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Introduction

In this report, we proposed a statistic with the principal com-

ponent analysis (PCA) to test association between multiple

markers and the disease-susceptibility gene in case–parents

data set. The proposed statistic is based on a difference vec-

tor calculated by comparing the genotypes of affected off-

spring with the hypothetical siblings who carry the parental

genotypes not present in the affected offspring. The statistic

here focuses on all the principal components and is asymp-

totically distributed as a χ2 distribution with one degree of

freedom. Simulation studies showed that, when the number

of markers is not very large, the proposed statistic has higher

power than the APRICOT test which is based on the same

method of the PCA.

The rapid advancement of genotyping technologies and

the availability of enormous quantities of genotype or haplo-

type data provide an unprecedented opportunity for identify-

ing genes underlying complex traits. When multiple markers

are available, haplotype-based methods and genotype-based

methods are commonly used for conducting association

between complex traits and a series of possibly linked mark-

ers. Owing to the information from individual markers as

well as the linkage disequilibrium (LD) structure between

the markers, the haplotype-based association study is con-

sidered to be a potentially superior strategy (Akey et al.

2001). However, haplotype-based methods are challenged by

a large number of distinct haplotypes, which results in a

large number of degrees of freedom, and some haplotype-

based methods need estimating haplotype phases only when

genotype data at multiple marker loci are collected. On

the other hand, genotype-based methods have the advantage

of not requiring phase information and in many situations

they have higher power than haplotype-based methods

(Chapman et al. 2003; Xu et al. 2006; Rakovski et al. 2007;

Yu and Wang 2011).
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Population-based case–control studies and family-based

studies are widely used for association analysis. In com-

parison to case–control studies, family-based studies are

more attractive for their robustness to population stratifica-

tion. Several genotype-based methods with the use of case–

parent data have been proposed for testing association.

McIntyre et al. (2000) proposed a maxTDT test, in which the

usual TDT statistic for each locus is calculated and the maxi-

mum is taken as the test statistic. Based on a difference vector

calculated by comparing the genotypes of affected offspring

with their corresponding ‘complements’, (i.e., the hypothet-

ical siblings who carry the parental genotypes not present in

the affected offspring), three statistics - a paired Hotelling’s

T 2 test, a max_Z2 test and the adaptive principal component

test (APRICOT) PCTL are proposed by Fan et al. (2005),

Shi et al. (2007) and Lee (2002), respectively. APRICOT

test is developed with the PCA by an adaptive procedure, in

which one calculates the principal components of variance–

covariance matrix of the difference vector and uses the first

few principal components with larger variances determined

by a threshold, c.

Here, we propose a new statistic, denoted as TPC, with the

PCA for testing association. The test statistic TPC, similar to

APRICOT test, is also based on the difference vector in case–

parents data set, but focuses on all the principal components

without examining the optimal choice of the threshold value.

Moreover, the statistic TPC, without reference to the number

of the markers, is asymptotically distributed as a χ2 distribu-

tion with one degree of freedom. We will assess and compare

the performance of the proposed test with the APRICOT test

by using simulation studies.

Methods

Consider p diallelic markers, each with alleles ‘A’ and ‘a’.

Assume that there are n case–parents trios with the geno-

types known for each member of the triads. Let Mi, Fi and Ci
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be the number of copies of allele ‘A’ carried by the mother,
father, and affected offspring, respectively, at marker locus i.
The number of copies of allele ‘A’ carried by the corre-
sponding ‘complement,’ the hypothetical sibling who carries
the parental genotypes not present in the affected offspring
is Mi + Fi − Ci. 2Ci − Fi − Mi is then the paired differ-
ence in genotypes between the affected offspring and the
complement. Let xi = 2Ci − Fi − Mi. The vector of dif-
ferences for p markers is then p-dimensional random vec-
tor, X = (x1, x2, · · · , xp)

T. Let � be the covariance matrix
of X. Denote the p eigenvalue–eigenvector pairs for � by
(λ1, e1), · · · , (λp, ep), where λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0. Then
the kth (k = 1, · · · , p) principal component is Yk = eT

k X
with variance of Var(Yk) = λk. Note that the p principal
components Y1, · · · , Yp are uncorrelated with each other, i.e.
Cov(Yk, Yl) = 0 (k, l = 1, · · · , p; k �= l). Let S be the
sample covariance matrix for the observed case–parent trios

data Xi = (xi1, xi2, · · · , xip)
T (i = 1, · · · , n). Assume that

the p sample eigenvalue–eigenvector pairs for S are (λ̂1, ê1),
· · · , (λ̂p, êp), where λ̂1 ≥ · · · ≥ λ̂p ≥ 0. Then the kth
(k = 1, · · · , p) sample principal component is yk = êT

k X, and
the kth sample principal component for the ith case–parent
triad is yik = êT

k Xi((i = 1, · · · , n)).
The APRICOT test (Lee 2002): the APRICOT test in Lee

(2002) is defined as PCTL = max
k≤L

Tk, which is based on the

first L components, where Tk =

(

n
∑

i=1

yik

)2

/(nλ̂k) is asymptot-

ically distributed as a χ2 distribution with one degree of free-
dom (df) and L = max{l : (λl − λl+1)/λl > c} is determined
by the predetermined threshold, c.

The statistic TPC: let ȳk = 1
n

n
∑

i=1

yik. It can be seen

that E(ȳk) = E(yk), Var(ȳk) = 1
n
λ̂k, and Cov(ȳk, ȳl) =

0 (k, l = 1, · · · , p; k �= l). Under the null hypothesis of

no association between the set of markers and the disease-

susceptibility gene, E(X) = 0, and then E(ȳk) = 0 for k =

1, · · · , p. Then, under the null hypothesis of no association,

the following statistic TPC is asymptotically a central χ2
(1)

distribution:

TPC =

(

p
∑

k=1

ȳk − E

(

p
∑

k=1

ȳk

))2 /

Var

(

p
∑

k=1

ȳk

)

,

=

(

p
∑

k=1

ȳk

)2 /

⎛

⎝

p
∑

k=1

Var(ȳk) +
∑

k�=l

Cov(ȳk, ȳl)

⎞

⎠,

= n

(

p
∑

k=1

ȳk

)2 /(

p
∑

k=1

λ̂k

)

.

Note that, when p = 1, TPC = PCTL. It can be seen that the

APRICOT test focuses only on the first few principal com-

ponents with larger variances, but the statistic TPC focuses on

all the principal components without examining the optimal

choice of the threshold value.

Results

In order to assess the performance of TPC in finite samples,

the simulation study is performed under a wide range of

parameter values. The simulations are implemented similar

to those described in Lee (2002). Consider a candidate region

of 100 kb where p dense marker loci locate according to a

uniform distribution. Here, p is chosen from 20 to 100 with

increments 20. The marker frequencies are uniformly gener-

ated between 0.1 and 0.9, and the Lewontin disequilibrium

coefficients between two adjacent markers were uniformly

generated between −0.9 and 0.9 (Lee 2002). Assume that a

biallelic disease-susceptibility gene with alleles D and d is

located within the candidate region according to a uniform

distribution. The frequency of disease allele D is set to be

0.05. Let R1 denote the relative risk with one copy of the

disease allele D, and R2 denote the relative risk with two

copies compared with zero copies. Consider one of three set-

tings of population history in Lee (2002): the allele D was

introduced into a homogeneous population 2000 generations

ago by a mutational process with the mutation occurring in

an individual with a specific haplotype—the ‘ancestral hap-

lotype’. The way of generating markers and haplotypes is

same as that described in Lee (2002). For the null hypoth-

esis of no association between the set of markers and the

disease-susceptibility gene, we let R1 = R2 = 1. For the

alternative hypothesis of association, we let R1 = R2 = 2,

R1 = 1, R2 = 2, and R1 = 2, R2 = 3, which corresponded to

a dominance model, a recessive model and an unrestricted

model, respectively. The sample size (the number of case–

parent triads) is taken as 200. We performed 10,000 simu-

lations and obtained 10,000 values for TPC and PCTL. For

the given significance level, α (0.05), the actual power/type I

error rate is then estimated as the proportion of rejecting the

null hypothesis, in 10,000 simulations performed when the

alternative/null hypothesis holds.

The results showed type I error rates consistent with the

nominal 0.05 level (results not shown). The estimated powers

for the statistics TPC and PCTL are presented in table 1. Here,

we let c = 20% for PCTL. For a comparison, we also con-

sider the power for p = 1. It is observed from the results that

the powers both for TPC and PCTL increase with the num-

ber of markers increasing under three genetic models. TPC

has higher power than PCTL when the number of markers

Table 1. The powers for the statistics TPC and PCTL.

R1 = R2 = 2 R1 = 1, R2 = 2 R1 = 2, R2 = 3

Marker TPC PCTL TPC PCTL TPC PCTL

1 0.143 0.141 0.131 0.130 0.137 0.136
20 0.683 0.625 0.651 0.577 0.668 0.582
40 0.749 0.710 0.711 0.676 0.733 0.694
60 0.783 0.788 0.720 0.719 0.775 0.776
80 0.810 0.899 0.782 0.863 0.807 0.880
100 0.845 0.937 0.813 0.905 0.839 0.921

c = 20% for PCTL.
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sample size is smaller than 60, but PCTL has higher power

than TPC when the number of markers sample size is

larger than 60. We also investigated the performance of TPC

when there exists population admixture. The results are sim-

ilar to those under the homogeneous population (data not

shown).

Discussion

In this report, we proposed a statistic with the PCA to

test association between multiple markers and the disease-

susceptibility gene. The proposed statistic is based on a dif-

ference vector calculated by comparing the genotypes of

affected offspring with the hypothetical siblings who carry

the parental genotypes not present in the affected offspring

in case–parents data set. Lee (2002) has ever presented the

APRICOT test with the PCA. Our method is different from

the APRICOT test. The APRICOT test uses the first few prin-

cipal components with larger variances, whereas our method

focuses on all the principal components. Simulation studies

showed that the proposed statistic here has higher power than

the APRICOT test when the number of markers is not very

large. Given that the usual genomewide association (GWA)

study data would involve millions of markers, our method

may be useful for testing associations between genetic vari-

ations within a candidate gene/region. However, it can also

be used in a GWA study. In fact, we can adopt the strat-

egy with a gene-centric GWA approach using our proposed

statistic by focusing only on those markers located within a

gene, i.e., we can deal first with the multiple variants within a

gene and then with the multiple genes in the genome (Neale

and Sham 2004). Further studies should examine the statisti-

cal properties of this approach. Note that our method is not

valid when there are missing individual marker genotypes.

In a future study, we will focus on the improvement of the

principal-component-based method when SNP data are

incomplete across loci.
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