10. Same as figure 9 but for air temperature (◦C).

error in Ta is 1.0◦C. In the region of high ship obser-
vations (north Pacific and north Atlantic Oceans)
rms differences in Ta and Qa are about 0.6 g/kg
and 0.7◦C. The differences between COADS and
satellite retrieved parameters (Qa and Ta) are
more over the southern hemisphere. The cause of
the differences is very difficult to judge. Because
the ship observations are very less over these
regions.

The space-borne retrieval of wind speed, sea sur-
face temperature along with near surface specific
humidity and surface air temperature, will improve
the latent and sensible heat fluxes derived from

satellite measurements. The MSMR estimated sur-
face specific humidity and surface air tempera-
ture in turn could be used for applications in
atmospheric numerical models.

From the results, one may conclude that bright-
ness temperature from satellite such as MSMR
may provide reasonable estimates of surface spe-
cific humidity and air temperature over oceanic
regions. This method could be useful for climate
modeling by providing consistent and independent
estimates of global Qa and Ta. The results also
further demonstrate the potential of microwave
radiometers.
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