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The propagation of plane waves in an anisotropic elastic medium possessing monoclinic symmetry
is discussed. The expressions for the phase velocity of qP and qSV waves propagating in the plane
of elastic symmetry are obtained in terms of the direction cosines of the propagation vector. It
is shown that, in general, qP waves are not longitudinal and qSV waves are not transverse. Pure
longitudinal and pure transverse waves can propagate only in certain specific directions. Closed-
form expressions for the reflection coefficients of qP and qSV waves incident at the free surface of
a homogeneous monoclinic elastic half-space are obtained. These expressions are used for studying
numerically the variation of the reflection coefficients with the angle of incidence. The present
analysis corrects some fundamental errors appearing in recent papers on the subject.

1. Introduction

In an anisotropic elastic solid medium, three types
of body waves with mutually orthogonal particle
motion can be propagated. In general, the particle
motion is neither purely longitudinal nor purely
transverse. Because of this, the three types of body
waves in an anisotropic medium are referred to as
qP, qSV and qSH, rather than as P, SV and SH,
the symbols used for propagation in an isotropic
medium (see, e.g., Keith and Crampin 1977).

A monoclinic medium possesses one plane of
elastic symmetry. For wave propagation in the
plane of symmetry, SH motion is decoupled from
the P − SV motion. While the particle motion of
SH waves is purely transverse, it is neither purely
longitudinal nor purely transverse in the case of
P − SV waves. In a recent paper, Chattopadhyay
and Choudhury (1995) discussed the reflection of
qP waves at the plane free boundary of a mon-
oclinic half-space. In a subsequent paper, Chat-
topadhyay et al (1996) studied the reflection of
qSV waves. Since, in both of these studies, the
authors assume that qP waves are purely longi-
tudinal and qSV waves purely transverse, most

of the results of these two papers, including the
expressions for the reflection coefficients, are erro-
neous (Singh 1999). The aim of the present study is
to derive closed-form algebraic expressions for the
reflection coefficients when plane waves of qP or
qSV type are incident at the plane free boundary of
a monoclinic elastic half-space. Numerical results
presented indicate that the anisotropy might affect
the reflection coefficients significantly.

2. Basic equations

Consider a homogeneous anisotropic elastic
medium of monoclinic type. It has one plane of
elastic symmetry and its elastic properties are
defined by thirteen elastic modulii. Taking the
plane of symmetry as the x2x3 - plane, the gener-
alized Hooke’s law can be expressed in the form

τ11 = c11e11 + c12e22 + c13e33 + 2c14e23, (1a)

τ22 = c12e11 + c22e22 + c23e33 + 2c24e23, (1b)

τ33 = c13e11 + c23e22 + c33e33 + 2c34e23, (1c)
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τ23 = c14e11 + c24e22 + c34e33 + 2c44e23, (1d)

τ13 = 2(c55e13 + c56e12), (1e)

τ12 = 2(c56e13 + c66e12), (1f)

where τij is the stress tensor and eij the strain ten-
sor. Further,

2eij =
∂ui

∂xj

+
∂uj

∂xi

, (2)

ui being the displacement vector.
In the case of an orthotropic medium with the

planes of symmetry coinciding with the coordinate
planes

c14 = c24 = c34 = c56 = 0. (3a)

For a transversely isotropic medium with the axis
of symmetry coinciding with the x1-axis

c12 = c13, c22 = c33, c55 = c66, c23 = c22 − 2c44,

c14 = c24 = c34 = c56 = 0. (3b)

For an isotropic medium

c11 = c22 = c33 = λ + 2µ,

c12 = c13 = c23 = λ,

c44 = c55 = c66 = µ,

c14 = c24 = c34 = c56 = 0, (3c)

λ and µ being the Lamé parameters.
For plane waves propagating in the x2x3-plane

ui = ui(x2, x3, t), ∂/∂x1 ≡ 0.

Equations (1) and (2) now yield

τ11 = c12
∂u2

∂x2
+ c13

∂u3

∂x3
+ c14

(
∂u2

∂x3
+

∂u3

∂x2

)
,

(4a)

τ22 = c22
∂u2

∂x2
+ c23

∂u3

∂x3
+ c24

(
∂u2

∂x3
+

∂u3

∂x2

)
,

(4b)

τ33 = c23
∂u2

∂x2
+ c33

∂u3

∂x3
+ c34

(
∂u2

∂x3
+

∂u3

∂x2

)
, (4c)

τ23 = c24
∂u2

∂x2
+ c34

∂u3

∂x3
+ c44

(
∂u2

∂x3
+

∂u3

∂x2

)
,

(4d)

τ13 = c55
∂u1

∂x3
+ c56

∂u1

∂x2
, (4e)

τ12 = c56
∂u1

∂x3
+ c66

∂u1

∂x2
. (4f)

The equations of motion without body forces are

∂

∂xj

τij = ρ
∂2ui

∂t2
(i = 1, 2, 3), (5)

using the summation convention. From equations
(4) and (5), we obtain the equations of motion in
terms of the displacements in the form

c66
∂2u1

∂x2
2

+ 2c56
∂2u1

∂x2∂x3
+ c55

∂2u1

∂x2
3

= ρ
∂2u1

∂t2
, (6a)

c22
∂2u2

∂x2
2

+ c44
∂2u2

∂x2
3

+ c24
∂2u3

∂x2
2

+ c34
∂2u3

∂x2
3

+ 2c24
∂2u2

∂x2∂x3
+ (c23 + c44)

∂2u3

∂x2∂x3

= ρ
∂2u2

∂t2
, (6b)

c24
∂2u2

∂x2
2

+ c34
∂2u2

∂x2
3

+ c44
∂2u3

∂x2
2

+ c33
∂2u3

∂x2
3

+ 2c34
∂2u3

∂x2∂x3
+ (c23 + c44)

∂2u2

∂x2∂x3

= ρ
∂2u3

∂t2
. (6c)

From equations (6a, b, c), it is obvious that the
u1 motion representing SH waves is decoupled
from the (u2, u3) motion representing qP and qSV
waves.

Let p(0, p2, p3) denote the unit propagation vec-
tor, c the phase velocity and k the wave number
of plane waves propagating in the x2x3-plane. A
solution of the equation of motion (6a) represent-
ing plane waves is of the form

u1 = A exp[ik(ct − x2p2 − x3p3)]. (7)

From equations (6a) and (7), we find

c66 p2
2 + 2c56 p2p3 + c55 p2

3 = ρc2. (8)

This equation gives the phase velocity of SH waves
propagating in an arbitrary direction in the plane
of elastic symmetry of a monoclinic medium.

We seek plane wave solutions of the equations of
motion (6b) and (6c) of the form
(

u2
u3

)
= A

(
d2
d3

)
exp[ik(ct − x2p2 − x3p3)], (9)

where d(0, d2, d3) is the unit displacement vector,
also known as the polarization vector. Inserting the
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expressions for u2 and u3 in the equations of motion
(6b) and (6c), we obtain

(U − ρc2)d2 + V d3 = 0, (10a)

V d2 + (Z − ρc2)d3 = 0, (10b)

where

U(p2, p3) = c22p
2
2 + c44p

2
3 + 2c24p2p3,

V (p2, p3) = c24p
2
2 + c34p

2
3 + (c23 + c44)p2p3, (11)

Z(p2, p3) = c44p
2
2 + c33p

2
3 + 2c34p2p3.

Equations (10a) and (10b) yield

d2/d3 = V/(ρc2 − U) = (ρc2 − Z)/V. (12)

Therefore, ρc2 satisfies the quadratic equation

ρ2c4 − (U + Z)ρc2 + (UZ − V 2) = 0, (13a)

with solutions

2ρc2(p2, p3) = (U + Z) ± [(U − Z)2 + 4V 2]1/2.
(13b)

The upper sign in equation (13b) is for qP waves
and the lower sign is for qSV waves.

Eliminating ρc2 from the two equations in (12),
we find

(d2
2 − d2

3)V = d2d3(U − Z). (14a)

Inserting the expressions for U, V and Z from equa-
tion (11), we obtain

[c24(d2
3 − d2

2) + (c22 − c44)d2d3]p2
2 + [c34(d2

3 − d2
2)

+ (c44 − c33)d2d3]p2
3 + [(c23 + c44)(d2

3 − d2
2)

+ 2(c24 − c34)d2d3]p2p3 = 0. (14b)

We may write equation (14a) in the form

d2d3

d2
3 − d2

2
= V/(Z − U). (14c)

Noting that U = U(p2, p3) etc., equation (14c)
can be used to find the direction of the displace-
ment vector d for a given direction of propagation
p. Putting tan e = p2/p3, tanφ = d2/d3, we find

φ =
1
2

tan−1(Ω),
π

2
+

1
2

tan−1(Ω), (14d)

where

Ω = 2
c24 tan2 e + (c23 + c44) tan e + c34

[(c44 − c22) tan2 e + 2(c34 − c24)
× tan e + c33 − c44]

. (14e)

For an isotropic medium [see equation (3c)], we
find Ω = tan 2e so that φ = e, π/2 + e correspond-
ing to the longitudinal P waves and transverse SV
waves. The same is true for a transversely isotropic
medium with the axis of symmetry perpendicular
to the plane of propagation.

Equation (9) will represent a longitudinal wave
if the displacement vector d is parallel to the prop-
agation vector p, i.e., if d2 = p2, d3 = p3. In that
case, equation (14b) yields

c24p
4
2 + (c23 − c22 + 2c44)p3

2p3 − 3(c24 − c34)p2
2p

2
3

− (c23 − c33 + 2c44)p2p
3
3 − c34p

4
3 = 0. (15)

Equation (15) gives the directions of propagation
for which P waves are purely longitudinal. From
equation (10), the corresponding phase velocity is
given by

ρc2
1 = U + (p3/p2)V

= (p2/p3)V + Z. (16)

Similarly, equation (9) will represent a transverse
wave if the displacement vector d is perpendicular
to the propagation vector p, i.e., if d.p = d2p2 +
d3p3 = 0. In this case also equation (14b) leads to
equation (15), as expected. The phase velocity of
transverse qSV waves is given by

ρc2
2 = U − (p2/p3)V

= Z − (p3/p2)V. (17)

For an orthotropic medium [see equation (3a)],
equations (11) and (15) to (17) yield:

(i) p2 = 0, c1 = (c33/ρ)1/2, c2 = (c44/ρ)1/2; (18a)

(ii) p3 = 0, c1 = (c22/ρ)1/2, c2 = (c44/ρ)1/2;
(18b)

(iii)
(

p2

p3

)2

=
c23 − c33 + 2c44

c23 − c22 + 2c44
. (18c)

These are the directions along which qP waves are
purely longitudinal and qSV waves purely trans-
verse in an orthotropic medium. Of course, similar
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Figure 1. Reflection of qP and qSV waves at the plane free boundary (x3 = 0) of a monoclinic half-space (x3 ≥ 0).

directions exist for wave propagation in the x1x2-
and x1x3-planes, which are also planes of elas-
tic symmetry. For a transversely isotropic medium
[equation (3b)], equation (15) reveals that qP
waves are longitudinal and qSV waves transverse
for all directions of propagation. Therefore, for
wave propagation in a plane perpendicular to the
axis of elastic symmetry of a transversely isotropic
medium, qP waves are longitudinal and qSV waves
transverse. From equations (16) and (17), the
phase velocities of qP and qSV waves are given by

c1 = (c22/ρ)1/2, c2 = (c44/ρ)1/2. (19)

3. Reflection of qP and qSV waves

Consider a homogeneous, monoclinic, elastic half-
space occupying the region x3 ≥ 0 (figure 1). The
plane of elastic symmetry is taken as the x2x3-
plane. Plane qP or qSV waves are incident at the
traction-free boundary x3 = 0. We consider plane
strain problem for which

u1 = 0, u2(x2, x3, t), u3 = u3(x2, x3, t). (20)

Incident qP or qSV waves will generate reflected
qP and qSV waves. The total displacement field is
given by

u2 =
4∑

j=1

Aje
iPj ,

u3 =
4∑

j=1

Bje
iPj , (21)

where

P1 = ω[t − (x2 sin e1 − x3 cos e1)/c1],

P2 = ω[t − (x2 sin e2 − x3 cos e2)/c2],

P3 = ω[t − (x2 sin e3 + x3 cos e3)/c3],

P4 = ω[t − (x2 sin e4 + x3 cos e4)/c4], (22)

ω being the angular frequency. We distinguish
quantities corresponding to various waves by using
the subscript (1) for incident qP waves, (2) for
incident qSV waves, (3) for reflected qP waves and
(4) for reflected qSV waves. Thus, for example, for
the incident qP waves, c1 denotes the phase veloc-
ity, e1 the angle of incidence, P1(x2, x3, t) the phase
factor, A1 the amplitude factor of the u2 compo-
nent of the displacement and B1 that of the u3
component.

Since each of the incident qP , incident qSV ,
reflected qP and reflected qSV waves must satisfy
the equations of motion, we have, as in equations
(12) and (13b),

Ai = FiBi(i = 1, 2, 3, 4; no summation), (23)

where

Fi = Vi/(ρc2
i − Ui) = (ρc2

i − Zi)/Vi, (24)

(i = 1, 2, 3, 4)

2ρc2
i = (Ui + Zi) + [(Ui − Zi)2 + 4V 2

i ]1/2, (25)

(i = 1, 3)

2ρc2
i = (Ui + Zi) − [(Ui − Zi)2 + 4V 2

i ]1/2.

(i = 2, 4) (26)

The expressions for Ui, Vi and Zi are obtained
from the expressions for U, V and Z given in equa-
tion (11) on substituting suitable values for (p2, p3).
For incident qP waves, p2 = sin e1, p3 = −cos e1;
for incident qSV waves, p2=sin e2, p3=−cos e2; for
reflected qP waves, p2 =sin e3, p3 =cos e3; and, for
reflected qSV waves, p2 = sin e4, p3 = cos e4 (see
figure 1). We thus obtain

U1 = c22 sin2 e1 + c44 cos2 e1

− 2c24 sin e1 cos e1,
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V1 = c24 sin2 e1 + c34 cos2 e1

− (c23 + c44) sin e1 cos e1,

Z1 = c44 sin2 e1 + c33 cos2 e1

− 2c34 sin e1 cos e1; (27)

U3 = c22 sin2 e3 + c44 cos2 e3 + 2c24 sin e3 cos e3,

V3 = c24 sin2 e3 + c34 cos2 e3

+ (c23 + c44) sin e3 cos e3,

Z3 = c44 sin2 e3 + c33 cos2 e3

+ 2c34 sin e3 cos e3. (28)

(U2, V2, Z2) are obtained from (U1, V1, Z1) on
replacing e1 by e2 and (U4, V4, Z4) are obtained
from (U3, V3, Z3) on replacing e3 by e4.

The total displacement field given by equa-
tion (21) must satisfy the traction-free boundary
conditions, viz.,

τ23 = τ33 = 0 at x3 = 0. (29)

Equations (4c), (4d), (21) and (29) yield
[
(c24A1 + c44B1)

sin e1

c1
− (c44A1 + c34B1)

cos e1

c1

]

× eiP1(x2,0)

+
[
(c24A2+c44B2)

sin e2

c2
−(c44A2+c34B2)

cos e2

c2

]

× eiP2(x2,0)

+
[
(c24A3 + c44B3)

sin e3

c3
+(c44A3+c34B3)

cos e3

c3

]

× eiP3(x2,0)

+
[
(c24A4+c44B4)

sin e4

c4
+(c44A4+c34B4)

cos e4

c4

]

× eiP4(x2,0) =0, (30)[
(c23A1 + c34B1)

sin e1

c1
− (c34A1 + c33B1)

cos e1

c1

]

× eiP1(x2,0)

+
[
(c23A2+c34B2)

sin e2

c2
−(c34A2+c33B2)

cos e2

c2

]

× eiP2(x2,0)

+
[
(c23A3 + c34B3)

sin e3

c3
+ (c34A3+c33B3)

cos e3

c3

]

× eiP3(x2,0)

+
[
(c23A4+c34B4)

sin e4

c4
+ (c34A4 + c33B4)

cos e4

c4

]

× eiP4(x2,0) = 0. (31)

Since equations (30) and (31) are to be satisfied for
all values of x2, we must have

P1(x2, 0)=P2(x2, 0)=P3(x2, 0)=P4(x2, 0). (32)

Equations (22) and (32) imply

sin e1

c1(e1)
=

sin e2

c2(e2)
=

sin e3

c3(e3)
=

sin e4

c4(e4)
= 1/ca, (33)

where ca is the apparent phase velocity. This
is the form of Snell’s law for a monoclinic
medium.

From equations (25), (27) and (28), we note that
even if e1 = e3, c1 6= c3. Therefore, from equa-
tion (33), the angle of reflection of qP waves is
not equal to the angle of incidence of qP waves.
Similarly, the angle of reflection of qSV waves is
not equal to the angle of incidence of qSV waves.
Chattopadhyay and Choudhury (1995) and Chat-
topadhyay et al. (1996) assume that the angle of
reflection of qP (qSV ) waves is equal to the angle
of incidence of qP (qSV ) waves. Therefore, the
reflection coefficients obtained in these studies are
incorrect.

In the case of an orthotropic medium, c14 =
c24 = c34 = c56 = 0. Consequently, c1 = c3 if
e1 = e3. Equation (33) then reveals that the angle
of reflection of qP (qSV ) waves is equal to the angle
of incidence of qP (qSV ) waves.

Using the relations (23), (32) and (33) in equa-
tions (30) and (31), we obtain

a1B1 + a2B2 + a3B3 + a4B4 = 0, (34a)

b1B1 + b2B2 + b3B3 + b4B4 = 0, (34b)

where

a1 = c24F1 + c44 − (c44F1 + c34) cot e1,

a2 = c24F2 + c44 − (c44F2 + c34) cot e2,

a3 = c24F3 + c44 + (c44F3 + c34) cot e3,

a4 = c24F4 + c44 + (c44F4 + c34) cot e4,

b1 = c23F1 + c34 − (c34F1 + c33) cot e1,

b2 = c23F2 + c34 − (c34F2 + c33) cot e2,

b3 = c23F3 + c34 + (c34F3 + c33) cot e3,

b4 = c23F4 + c34 + (c34F4 + c33) cot e4. (35)
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3.1 Incident qP waves

In the case of incident qP waves, A2 = B2 = 0 and
equations (34a, b) become

a1B1 + a3B3 + a4B4 = 0, (36a)

b1B1 + b3B3 + b4B4 = 0. (36b)

On solving, we obtained the amplitude ratios in the
form

B3

B1
= (a4b1 − a1b4)/∆, (37a)

B4

B1
= (a1b3 − a3b1)/∆, (37b)

where

∆ = a3b4 − a4b3. (38)

Using equation (23), we find

A3

A1
=

F3

F1

(
B3

B1

)
,
A4

A1
=

F4

F1

(
B4

B1

)
. (39)

3.2 Incident qSV waves

For incident qSV waves, A1 = B1 = 0, so that

a2B2 + a3B3 + a4B4 = 0, (40a)

b2B2 + b3B3 + b4B4 = 0, (40b)

B3

B2
= (a4b2 − a2b4)/∆, (41a)

B4

B2
= (a2b3 − a3b2)/∆, (41b)

A3

A2
=

F3

F2

(
B3

B2

)
,
A4

A2
=

F4

F2

(
B4

B2

)
. (41c)

3.3 Isotropic half-space

Using equation (3c), it can be shown that, for an
isotropic half-space,

c1 = c3 = [(λ + 2µ)/ρ]1/2 = α, c2 = c4

= (µ/ρ)1/2 = β, e1 = e3 = e, e2 = e4 = f,

sin e

α
=

sin f

β
,

F1 = −F3 = − tan e, F2 = −F4 = cot f,

a1 = a3 = 2µ, a2 = a4 = −µ cos 2f/ sin2 f,

b1 = −b3 = −2µ(α/β)2 cos 2f/ sin 2e,

b2 = −b4 = −2µ cot f. (42)

Putting these values in equations (37), (39) and
(41), we deduce the amplitude ratios for an
isotropic half-space in the form

A3

A1
= −B3

B1
=

sin 2e sin 2f − (α/β)2 cos2 2f

sin 2e sin 2f + (α/β)2 cos2 2f
,

A4

A1
=

cot f

tan e

(
B4

B1

)
=

(α/β)2 cot e sin 4f
sin 2e sin 2f + (α/β)2 cos2 2f

,

A3

A2
=

tan e

cot f

(
B3

B2

)
=

4 sin2 e cos 2f

sin 2e sin 2f + (α/β)2 cos2 2f
,

A4

A2
= −B4

B2
= −A3

A1
=

B3

B1
. (43)

The above expressions for the amplitude ratios
for an isotropic half-space coincide with the corre-
sponding results of Ben-Menahem and Singh (1981,
pp. 93 and 95).

4. Numerical results and conclusions

The reflection coefficients given by Chattopadhyay
and Choudhury (1995) and Chattopadhyay et al.
(1996) for the reflection of qP and qSV waves at
the plane free boundary of a monoclinic elastic
half-space are incorrect because of two erroneous
assumptions made by these authors, namely, qP
waves are longitudinal (qSV waves are transverse)
and the angle of reflection of qP (qSV ) waves is
equal to the angle of incidence of qP (qSV ) waves.
In the present study, we have obtained the cor-
rect reflection coefficients by solving the problem
ab initio.

Equations (37) and (39) give the amplitude
ratios when plane qP waves are incident at the
plane-free boundary of a monoclinic elastic half-
space. In these equations, A3/A1 and A4/A1 are
the amplitude ratios for the horizontal compo-
nent of the displacement and B3/B1 and B4/B1
are the amplitude ratios for the vertical compo-
nent of the displacement. Similarly, equation (41)
gives the amplitude ratios for incident qSV waves.
From equations (21) and (23), we note that, for
example, the total displacement of the incident qP
waves is

(A2
1 + B2

1)
1/2eiP1 = (1 + F 2

1 )1/2B1e
iP1 .

Therefore, the reflection coefficients can be
expressed in the form

RPP =
(

1 + F 2
3

1 + F 2
1

)1/2

.
B3

B1
, RPS =

(
1 + F 2

4

1 + F 2
1

)1/2

.
B4

B1

(44a)
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for incident qP waves, and

RSP =
(

1 + F 2
3

1 + F 2
2

)1/2

.
B3

B2
, RSS =

(
1 + F 2

4

1 + F 2
2

)1/2

.
B4

B2

(44b)

for incident qSV waves. The reflection coefficients
are in terms of the four angles ei and the four veloc-
ities ci (ei), i = 1, 2, 3, 4. For an incident qP wave,
e1 and, therefore, c1(e1) is supposed to be known.
One has to compute e3 and e4 for given e1. The
velocities c3(e3) and c4(e4) can then be computed
from explicit algebraic formulae. We give below the
procedure for computing e3 and e4 for given e1 in
the case of incident qP waves and for given e2 in
the case of incident qSV waves.

The Snell’s law for a monoclinic medium is given
by equation (33) in which the apparent velocity
ca can be written as ca = c/p2, where p(0, p2, p3)
is the propagation vector. We define dimensionless
apparent velocity c through the relation

c = ca/β = c/(p2β), (45)

where β = (c44/ρ)1/2. Equation (13a) then becomes

c4 − (U + Z)c2 + (UZ − V
2
) = 0 (46)

where

U = U/(c44p
2
2) = p2 + 2 c24p + c22,

V = V/(c44p
2
2) = c34p

2 + (1 + c23)p + c24,

Z = Z/(c44p
2
2) = c33p

2 + 2 c34p + 1,

p = p3/p2, cij = cij/c44. (47)

For incident qP waves, p = − cot e1; for incident
qSV waves, p = − cot e2; for reflected qP waves,
p = cot e3; for reflected qSV waves, p = cot e4.
For a given p, equation (46) can be solved for
c2, the two roots corresponding to qP and qSV
waves. However, for a given c, equation (46) is a
bi-quadratic in p, corresponding to incident qP ,
incident qSV , reflected qP and reflected qSV . The
positive roots corresponding to the reflected waves
and the negative roots corresponding to the inci-
dent waves. On inserting the expressions for U,Z
and V from equation (47) into equation (46), the
bi-quadratic in p becomes

g0p
4 + g1p

3 + g2p
2 + g3p + g4 = 0, (48)

where

g0 = c33 − c2
34,

g1 = 2(c24c33 − c23c34),

g2 = 1 + c22c33 + 2c24c34 − (1 + c23)2 − (1 + c33)c2,

g3 = 2[c22c34 − c23c24 − (c24 + c34)c2],

g4 = c4 − (1 + c22)c2 + c22 − c2
24. (49)

If we define q = 1/p = p2/p3, the bi-quadratic
transforms to

g4q
4 + g3q

3 + g2q
2 + g1q + g0 = 0. (50)

For angles of incidence, for which both reflected
qP and reflected qSV waves exist, equation (50)
will possess two positive roots, the smaller positive
root (say q4) corresponding to reflected SV and the
larger positive root (q3) corresponding to reflected
qP . Further,

e3 = tan−1(q3), e4 = tan−1(q4). (51)

For an isotropic medium (see equation (3c))

g0 = γ, g1 = 0,

g2 = 2γ − (1 + γ)c2, g3 = 0,

g4 = (c2 − 1)(c2 − γ), (52)

where

γ = (λ + 2µ)/µ = (α/β)2.

Equation (48) reduces to

γp4 + [2γ − (1 + γ)c2]p2 + (c2 − 1)(c2 − γ) = 0,

i.e.,

γ(p2 − c2 + 1)(p2 − c2/γ + 1) = 0. (53)

In the present case, the Snell’s law (23) becomes

sin e

α
=

sin f

β
= 1/ca.

Equation (45) shows that

c = ca/β = cosecf =
√

γ cosec e. (54)

Therefore, the roots of equation (53) are given by

p2 = c2 − 1 = cot2 f, (55)

corresponding to SV waves, and

p2 = c2/γ − 1 = cot2 e, (56)
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Figure 2. Variation of the angle of reflection (e3) of qP waves with the angle of incidence (e1) of qP waves for three values
of the anisotropy parameter C.
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Figure 3. Variation of the angle of reflection (e4) of qSV waves with the angle of incidence (e1) of qP waves.
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Figure 4. Variation of the angle of reflection (e3) of qP waves with the angle of incidence (e2) of qSV waves.
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Figure 5. Variation of the angle of reflection (e4) of qSV waves with the angle of incidence (e2) of qSV waves.
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Figure 6. Variation of the reflection coefficient |RPP | with the angle of incidence (e1) of qP waves.
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Figure 7. Variation of the reflection coefficient |RPS | with the angle of incidence (e1) of qP waves.
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Figure 8. Variation of the reflection coefficient |RSP | with the angle of incidence (e2) of qSV waves.
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Figure 9. Variation of the reflection coefficient |RSS | with the angle of incidence (e2) of qSV waves.
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corresponding to P waves. Thus, we may choose
(q = 1/p)

q1 = − tan e, q2 = − tan f,

q3 = tan e, q4 = tan f, (57)

as the four roots of the bi-quadratic equation (50)
for an isotropic medium. This choice acts as a
guiding factor in computing the angles of reflection
of qP and qSV waves in a monoclinic medium.
For an orthotropic medium (see equation (3a)), it
can be shown that g1 = g3 = 0. Therefore, equa-
tion (50) reduces to a quadratic equation in q2.
Thus, we may choose

q1 = −q3, q2 = −q4

so that the angle of reflection of qP (qSV ) waves is
equal to the angle of incidence of qP (qSV ) waves.
This is not true for a monoclinic material.

As observed earlier, for monoclinic media the
angle of reflection of qP (qSV ) waves is not equal
to the angle of incidence of qP (qSV ) waves. For
numerical computation of results, we have assumed
that

c22/c44 = 19.8/6.67, c33/c44 = 24.9/6.67,

c23/c44 = 7.8/6.67, c24/c44 = c34/c44 = C.

Figure 2 gives the angle of reflection of qP waves for
various values of the angle of incidence of qP waves
for three values of C. In figure 2, for C > 0, the
angle of reflection is greater than the angle of inci-
dence. In contrast, for C < 0, the angle of reflec-
tion is less than the angle of incidence. Figure 3

gives the angle of reflection of qSV waves for var-
ious values of the angle of incidence of qP waves.
Figures 4 and 5 are for incident qSV waves.

The variation of the reflection coefficient RPP

for incident qP -reflected qP waves as defined in
equation (44a) with the angle of incidence of qP
waves is shown in figure 6. The variation of the
reflection coefficients RPS, RSP and RSS is shown
in figures 7–9. From figures 6–9 we observe that the
anisotropy has a significant effect on the reflection
coefficients.
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