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The present paper is concerned with the problem of an orthotropic micropolar half-space subjected
to concentrated and distributed loads. The disturbance due to normal and tangential loads are
investigated by employing eigen-value approach. The integral transforms have been inverted by
using a numerical technique to obtain the normal displacement, normal force stress and tangential
couple stress in the physical domain. The results of these quantities are given and illustrated
graphically.

1. Introduction

In many engineering phenomena, including the
response of soils, geological materials and com-
posites, the assumptions of an isotropic behav-
iour may not capture some significant features of
the continuum response. The formulation and solu-
tion of anisotropic problems are far more difficult
and cumbersome than its isotropic counterpart.
In the last years the elastodynamic response of
anisotropic continuum has received the attention
of several reseachers. In particular, transversely
isotropic and orthotropic materials, which may not
be distinguished from each other in plane strain
and plane stress cases, have been more regularly
studied.

The theory of micropolar elasticity introduced
and developed by Eringen (1966) aroused much
interest because of its possible utility in investigat-
ing the deformation properties of solids for which
the classical theory is inadequate. The micropolar
theory is believed to be particularly useful in inves-
tigating materials consisting of bar-like molecules
which exhibit microrotation effects and which can
support body and surface couples. A review of lit-
erature on micropolar orthotropic continua shows
that Iesan (1973, 1974a, 1974b) analyzed the static
problems of plane micropolar strain of a homoge-
neous and orthotropic elastic solid, torsion prob-
lem of homogeneous and orthotropic cylinders in
the linear theory of micropolar elasticity and bend-

ing of orthotropic micropolar elastic beams by ter-
minals couples. Nakamura et al (1984) derived the
finite element method for orthotropic micropolar
elasticity.

Most of the problems studied so far, in micro-
polar elasticity, involve the use of potential func-
tions. However, the use of the eigen-value approach
has the advantage of finding the solutions of equa-
tions in the coupled form directly, in the matrix
notations, whereas the potential function approach
requires decoupling of equations. Yet, the eigen-
value approach has not been applied in micropo-
lar orthotropic medium. Mahalanabis and Manna
(1989, 1997) applied the eigen-value approach to
linear micropolar elasticity by arranging basic
equations of linear micropolar elasticity in the form
of matrix differential equations. Recently, Kumar
et al (2001) applied the eigen-value approach to
micropolar elastic medium due to impulsive force
at origin.

2. Problem formulation

We consider a homogeneous and orthotropic
micropolar half-space. The rectangular Cartesian
co-ordinate system (x, y, z) having origin on the
surface y = 0 with y axis vertical into the medium
is introduced. A normal or tangential source is
assumed to be acting at the origin of the rectangu-
lar cartesian co-ordinates.
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If we restrict our analysis parallel to xy-plane
with displacement vector ~u = (u1, u2, 0) and micro-

rotation vector ~φ = (0, 0, φ3), the basic equations
in the dynamic theory of the plane strain of homo-
geneous and orthotropic micropolar solids in the
absence of body forces and body couples, given by
Eringen (1968), can be recalled as:

tji,j = ρ
∂2ui

∂t2
, (1)

mi3,i + εij3tij = ρj
∂2φ3

∂t2
. (2)

The constitutive relations, given by Iesan (1973),
can be written as:

t11 = A11ε11 + A12ε22, t12 = A77ε12 + A78ε21,

t21 = A78ε12 + A88ε21, t22 = A12ε11 + A22ε22,

m13 = B66φ3,1, m23 = B44φ3,2, (3)

where

εij = uj,i + εji3φ3. (4)

In these relations, we have used the following
notations: tij – components of the force stress ten-
sor, mij – component of the couple stress tensor, εij

– component of micropolar strain tensor, ui – com-
ponents of displacement vector, φ3 – component of
microrotation vector, εijk – permutation symbol,
A11, A12, A22, A77, A78, A88, B44, B66 – characteris-
tic constants of the material, ρ – the density and
j – the microinertia.

Introducing the dimensionless quantities

x∗ =
ω

c1

x, y∗ =
ω

c1

y, u∗

i =
ω

c1

ui, φ∗

3 =
A11

K1

φ3,

t∗

ij =
tij

A11

, m∗

ij =
c1

B44ω
mij , t∗ = ωt, (5)

where, c2
1 = A11/ρ and ω2 = χ/ρj, in equa-

tions (1)–(4) (dropping the asterisks for conve-
nience) and applying Laplace transform w.r.t ’t’
defined by

{ui(x, y, p), φ3(x, y, p)}

=

∫

∞

0

{ui(x, y, t), φ3(x, y, t)}e−ptdt, i = 1, 2 (6)

and then Fourier transform w.r.t ‘x’ defined by

{ũi(ξ, y, p), φ̃3(ξ, y, p)}

=

∫

∞

−∞

{ui(x, y, p), φ3(x, y, p)}eιξxdx, i = 1, 2 (7)

on the resulting expressions, we obtain

ũ′′
1 = Q11ũ1 + Q15ũ′

2 + Q16φ̃′

3, (8)

ũ′′
2 = Q22ũ2 + Q23φ̃3 + Q24ũ′

1, (9)

φ̃′′

3 = Q32ũ2 + Q33φ̃3 + Q34ũ′
1, (10)

where, primes in equations (8)–(10) represent
the first and second order differentiation w.r.t y,
respectively and

Q11 =
A11(ξ

2 + p2)

A88

,

Q15 =
ιξ(A12 + A78)

A88

,

Q16 =
K2

1

A11A88

,

Q22 =
(ξ2A77 + p2A11)

A22

,

Q23 = −
ιξK1K2

A11A22

,

Q24 =
ιξ(A12 + A78)

A22

,

Q32 =
ιξK2A

2
11

ω2ρB44K1

,

Q33 =
(ξ2B66ω

2 + c2
1χ) + jp2ω2A11

B44

,

Q34 = −
A2

11

ρω2B44

,

K1 = A78 − A88, K2 = A77 − A78, χ = K2 − K1.

(11)

The system of equations (8)–(10) can be written
as

d

dy
W (ξ, y, p) = A(ξ, p)W (ξ, y, p), (12)
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where

W =

[

U
U ′

]

, A =

[

O I
A2 A1

]

, U =





ũ1

ũ2

φ̃3



 ,

O =

[

0 0 0
0 0 0
0 0 0

]

,

I =

[

1 0 0
0 1 0
0 0 1

]

, A1 =

[

0 Q15 Q16

Q24 0 0
Q34 0 0

]

,

A2 =

[

Q11 0 0
0 Q22 Q23

0 Q32 Q33

]

. (13)

To solve equation (12), we take

W (ξ, y, p) = X(ξ, p)eqy (14)

so that

A(ξ, p)W (ξ, y, p) = qW (ξ, y, p) (15)

which leads to the eigen-value problem. The char-
acteristic equation corresponding to the matrix A
is given by

det[A − qI] = 0, (16)

which on expansion provides us

q6 − λ1q
4 + λ2q

2 − λ3 = 0, (17)

where

λ1 = Q15Q24 + Q16Q34 + Q11 + Q22 + Q33,

λ2 = Q15(Q24Q33 − Q23Q34) + Q16(Q22Q34

− Q24Q32) + Q11Q22 + Q22Q33 + Q11Q33

− Q23Q32,

λ3 = Q11(Q22Q33 − Q23Q32). (18)

The roots of equation (17) are ±qi, i = 1, 2, 3.
The eigen values of the matrix A are the roots

of equation (17). We assume that real parts of qi

are positive. The vector X(ξ) corresponding to the
eigen values qi can be determined by solving the
homogeneous equation

[A − qI]X(ξ, p) = 0. (19)

The set of eigen vectors Xi(ξ, p), (i = 1, 2, 3, 4,
5, 6) may be obtained as

Xi(ξ, p) =

[

Xi1(ξ, p)
Xi2(ξ, p)

]

, (20)

where

Xi1(ξ, p) =

[

aiqi

bi

1

]

, Xi2(ξ, p) =

[

aiq
2
i

biqi

qi

]

,

q = qi; i = 1, 2, 3, (21)

Xj1(ξ, p) =

[

−aiqi

bi

1

]

, Xj2(ξ, p) =

[

aiq
2
i

−biqi

−qi

]

,

j = i + 3, q = −qi; i = 1, 2, 3, (22)

ai = (q2

i Q15 + Q16Q32 − Q15Q33)/∆i,

bi = [q4

i − q2

i (Q16Q34 + Q11 + Q33) + Q11Q33]/∆i,

∆i = q2

i (Q15Q34 + Q32) − Q32Q11, i = 1, 2, 3.
(23)

The solution of equation (12) is given by

W (ξ, y, p) =

3
∑

i=1

[BiXi(ξ, p) exp(qiy)

+ Bi+3Xi+3(ξ, p) exp(−qiy)], (24)

where, Bi(i = 1, 2, 3, 4, 5, 6) are arbitrary con-
stants.

The equation (24) represents the solution of the
general problem in the plane strain case of micro-
polar orthotropic elasticity by employing the eigen-
value approach and therefore can be applied to a
broad class of problems in the domains of Laplace
and Fourier transforms.

3. Application

In this section the general solutions presented for
displacement and stresses in equation (24) will
be particularized to yield the response of a half-
space subjected to a uniform traction distribu-
tion and to a point load. The constants Bi will
be determined by imposing the proper boundary
conditions. These constants when substituted in
equation (24) deliver the displacement and stress
solutions in the Fourier and Laplace transformed
(ξ, y, p) domain. The final solution in the original
domain (x, y, t) is obtained by a numerical inver-
sion of both transforms.
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Case I: Load in normal direction: On the half-
space the load F (x) is applied in normal direction
at the origin of the co-ordinate system. For this
loading case the boundary conditions are:

t22(x, 0, t) = −F (x)H(t), t21(x, 0, t) = 0,

m23(x, 0, t) = 0. (25)

where H( ) is the Heaviside Function.
Case II: Load in tangential direction: On the
half-space the load F (x) is applied in tangential
direction at the origin of the co-ordinate system.
For this loading case the boundary conditions are:

t22(x, 0, t) = 0, t21(x, 0, t) = −F (x)H(t),

m23(x, 0, t) = 0. (26)

It can be seen that six unknowns are to be
determined in equation (24) and only three bound-
ary conditions are in each case. For the half-
space the radiation conditions implies outgoing
waves with decreasing amplitudes in the positive y-
direction. Therefore the radiation condition impose
that B1 = B2 = B3 = 0.

3.1 Influence functions

The way to obtain the half-space influence func-
tion, i.e., the solutions due to distributed loads
applied at the half-space surface, is to set directly
the distributed loads F (x) in equations (25) and
(26). The Fourier transform w.r.t the pair (x, ξ) for
the case of uniform strip load of amplitude Fo and
width 2a applied at the origin of the co-ordinate
system is:

F̃ (ξ) = Fo

2 sin(ξa)

ξ
. (27)

Case I: Load in normal direction: The solu-
tions for this case due to the uniformly distributed
load are obtained as

ũ2(ξ, y, p) = b1B4e
−q1y + b2B5e

−q2y + b3B6e
−q3y,

(28)

m̃23(ξ, y, p) = −
K1

A11

[q1B4e
−q1y + q2B5e

−q2y

+ q3B6e
−q3y], (29)

t̃22(ξ, y, p) = −[N1B4e
−q1y + N2B5e

−q2y

+ N3B6e
−q3y], (30)

where

Bi = 2F0(Mjqk − Mkqj) sin(ξa)/ξp∆;

i = 4, j = 2, k = 3; i = 5, j = 3, k = 1;

i = 6, j = 1, k = 2. (31)

and

Mi = [(−ιξA78bi + A88aiq
2

i )A11

+ K1(A88 − A78)]/A
2

11,

Ni = (A22bi − ιξA12ai)qi/A11 ; i = 1, 2, 3, (32)

∆ = M1(q2N3 − q3N2) + M2(q3N1 − q1N3)

+ M3(q1N2 − q2N1). (33)

Case II: Load in tangential direction: The
solutions for this case are obtained as in equation
(28)–(30) by changing the values of constant with

Bi = 2F0(Njqk − Nkqj) sin(ξa)/ξp∆;

i = 4, j = 2, k = 3; i = 5, j = 3, k = 1;

i = 6, j = 1, k = 2. (34)

3.2 Green’s functions

To synthesize the Green functions, i.e., the dis-
placement and stress solutions due to a point load
described as a Dirac’s Delta F (x) = F0δ(x), its
Fourier transform with respect to the pair (x, ξ)

F̃ (ξ) = Fo (35)

must be used. The expressions for displacement
and stresses may be obtained as in equations (28)–
(30) by replacing constants for the corresponding
case.
Case I: Load in normal direction:

Bi = F0(Mjqk − Mkqj)/p∆;

i = 4, j = 2, k = 3; i = 5, j = 3, k = 1;

i = 6, j = 1, k = 2. (36)

Case II: Load in tangential direction:

Bi = F0(Njqk − Nkqj)/p∆;

i = 4, j = 2, k = 3; i = 5, j = 3, k = 1;

i = 6, j = 1, k = 2, (37)
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Particular cases: Taking

A11 = A22 = λ + 2µ + K, A77 = A88 = µ + K,

A12 = λ, A78 = µ, B44 = B66 = γ,

− K1 = K2 = χ/2 = K,

we obtain the corresponding expressions for the
micropolar isotropic elastic medium.

4. Inversion of transforms

The transformed displacements and stresses (28)–
(30) are functions of y, the parameters of Laplace
and Fourier transforms p and ξ respectively, and
hence are of the form f̃(ξ, y, p). To get the func-
tion f(x, y, t) in the physical domain, we invert the
Fourier and Laplace transforms by using the inver-
sion technique as used in Kumar and Choudhary
(2001).

5. Numerical results and discussion

For numerical computations, we take the follow-
ing values of relevent parameters for orthotropic
micropolar solid:

A11 = 13.97 × 1010dyne/cm
2
,

A22 = 13.75 × 1010dyne/cm
2
,

A77 = 3.0 × 1010dyne/cm
2
,

Figure 1. Variations of normal displacement U2(x, 1, t)(= u2/F0) due to normal USL with distance x.

A88 = 3.2 × 1010dyne/cm
2
,

A12 = 8.13 × 1010dyne/cm
2
,

A78 = 2.2 × 1010dyne/cm
2
,

B44 = 0.056 × 1010dyne,

B66 = 0.057 × 1010dyne.

For comparison with micropolar isotropic solid,
following Gauthier (1982), we take the following
values of relevent parameters for the case of alu-
minum epoxy composite as

ρ = 2.19gm/cm
3
,

λ = 7.59 × 1010dyne/cm
2
,

µ = 1.89 × 1010dyne/cm
2
,

K = 0.0149 × 1010dyne/cm
2
,

γ = 0.0268 × 1010dyne,

j = 0.00196cm2.

The comparison of dimensionless normal
displacement U2[= u2/Fo], normal force stress
T22[= t22/Fo] and couple stress M23[= m23/Fo], for
micropolar orthotropic solid (MOS) and micropo-
lar isotropic solid (MIS) due to normal and tan-
gential uniform strip load (USL) have been studied
and shown in figures 1 to 6. The computations
were carried out for three values of dimensionless
time t = 0.10, 0.20 and t = 0.50 at y = 1.0 in the
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Figure 2. Variations of normal force stress T22(x, 1, t)(= t22/F0) due to normal USL with distance x.

Figure 3. Variations of tangential couple stress M23(x, 1, t)(= m23/F0) due to normal USL with distance x.

range 0 ≤ x ≤ 10. The solid lines either without
center symbol or with center symbol represent the
variations for t = 0.1 whereas the small dashed
lines with or without center symbol represent the

variations for t = 0.2 and large dashed lines with
or without center symbol represent variations for
t = 0.5. The curves without center symbol cor-
respond to the case of MOS whereas those with
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Figure 4. Variations of normal displacement U2(x, 1, t)(= u2/F0) due to tangential USL with distance x.

Figure 5. Variations of normal force stress T22(x, 1, t)(= t22/F0) due to tangential USL with distance x.

center symbol correspond to the case of MIS. All
results are for one value of dimensionless width
ao = ωa/c1 = 1.
Case I: Normal source: The comparison of nor-
mal displacement U2[= u2/Fo], normal force stress

T22[= t22/Fo] and couple stress M23[= m23/Fo], for
micropolar orthotropic solid (MOS) and micropo-
lar isotopic solid (MIS) have been studied due to
a normal USL and have been shown in figures 1, 2
and 3.
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Figure 6. Variations of tangential couple stress M23(x, 1, t)(= m23/F0) due to tangential USL with distance x.

Figure 1 shows the variations of normal dis-
placement U2 with x due to normal USL. The
value of displacement U2 for MOS have been mag-
nified by multiplying with 10, for all three val-
ues of time. For the case of MIS as the time
t increases from 0.1 to 0.5, the values of U2

decrease at initial range of x whereas for the cases
MOS the response of displacement with respect
to time is reverse. At the point of application of
source the values for MOS are lesser than those
for MIS due to USL. The behaviour of varia-
tion is oscillatory in the whole range for both the
cases.

Figure 2 shows the variations of normal force
stress T22 with x due to normal USL. The values of
T22 for MOS have been multiplied by 10 for com-
parison for all three times. For all three times the
values of T22 for MIS are more than the correspond-
ing values for MOS at the point of application of
source. For MOS, initially, values of T22 start with
a small decrease and then oscillate in further range
whereas for MIS values of stress initially decrease
smoothly. For both MIS and MOS at the initial
stage for the maximum value of time value of stress
is maximum.

Figure 3 shows the variations of tangential cou-
ple stress M23 with x due to normal USL. For all
three times and for the case of MOS the value of
M23 starts with a sharp decrease and than start
oscillating in the range 3 ≤ x ≤ 10. Whereas for
the case of MIS the behaviour of variation of cou-

ple stress with reference to times is reverse to that
for MOS. As the range of x increases the values of
couple stress goes towards zero.
Case II: Tangential source: The compari-
son of normal displacement U2[= u2/Fo], nor-
mal force stress T22[= t22/Fo] and couple stress
M23[= m23/Fo], for micropolar orthotropic solid
(MOS) and micropolar isotopic solid (MIS) have
been studied due to a tangential uniform strip
load (USL) and have been shown in figures 4, 5
and 6. The values of U2 and T22 for MOS have
magnified by multiplying with 10 for all three
times.

Figure 4 shows the variations of normal displace-
ment U2 with x due to tangential USL. The behav-
iour of variation of displacement is similar to that
due to normal USL as in figure 1. However their
corresponding values are different.

Figure 5 shows the variations of normal force
stress T22 with x due to tangential USL. The behav-
iour of variation of stress for MOS is oscillating
with smooth change whereas behaviour of vari-
ation for MIS is oscillating with more changes.
As the value of x increases the value for both
the cases as well as for all three approaches
to zero.

Figure 6 shows the variations of tangential cou-
ple stress M23 The behaviour of variation of cou-
ple stress is similar to that due to normal USL as
in figure 3. However their corresponding values are
different.
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Conclusion

Significant anisotropy effect is obtained on normal
displacement, force stress and couple stress, for all
different times. Due to impulsive force the charac-
ter of solution is transient. It is also notable that
as x diverse from the point of application the com-
ponents of displacement and stresses approach to
zero.
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