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Introduction, and statement of the problem

Two methods have been recently described to find the

maximum-likelihood estimates of two-locus recombination

fractions for the phase-unknown triple backcross with two

offspring in each family. We present here an approach which

seems much easier to implement than those two methods,

and (like those methods) respects the relevant constraints. It

requires fewer than 15 lines of R code.

Zhou et al. (2008, 2011) describe, and present two solu-

tions of, a statistical estimation problem arising in genet-

ics which can be summarized briefly as follows. Consider

three biallelic loci A, B and C, in that order. Let the two-

locus recombination fractions be denoted by θAB, θBC and

θAC, which must satisfy

θAB ≤ θAC, θBC ≤ θAC, θAC ≤ θAB + θBC, θAC ≤ 1/2.

(1)

Zhou et al. (2008, p. 3, col. 2) give the rationale of these

constraints, which they describe as ‘natural and necessary’.

The joint recombination fraction, denoted by gij, is the pro-

portion of recombination events that occurred between loci

A and B if i = 1, and between loci B and C if j = 1.

For instance, g10 represents the probability of recombination

between loci A and B, but not between loci B and C. The θ s

and the g s are related thus:

θAB = g11 + g10, θBC = g11 + g01, θAC = g10 + g01.

We seek to estimate the three probabilities g11, g10 and g01,

and hence θAB, θBC and θBC, subject to the four constraints

g11 ≤ g01, g11 ≤ g10, g11 ≥ 0, g01 + g10 ≤ 1/2. (2)

It can be shown, and indeed is stated by Zhou et al. (2008,

p. 4, col. 1) that the constraints (2) are equivalent to the con-

straints (1) on the marginal recombination fractions. With
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g00 = 1 − g01 − g10 − g11, which by the constraints (2) is

∈ [0, 1], we write g = (g11, g10, g01, g00).

Ott (1991) divides all possible two-offspring haplotype

pairs into four phenotype classes with probabilities pk (k =

1, 2, 3, 4) given as follows in terms of the joint recombina-

tion fractions g..; see Ott (1991, table 6.4, p. 119) or Zhou

et al. (2008, table 2).

p1(g) = g2
11 + g2

10 + g2
01 + g2

00;

p2(g) = 2(g11g10 + g01g00);

p3(g) = 2(g11g01 + g10g00);

p4(g) = 2(g11g00 + g10g01).

Given the number of observations nk in each phenotype

class (k = 1, 2, 3, 4), the relevant log-likelihood is l =∑4
k=1 nk log pk(g). The maximum-likelihood estimate of g is

obtained by maximizing l with respect to g11, g10 and g01,

subject to the constraints (2).

Two solutions and a simpler alternative

It is rightly pointed out by Zhou et al. (2008) that any ‘solu-

tion’ of an estimation problem that does not satisfy con-

straints on the parameters which are both natural and nec-

essary is not in fact a solution. Zhou et al. (2008) therefore

develop a ‘restricted EM algorithm’ that does respect the

constraints, describe several generalizations, carry out a sim-

ulation study of their proposed algorithm, and apply it to a

dataset given by Clemens et al. (2000).

Subsequently, Zhou et al. (2011) have described another

proposal, a restricted projection algorithm, which also solves

the problem subject to the constraints, and converges at

quadratic rate. Both methods appear to require for their appli-

cation considerable mathematical and coding effort; see, for

instance, the lengthy and detailed derivations of Zhou et al.

(2008, p. 4–5) and Zhou et al. (2011, p. 277).
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It is our purpose here to describe a simpler route to the

MLEs, an approach which we believe can easily be applied,

and if necessary modified, by those who lack expertise or

interest in the mathematics. We implement our proposal on

the same data as considered by Zhou et al. (2008, 2011),

and compare our parameter estimates and maximized log-

likelihood with their results.

Use of a general-purpose constrained optimizer

The problem as described above is the maximization of a

(nonlinear) function of three variables, subject to four linear

inequality constraints. Such a constrained optimization prob-

lem is well within the capabilities of freely available, easy-to-

use constrained optimizers, for instance the standard routine

constrOptim in R (R Core Team 2014). The method used

by constrOptim to impose the constraints is the addi-

tion of a logarithmic barrier to the objective, after which an

unconstrained optimizer is called.

With the starting values g11 = 0.1 and g10 = g01 = 0.2,

we used constrOptim to fit the model to the data on a

backcross of mice appearing in Clemens et al. (2000) and

analysed by Zhou et al. (2008, 2011); i.e., to the counts n =

(21, 17, 14, 15). (Note that constrOptim requires starting

values to lie in the interior of the feasible set.) No derivatives

were supplied to constrOptim, and default settings were

used. On a standard machine, the results were essentially

instantaneous. A range of starting values other than the above

were then also attempted, with convergence in all cases to

the same log-likelihood value to six significant figures, with

some minor variation in the parameter estimates. But this is

not surprising in view of the conclusion of Zhou et al. (2011,

p. 277, col. 2) that their restricted estimate is unique.

We provide in table 1 the resulting parameter estimates

and log-likelihood values, plus comparable results from the

two methods described by Zhou et al. (2008, 2011). What

is noticeable is that the log-likelihood values achieved by

those two methods appear to be very slightly inferior to that

found here by constrOptim, although it has to be pointed

out that those apparently inferior values were computed from

the estimates given to four significant figures by Zhou

et al. (2008, 2011); likelihood values are not given by Zhou

Table 1. Recombination fractions as estimated by the three meth-
ods, plus the unrestricted estimates. The bracketed figures in the
log-likelihood column do not appear in the references cited, but
were computed from the (presumably rounded) estimates appearing
there.

Source θ̂AB θ̂BC θ̂AC l

Unrestricted, 0.3167 0.3942 0.3634 (–92.04725)
Zhou et al. (2008, 2011)
Zhou et al. (2008) 0.3166 0.3738 0.3738 (–92.06545)
Zhou et al. (2011) 0.3162 0.3744 0.3744 (–92.06519)
This work 0.3168 0.3778 0.3778 –92.06450

et al. (2008, 2011). By tightening the convergence criterion

in all three cases, one could probably achieve closer agree-

ment. For comparison, we state the ‘unrestricted’ estimates

supplied by Zhou et al. (2008, 2011), along with the asso-

ciated log-likelihood. The unrestricted estimates violate the

constraint θBC ≤ θAC, and the resulting log-likelihood is the

largest of the four, as one might expect.

We give below the self-contained R code (fewer than 15

lines) that was used to find these estimates. No ‘packages’ are

needed, just the standard optimizer constrOptim. Perhaps

it is worth stressing that the underlying unconstrained opti-

mizer used here by constrOptim is the default, Nelder–

Mead simplex, which is relatively crude. Nevertheless, the

resulting performance was certainly not worse than that of

the published, more sophisticated, alternatives.

The R code used to find the MLEs

minusl = function(g123)
{g=c(g123,1-sum(g123))
p=c(sum(g^2), 2*(g[1]*g[2]+g[3]*

2*(g[1]*g[3]+g[2]*g[4]),
2*(g[1]*g[4]+g[2]*g[3]))

-sum(n*log(p))
}
g123totheta=function(g)

c(g[1]+g[2],g[1]+g[3],g[2]+g[3])
n=c(21,17,14,15)
st=c(0.1, 0.2, 0.2)
U=matrix(c(-1,1,0, -1,0,1, 1,0,0,

0,-1,-1),byr=T,nrow=4)
c=c(0,0,0,-0.5)
model=constrOptim(st,minusl,

grad=NULL,ui=U,ci=c)
model
g123totheta(model$par)

Conclusion

Much insight into the nature of the optimization problem is

to be found in Zhou et al. (2008, 2011), but the restricted

EM and restricted projection algorithms seem to us an unnec-

essarily long way round of solving the estimation prob-

lem in practice. We suggest that, if the aim is simply to

find the MLEs of the recombination fractions, the use of

a general-purpose linearly constrained optimizer such as

constrOptim is much the easier route. We invite readers

to run our code and decide for themselves whether our claim

is reasonable. More generally, we believe that unnecessarily

complicated routes to MLEs are sometimes used in genetic

applications when a simpler method, e.g. direct numerical

maximization of the likelihood, is entirely adequate; see the

examples in MacDonald (2014, Section 4).
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