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A plain strain problem of an isotropic elastic liquid-saturated porous medium in poroelasticity has been
studied. The eigenvalue approach using the Laplace and Fourier transforms has been employed and these
transforms have been inverted by using a numerical technique. An application of infinite space with
concentrated force at the origin has been presented to illustrate the utility of the approach. The
displacement and stress components in the physical domain are obtained numerically. The results are
shown graphically and can be used for a broad class of problems related to liquid-saturated porous media.

1. Introduction

Liquid-saturated porous solids are often present on
and below the surface of the Earth. Cramplin (1987)
has explained that the fluid in the pores plays an
important role in the occurrence of earthquakes. Due
to this, as well as the significance of liquid-saturated
porous media in many engineering problems, the
liquid-saturated porous media are of great concern
and have many applications in various fields such as
earthquake engineering, seismology, geomechanics
etc. Biot (1956a,b) developed the theory of wave
propagation in fluid-saturated porous materials.
Deresiewicz and Skalak (1963) derived the boundary
conditions appropriate for the continuity require-
ments at the interface of such materials. Most of the
poroelastic problems solved so far, involve the use of
potential functions. However, the use of the eigen-
value approach has the advantage of finding the
solutions of equations in the coupled form directly, in
the matrix notations, whereas the potential function
approach requires decoupling of equations. Yet, much
work has not been done in liquid-saturated porous
media using the eigenvalue approach.

In this paper, we apply the eigenvalue approach
following Laplace and Fourier transformations to the
general plain strain problem of a homogeneous, iso-

tropic, elastic liquid-saturated porous medium with
reference to the theory developed by Biot. The solu-
tions are obtained in the transformed domain and are
inverted by using a numerical technique.

2. Basic equations

The field equations for a homogeneous, isotropic,
elastic liquid-saturated porous medium are given by
Biot (1956a,b) as

Nr2~u� grad f�D�N�e�Q"g

� @2

@t2
f�11~u� �12

~Ug � b @
@t
�~uÿ ~U�; �1�

grad fQe�R"g � @2

@t2
f�12~u� �22

~Ug

ÿ b @
@t
�~uÿ ~U�; �2�

where ~u and ~U are the displacements in the solid
and liquid parts of the porous aggregate respectively;
e � div~u and " � div~U are the corresponding dilata-
tions; D, N , Q, and R are the elastic constants for the
solid-liquid aggregate, D and N correspond to the
Lame modulii of the material, Q is a measure of
coupling between the volume change of solid and
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liquid, and R is the pressure that must be exerted on
the liquid to force a given volume of it into the porous
aggregate while the total volume remains the same;
�11; �12 and �22 are the dynamical coefficients, where
�12 represents the mass coupling parameter between
the fluid and solid; b is the dissipation coefficient.

The stresses in the solid �ij�i; j � x; y; z� and liquid
� are given by

�ij � �De�Q"��ij � 2Neij; � � Qe�R"; �3�
where �ij is the Kronecker delta and

eij � 1

2

@ui
@xj
� @uj
@xi

� �
: �4�

3. Formulation and solution

We are considering a two-dimensional plain strain
problem with

~u � �u; 0; w�; ~U � �U; 0;W�;
therefore, the field equations (1) and (2) in the com-
ponents form reduce to

N
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�W ÿ b� _wÿ _W�; �5�
where the superposed dots represent time differentia-
tion.

We define the following non-dimensional quantities
as

x0 � !x
�2
; z0 � !z

�2
; t0 � !t;

u0 � �!�2u

H
; w0 � �!�2w

H
; U 0 � �!�2U

H
;

W 0 � �!�2W

H
;

�0zz �
�zz
P
; �0xz �

�xz
P
; �0 � �

P
; �6�

where

p�D�2N; ���11�2�12��22; H�P�2Q�R;

! is the angular frequency and �2, the velocity of slow
dilatational wave in the liquid-saturated porous
medium. Using these quantities (6) in equations (5)
and after suppressing the dashes, we obtain
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where

a2 � N

D� 2N
; b2 � Q

D� 2N
; c2 � �2
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Applying the Laplace transformation with respect to t

f�u�x; z; p�; �w�x; z; p�; �U�x; z; p�; �W�x; z; p�g
�
Z 1

0

fu�x; z; t�; w�x; z; t�; U�x; z; t�;
W�x; z; t�geÿptdt; �9�

and then the Fourier transformation with respect to x

fû�q; z; p�; ŵ�q; z; p�; Û�q; z; p�; Ŵ�q; z; p�g
� 1

2�

Z 1
ÿ1
f�u�x; z; p�; �w�x; z; p�; �U�x; z; p�;

�W�x; z; p�geiqxdx; �10�
on equations (7), we obtain a system of equations,
which can be written as

AV 00 � BV 0 � CV � 0; �11�
where dashes denote the differentiation with respect
to z, and

V � �û; ŵ; Û; Ŵ �T ; T stands for the tranpose;

A �
a2 0 0 0

0 1 0 b2

0 0 0 0

0 b2 0 d2

266664
377775;
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B � ÿ

0 iq�1ÿ a2� 0 iqb2

iq�1ÿ a2� 0 iqb2 0

0 iqb2 0 iqd2

iqb2 0 iqd2 0

26664
37775;

C �

ÿq2 ÿ c11 0 ÿb2q2 ÿ c12 0

0 ÿa2q2 ÿ c11 0 ÿc12

ÿb2q2 ÿ c12 0 ÿd2q2 ÿ c22 0

0 ÿc12 0 ÿc22

26664
37775;

�12�
where

c11 � c2�p2R11 � pf2�; c12 � c2�p2R12 ÿ pf2�;
c22 � c2�p2R22 � pf2�: �13�
To solve the system of equations (11), we assume

V �q; z; p� � X�q; p�ekz; �14�
and obtain the characteristic equation given by

det �k2A� kB� C� � 0; �15�

which on simplification gives

�k2a2c22ÿ q2a2c22 ÿ c11c22 � c2
12�f�d2 ÿ b4��q2 ÿ k2�2

� �c11d
2 � c22 ÿ 2b2c12��q2 ÿ k2�

� �c11c22 ÿ c2
12�g � 0: �16�

The solutions of equation (16) give the eigenvalues
as

k2
1 �

A0 �
��������������������
A2

0 ÿ 4B0

q
2

; k2
2 �

A0 ÿ
��������������������
A2

0 ÿ 4B0

q
2

;

k2
3 � q2 � c11c22 ÿ c2

12

a2c22
; �17�

where

A0 � 2q2 � c11d
2 � c22 ÿ 2b2c12

d2 ÿ b4
;

B0 � q4 � c11d
2�c22ÿ2b2c12

d2 ÿ b4
q2 � c11c22ÿc2

12

d2 ÿ b4
: �18�

Figure 1. Tangential displacement distribution in the solid part (u).
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The eigenvectors X�q; p� corresponding to different
eigenvalues are obtained as

XT
i � �ÿq; ki;ÿqmi; kimi� and

XT
i�3 � �ÿq;ÿki;ÿqmi;ÿkimi�; �i � 1; 2; 3�; �19�

where

mi � c11 ÿ �k2
i ÿ q2�

b2�k2
i ÿ q2� ÿ c12

� c12 ÿ b2�k2
i ÿ q2�

d2�k2
i ÿ q2� ÿ c22

;

�i � 1; 2; 3�: �20�
Thus, the solution of equation (11) is given by

V �q; z; p��
X3

i�1

fBiXi�q; p�ekiz�Bi�3Xi�3�q; p�eÿkizg;

�21�
where Bi�i � 1; 2; . . . ; 6� are arbitary constants. The
expression (21) represents the solution of the general
plain strain problem for liquid-saturated porous iso-

tropic elastic medium by applying the eigenvalue
approach.

3:1 Inversion of the transforms

The transformed displacements and stresses are func-
tions of depth z and the parameters of Laplace and
Fourier transforms p and q, respectively, and hence
are of the form f̂ �q; z; p�. To get the function f �x; z; t�
in the physical domain, first we invert the Fourier
transform by using

�f�x; z; p� �
Z 1
ÿ1

eÿiqxf̂�q; z; p�dq

� 2

Z 1
0

�cos�qx�fe ÿ isin�qx�f0�dq; �22�

where fe and f0 are even and odd parts of the function
f̂ �q; z; p�, respectively.Thus,expression(22)givesusthe
Laplace transform �f �x; z; p� of the function f �x; z; t�.

Now, the function f �x; z; p� in the expression (22)
can be considered as the Laplace transform �g�p� of

Figure 2. Normal displacement distribution in the solid part (w).
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some function g�t�. Following Honing and Hirdes
(1984), the Laplace transformed function �g�p� can be
inverted as given below.

The function g�t� can be obtained by using

g�t� � 1

2�i

Z C�i1

Cÿi1
ept�g�p�dp; �23�

where C is an arbitrary real number greater than all
the real parts of the singularities of �g�p�. Taking p �
C � iy, we get

g�t� � e
Ct

2�

Z 1
ÿ1

eity�g�C � iy�dy: �24�

Now, taking eÿCtg�t� as h�t� and expanding it in the
Fourier series form in [0,2L], we obtain the formula

g�t� � g1�t� � ED; �25�
where

g1�t� � C0

2
�
X1
k�1

Ck; 0 � t � 2L;

Ck � e
Ct

L
Re eik�t=L�g C � ik�

L

� �� �
; �26�

ED is the discretization error and can be made
arbitrarily small by choosing C large enough.

Since the infinite series in (26) can be summed up
only to a finite number of N terms, the approximate
value of g�t� becomes

gN�t� � C0

2
�
XN
k�1

Ck for 0 � t � 2L: �27�

Now, we introduce a truncation error ET that must
be added to the discretization error to produce the total
approximate error in evaluating g�t� using the above
formula. To accelerate the convergence, the discretiza-
tion error and then the truncation error is reduced by
using the `korrecktur method' and the `"-algorithm',
respectively, as given by Honig and Hirdes (1984).

The korrecktur method formula, to evaluate the
function g�t� is

g�t� � g1�t� ÿ eÿ2CLg1�2L� t� � E0D;

Figure 3. Tangential displacement distribution in the liquid part (U).
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where

jED 0 j � jEDj:
Thus, the approximate value of g�t� becomes

gNk
�t� � gN�t� ÿ eÿ2CLgN 0 �2L� t�; �28�

where N 0 is an integer such that N 0<N .
We shall now describe the �-algorithm which is used

to accelerate the convergence of the series in (27). Let
N be a natural number and sm �

Pm
k�1 Ck be the

sequence of partial sums of equation (27). We define
the �-sequence by

�0;m � 0; �1;m � sm;
�n�1;m � �nÿ1;m�1 � 1

�n;m�1 ÿ �n;m ; n;m � 1; 2; 3;

The sequence �1;1, �3;1; . . . ; �N ;1 converges to g�t��
ED ÿ C0=2 faster than the sequence of partial sums
Sm;m � 1; 2; 3; . . . : The actual procedure to invert the

Laplace transform consists of equation (28) together
with the �-algorithm. The values of C and L are chosen
according to the criteria outlined by Honig and Hirdes
(1984).

The last step is to calculate the integral in equation
(22). The method for evaluating this integral is
described by Press et al (1986), which involves the
use of Romberg's integration with adaptive step size.
This, also uses the results from successive refinements
of the extended trapezoidal rule followed by extra-
polation of the results to the limit when the step size
tends to zero.

3:2 Case: Concentrated point force

Let us consider a concentrated force of magnitude
F � ÿF0��x���t� acting at the origin of the cartesian
co-ordinate system in an infinite space, along the z-
axis. The problem is plain strain with respect to z-axis
and the boundary conditions on the plane z � 0 are

Figure 4. Normal displacement distribution in the liquid part (W).
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given as

u�x; 0�; t� ÿ u�x; 0ÿ; t� � 0;

w�x; 0�; t� ÿ w�x; 0ÿ; t� � 0;

W�x; 0�; t� ÿW�x; 0ÿ; t� � 0;

�zz�x; 0�; t� ÿ �zz�x; 0ÿ; t� � ÿF0��x���t�;
�xz�x; 0�; t� ÿ �xz�x; 0ÿ; t� � 0;

��x; 0�; t� ÿ ��x; 0ÿ; t� � F0��x���t�: �29�
After non-dimensionalizing equation (29) by using (6)
and F

0
0 � F0=P, and suppressing the dashes and

applying the Laplace and then the Fourier transfor-
mation as defined by (9) and (10), we obtain

û�q; 0�; p� ÿ û�q; 0ÿ; p� � 0;

ŵ�q; 0�; p� ÿ ŵ�q; 0ÿ; p� � 0;

Ŵ�q; 0�; p� ÿ Ŵ�q; 0ÿ; p� � 0;

�̂zz�q; 0�; p� ÿ �̂zz�q; 0ÿ; p� � ÿF0

2�
;

�̂xz�q; 0�; p� ÿ �̂xz�q; 0ÿ; p� � 0;

�̂�q; 0�; p� ÿ �̂�q; 0ÿ; p� � F0

2�
: �30�

Now, from (21) and (3), the transformed displace-
ments and stresses are given by

for z �0

û�q; z; p� � ÿq�B4e
ÿk1z �B5e

ÿk2z �B6e
ÿk3z�;

ŵ�q; z; p� � ÿ�k1B4e
ÿk1z � k2B5e

ÿk2z � k3B6e
ÿk3z�;

Û�q; z; p� � ÿq�m1B4e
ÿk1z �m2B5e

ÿk2z

�m3B6e
ÿk3z�;

Ŵ�q; z; p�� ÿ�k1m1B4e
ÿk1z � k2m2B5e

ÿk2z

� k3m3B6e
ÿk3z�;

�̂zz�q; z; p� � H

��2
2

�H1B4e
ÿk1z �H2B5e

ÿk2z

�H3B6e
ÿk3z�;

Figure 5. Normal stress distribution in the solid part ��zz�.
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�̂xz�q; z; p� � H

��2
2

a2q�1� i��k1B4e
ÿk1z � k2B5e

ÿk2z

� k3B6e
ÿk3z�;

�̂�q; z; p� � H

��2
2

�J1B4e
ÿk1z � J2B5e

ÿk2z

� J3B6e
ÿk3z�: �31�

for z �0

û�q; z; p� � ÿq�B1e
k1z �B2e

k2z �B3e
k3z�;

ŵ�q; z; p� � �k1B1e
k1z � k2B2e

k2z � k3B3e
k3z�;

Û�q; z; p� � ÿq�m1B1e
k1z �m2B2e

k2z �m3B3e
k3z�;

Ŵ�q; z; p� � �k1m1B1e
k1z � k2m2B2e

k2z

� k3m3B3e
k3z�;

�̂zz�q; z; p� � H

��2
2

�H1B1e
k1z �H2B2e

k2zH3B3e
k3z�;

�̂xz�q; z; p� � ÿ H

��2
2

a2q�1� i��k1B1e
k1z

� k2B2e
k2z � k3B3e

k3z�;

�̂�q; z; p� � H

��2
2

�J1B1e
k1z � J2B2e

k2z � J3B3e
k3z�;

�32�
where

Hj � iq2f�1ÿ 2a2� � b2mjg � �1� b2mj�k2
j ;

Jj � �b2 � d2m2
j��k2

j � iq2�; � j � 1; 2; 3�; �33�
and `i' stands for iota, i.e., imaginary.

Making use of (31) and (32) in the transformed
conditions (30), we obtain a system of six equations in
six unknowns B1;B2;B3;B4;B5;B6, which on solving
gives

B1 � ÿB4 � �H3 ÿH2���J3 ÿ J2�
4��

F0
��2

2

H

� �
;

B2 � ÿB5 � �H3 ÿH1���J3 ÿ J1�
4��

F0
��2

2

H

� �
;

B3 � ÿB6 � �H2 ÿH1���J2 ÿ J1�
4��

F0
��2

2

H

� �
; �34�

Figure 6. Tangential stress distribution in the solid part ��xz�.
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where

�� �J2ÿJ1��H3ÿH1�ÿ�H2ÿH1��J3ÿJ1�: �35�
Thus, the equations (31) and (32) give the displace-
ments and stresses in the transformed domain, which
on inversion, provide the displacements and stresses in
the physical domain.

4. Numerical results and discussion

The displacements and stresses in the solid and liquid
parts of the porous aggregate have been computed,
separately. For the purpose of numerical calculations,
the medium considered is of sandstone saturated with
kerosene. Following Yew and Jogi (1976), the nume-
rical values for various non-dimensional parameters
are taken as

a � 0:5267; b � 0:2731; c � 0:5029; d � 0:1809;

R11 � 0:90124; R12 � ÿ0:00099; R22 � 0:10076:

Also, we have taken

��2
2

H
� 0:21398;

b

�!
� 1:0; F 00 �

F0

p
� 1:0:

Using the numerical technique described above to
invert the transforms in equations (31) and (32), the
displacement and stress components are calculated
against the distance `x' for the following values of time
t � 0:001; 0:05; 0:25; 0:5 and 1.0 at the plane z � 1:0.
The results, thus obtained, are shown in figures 1--7.
The displacements and stresses for the value t � 0:001
are very large in comparison to the values at larger `t'.
Thus, to show the curves for all the values of `t' in the
same figure, for each case of displacement and stress
components, we plot the displacement curves and
stress curves corresponding to time t � 0:001, after
dividing the values by 10 and 100, respectively. The
curves corresponding to this value of t, i.e., t � 0:001
are shown by solid curves in the figures. It is observed
that the maximum (absolute) displacement and stress

Figure 7. Normal stress distribution in the liquid part ���.
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occur at the minimum time. i.e., t � 0:001, in response
to the impulsive force. Further, with the increase in
time, for a fixed position of `x', the displacements and
stresses follow oscillatory pattern with reference to
time, with maximum (absolute) displacement and
stress at the initial value, i.e., x � 0. Ultimately, they
die out with the further increase in time. Also, it is
observed that with the increase in the distance, i.e.,
value of `x', away from the source, they become zero in
all the cases. That means, we can say that all these
quantities are maximum (absolute) at minimum time,
i.e., t � 0:001 and distance, i.e., x � 0 and ultimately
become zero with the passage of time as well as with
the increase in distance from the source. The mag-
nitude of displacements and stresses are much higher
in the case of normal displacement and stress com-
ponents (w and �zz) in comparison with the tangential
displacement and stress components (u and �xz) in
the solid part of the medium. Also, in the liquid part,
the magnitude of normal displacement �W � are higher
in comparison with the tangential displacement �U�.
However, the displacement components in the liquid
constituents have higher magnitudes in comparison to
their respective solid constituents.

As the medium considered is liquid-saturated
porous, which is a two phase medium involving an
elastic solid matrix with pores saturated with fluid,
the displacement travelling through these different
constituents of the medium, suffers sudden changes,
resulting in inconsistent pattern. Otherwise, when it
passes through either solid or liquid, it shows a con-

sistent pattern. That's why the patterns are different
in different cases.

Assuming the earthquake preparation region as
liquid-saturated porous medium, displacements and
stresses due to an active source can be computed from
time to time by using this eigenvalue approach.
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