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Abstract

Accurate genetic data are important prerequisite of performing genetic linkage test or association test. Currently, most ana-

lytical methods assume that the observed genotypes are correct. However, due to the constraint at the technical level, most

of the genetic data that people used so far contain errors. In this paper, we considered the problem of QTL mapping based

on biological data with genotyping errors. By analysing all possible genotypes of each individual in framework of multiple-

interval mapping, we proposed an algorithm of inferring all model parameters through the expectation-maximization (EM)

algorithm and discussed the hypothesis testing of the existence of QTL. We carried out extensive simulation studies to assess

the proposed method. Simulation results showed that the new method outperforms the method that does not take the genotyp-

ing errors into account, and therefore it can decrease the impact of genotyping errors on QTL mapping. The proposed method

was also applied to analyse a real barley dataset.

[Tong L., Ma W., Liu H., Yuan C. and Zhou Y. 2015 Simultaneous estimation of QTL effects and positions when using genotype data with
errors. J. Genet. 94, 27–34]

Introduction

Gene mapping is very important for genetic studies that

can map genes of disease to some position of the chromo-

some, provide necessary genetic information that can make

some genetic diseases diagnosed, and help to clone the

pathogenesis of these diseases, and so on.

With the rapid development of molecular marker tech-

nique, it has been widely used in the gene mapping of animal

and plant populations. Lander and Botstein (1989) proposed

interval mapping based on the concept of molecular marker

technique, which can be used to provide a good estima-

tion of additive or dominant effect. By combining multiple

regression with interval mapping, Zeng (1994) proposed a

composite interval mapping method, which can be used to

control the background effects by fitting QTL located out-

side a tested interval in the statistical model. Wang et al.

(1999) established a mixed linear model based on compo-

site interval mapping method (MCIM) to analyse both epis-

tasis and QTL–environment (Q×E) interaction in a double

haploid population. The MCIM method provide unbiased

estimation for both position and effect of QTL, as well
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as unbiased predicted values for Q×E interactions, which

makes it a good prospect for application. Kao et al. (1999)

proposed multiple interval mapping (MIM) method for map-

ping QTL which uses multiple marker intervals simultane-

ously to fit multiple QTL directly in the model. With the

MIM method, not only the precision and power for mapping

QTL could be improved, but also the epistasis among QTL

and the heritability of quantitative traits can also be estimated

and analysed.

All the above methods depend on certain genotyping tech-

nologies. The genotyping technologies, TaqMan and OLA,

are based on the fluorescence intensity value, and MassAR-

RAY depends on other signal intensity value. By using geno-

tying scoring softwares to cluster the signal intensity, one can

get the genotypes of SNPs. Currently, the next-generation

sequencing technology allows to obtain tens of thousands of

SNPs across the genome in a fast and cost-effective way.

However, due to the constraints in genotyping scoring soft-

wares and biochemical anomalies, most of the data that peo-

ple have used contain certain errors, where the errors refer to

the random genotyping errors or the wrong codes for mark-

ers that an experimenter made. Unfortunately, even a small

number of genotyping errors can have significant impact

on the study of genetic analysis, such as linkage studies
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(Buetow 1991; Douglas et al. 2000; Sobel et al. 2002),

genetic distance estimation (Goldstein et al. 1997) and link-

age disequilibrium (LD) estimation (Akey et al. 2001).

Abecasis et al. (2001) showed that the impact of genotyping

errors on family-based analysis of quantitative traits. That is

to say that the errors of genetic data can distort gene map-

ping. Sobel et al. (2002) proposed that such errors in statis-

tical analysis cannot be neglected, given their importance in

gene mapping. Thus the identification of genotyping errors

is important for gene mapping, and how to map genes using

genetic data with genotyping errors is an issue of concern to

researchers. Cartwright et al. (2007) extended the traditional

likelihood model used for genetic mapping to include the

possibility of genotyping errors, and their aim was to recon-

struct the order of the markers on the chromosomes and esti-

mate the genetic distances between them. Lebrec et al. (2008)

studied the impact of genotyping errors on linkage mapping

of complex traits. Hou (2011) analysed a special case that

QTL are located at the markers probably with genotyping

errors, but he did not do further research on the case that QTL

belong to marker intervals.

By considering all possible genotypes of each individual

based on the data with genotyping errors, in this paper we

developed an effective method for mapping QTL by means

of the classical EM algorithm (Dempster et al. 1977) to

simultaneously estimate all genetic parameters in the frame-

work of multiple-interval mapping. Simulation studies show

that the new method has advantage over the method which

does not take the genotyping errors into account, and that it

can infer the impact induced by genotyping errors. We also

analysed a real dataset to demonstrate its practicality.

Background and statistical model

Consider N backcross individuals, and M marker intervals

divided by M+1 genetic marker loci. Mj and mj, respectively

denote the two alleles of the jth locus. Let

Y = (Y1, · · · , YN)T, Xi = (Xi1, · · · , Xi(M+1))
T,

X̃i = (X̃i1, · · · , X̃i(M+1))
T, X∗

i = (X∗
i1, · · · , X∗

i(M))
T,

where Yi (i = 1, · · · , N) denotes the phenotype value of the

ith individual, Xij (i = 1, · · · , N, j = 1, · · · , M + 1) and

X̃ij (i = 1, · · · , N, j = 1, · · · , M + 1), respectively denote

the true genotype and genotype probably with error of the

jth marker of the ith individual, and X∗
ij (i = 1, · · · , N, j =

1, · · · , M) denotes the genotype of the latent QTL in the jth

marker interval of the ith individual. We define the following

genotype values:

Xij =
{

1, if marker genotype is MjMj,

0, otherwise,

X∗
ij =

{

1, if QTL genotype is QjQj,

0, otherwise.

Let γj and γj1, respectively denote recombination rate of

the jth marker interval which is known and the recombina-

tion rate between the jth marker and the latent QTL in the

Table 1. The conditional probabilities of QTL genotypes given the
flanking marker genotypes.

Genotype of Genotype of QTL

Code marker QQ Qq

1 MjMj+1/MjMj+1 1 0

2 MjMj+1/Mjmj+1
γj−γj1

γj

γj1

γj

3 MjMj+1/mjMj+1
γj1

γj

γj−γj1

γj

4 MjMj+1/mjmj+1 0 1

interval. At the most one QTL in a marker interval is assu-

med. Let p(X∗
ij|XM

ij ) denote the conditional probability of

the QTL genotype X∗
ij given the genotype combination

XM
ij of the jth marker interval of the ith individual. For back-

cross families, XM
ij has four possible values (MjMj+1/MjMj+1,

MjMj+1/Mjmj+1, MjMj+1/mjMj+1, and MjMj+1/mjmj+1,

which are coded as 1, 2, 3 and 4, respectively). The

conditional probabilities p(X∗
ij|XM

ij ) are presented in table 1.

Without loss of generality, we assume that the error rate

of each marker is equal (we will discuss the case of unequal

error rates later). Here we let θ = P(X̃ij = k|Xij = 1 − k)

denote the genotyping error rate (k = 0, 1), and further let ϕi

denote the joint error rate of the ith individual. When the true

genotype Xi is assigned a detailed value in each step of our

iterative algorithm and compared with genotype X̃i, the number

ki of the incorrect genotype codes of the M + 1 marker loci

can be calculated. Assume whether one marker genotype has

genotyping error is independent of the others, thus we obtain

that:

ϕi = P(X̃i|Xi) =
M+1
∏

j=1

P(X̃ij|Xij) = θ ki(1 − θ)(M+1)−ki .

In this study, we consider the follow additive statistical

model:

Yi = α +
M

∑

j=1

X∗
ijβj + ǫi, i = 1, · · · , N,

where α is the total mean, βj is the genotype effect of latent

QTL in the jth marker interval, ǫi ∼ N(0, σ 2), X∗
ij and ǫi are

mutually independent.

Method

Here, we present a simultaneous multiple-interval mapping

method for QTL while using data with genotying errors. Let

parameter vector 	 = (α, β1, . . . , βM, γ , θ , σ 2), where γ =
(γ11, . . . , γM1). When the observed data are obtained, we uti-

lize the method of weights to estimate the parameter vector 	

by considering the unobserved true genotypes as the missing

data, and the EM algorithm is implemented to numerically

compute these estimates. First, we augment the observed data

{(X̃i, Yi), i = 1 . . . N} by the unobserved QTL genotype and

the true marker genotypes. Then {(X̃i, Yi, Xi, X∗
i ), i = 1 . . . N}

are obtained as the complete data. Since the distribution of
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Xi has no relationship with 	, based on the conditional inde-

pendence properties among variables X̃i, Yi, Xi and X∗
i , the

complete likelihood function for the ith individual is given by:

Li
c(	) = P(X̃i, Yi, Xi, X∗

i |	)

∝ P(Yi|X∗
i , 	) · P(X∗

i |Xi, 	) · P(X̃i|Xi, 	),

thus the complete log-likelihood function is:

lc(	) = ln

N
∏

i=1

P(Yi|X∗
i , 	) · P(X∗

i |Xi, 	) · P(X̃i|Xi, 	)

=
N

∑

i=1

[ln P(Yi|X∗
i , 	)+ln P(X∗

i |Xi, 	)+ln P(X̃i|Xi, 	)].

The detail of the method for inferring the parameter vec-

tor 	 in the simultaneous multiple-interval mapping can be

described as follows:

E-step: given X̃, Y, 	(k), compute the conditional expectation

of lc(	).

Q(	|X̃, Y, 	(k)) =
N

∑

i=1

E
[

ln P(Yi|X∗
i , 	) + ln P(X∗

i |Xi, 	)

+ ln P(X̃i|Xi, 	)|X̃, Y, 	(k)
]

=
N

∑

i=1

EX∗
i
[ln P(Yi|X∗

i , 	)|X̃, Y, 	(k)]

+
N

∑

i=1

EX∗
i ,Xi

[ln P(X∗
i |Xi, 	)|X̃, Y, 	(k)]

+
N

∑

i=1

EXi
[ln P(X̃i|Xi, 	)|X̃, Y, 	(k)],

where 	(k) represents the current estimate of 	 and X̃ =
(X̃1 . . . X̃N) denotes the marker genotypes probably with

errors of N individuals. Let P(Xi = xi, X∗
i = x∗

i |X̃i, Yi, 	
(k)) =

ω
(k)

xix
∗
i
, then the marginal probabilities are:

P
(

X∗
i = x∗

i |X̃i, Yi, 	
(k)

)

=
∑

xi

ω
(k)

xix
∗
i
= ω

(k)

x∗
i

,

P
(

Xi = xi|X̃i, Yi, 	
(k)

)

=
∑

x∗
i

ω
(k)

xix
∗
i
= ω(k)

xi
.

Here ω
(k)

xix
∗
i
, ω

(k)

x∗
i

, ω(k)
xi

are weights, in detail,

ω
(k)

xix
∗
i

= P
(

Xi = xi, X∗
i = x∗

i |X̃i, Yi, 	
(k)

)

=
P

(

x∗
i , xi, Yi, X̃i|	(k)

)

P(Yi, X̃i|	(k))

=
P

(

Yi|x∗
i , 	(k)

)

P
(

x∗
i |xi, 	

(k)
)

P
(

X̃i|xi, 	
(k)

)

∑

xi

∑

x∗
i

P(Yi|x∗
i , 	(k))P(x∗

i |xi, 	(k))P(X̃i|xi, 	(k))

=
ϕ

(

Yi, α
(k), β(k), (σ 2)

(k)
)

· P(x∗
i |xi, 	

(k)) · (θ (k))
k(xi) · (1 − θ (k))(M+1)−k(xi)

∑

xi

∑

x∗
i

ϕ

(

Yi, α(k), β(k), (σ 2)
(k)

)

· P(x∗
i |xi, 	(k)) · (θ (k))

k(xi) · (1 − θ (k))(M+1)−k(xi)
,

where ϕ(Yi, α
(k), β(k), (σ 2)

(k)
)= 1√

2πσ (k)
exp{−

(Yi−α(k)−
M
∑

j=1

β
(k)
j x∗

ij)
2

2(σ 2)
(k) };

∑

xi

=
1

∑

xi1=0

. . .
1

∑

xi(M+1)=0

;
∑

x∗
i

=
1

∑

x∗
i1=0

. . .
1

∑

x∗
i(M)=0

; k(xi) represents

the number of incorrect codes when the true genotype of ith

individual is xi. Therefore the Q-function

Q(	|X̃, Y, 	(k)) =
N

∑

i=1

∑

x∗
i

ω
(k)

x∗
i

ln P(Yi|x∗
i , 	)

+
N

∑

i=1

∑

xi

∑

x∗
i

ω
(k)

xix
∗
i

ln P(x∗
i |xi, 	)

+
N

∑

i=1

∑

xi

ω(k)
xi

ln P(x̃i|xi, 	). (1)

Note that the first term of eq. (1) depends on parameters

α, β1, . . . , βM, σ 2, the second term depends only on γ and the

last term depends only on θ .

M-step: maximize the conditional expected log likelihood

Q(	|X̃, Y, 	(k)) to obtain 	(k+1).

Iterative formulae of α, β1, . . . , βM, and σ 2

Parameters α, β1, . . . , βM, and σ 2 are contained in the first

term of eq. (1). For simplicity, we consider the forms of vec-

tor and matrix for all the variables and parameters (Chen

2005). Let

X∗ = (X∗
1, · · · , X∗

N)T, β = (β1, . . . , βM)T, ǫ = (ǫ1, · · · , ǫN)T,

then the previous statistical model can be written as Y =
α1 + X∗β + ǫ, where 1 = (1, 1, . . . , 1)T. Therefore Y|X∗ ∼

N(α1 + X∗β, σ 2I), and

ln P(Y|X∗) = −
(

N

2

)

ln(2π)σ 2 − 1

2σ 2
[(Y − α1)T(Y − α1)

−2(Y − α1)TX∗β + βTX∗T
X∗β].
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Let E1 = EX∗(X∗|X̃, Y, 	(k)), E2 = EX∗(X∗T
X∗|X̃,

Y, 	(k)). Maximize EX∗ [ln P(Y|X∗)|X̃, Y, 	(k))], we can

get

α(k+1) = Ȳ − 1

N
1TE1β

(k+1)

β(k+1) =
(

E2 − 1

N
E1

T11TE1

)−1

E1
T
(

I − 1

N
11T

)

Y

(σ 2)(k+1) = 1

N
[(Y−1α(k+1))T(Y−1α(k+1))−βT(k+1)E2β

(k+1)].

where the elements of E1 can be obtained as follows:

E(X∗
ij|X̃i, Yi, 	

(k)) = P(X∗
ij = 1|Yi, X̃i, 	

(k))

=

∑

Xi

∑

X∗
ik,k�=j

P(X∗
ij = 1, X∗

i1 . . . X∗
ij−1, X∗

ij+1 . . . X∗
iM, Yi, Xi, X̃i|	(k))

∑

Xi

∑

X∗
i

P(X∗
i , Xi, Yi, X̃i|	(k))

=

∑

Xi

∑

X∗
ik,k�=j

P(Yi|X∗
ij = 1, J∗, 	(k))P(X∗

ij = 1, J∗|Xi, 	
(k))P(X̃i|Xi, 	

(k))

∑

Xi

∑

X∗
i

P(Yi|X∗
i , 	(k))P(X∗

i |Xi, 	(k))P(X̃i|Xi, 	(k))
,

where J∗ denotes genotype X∗
i1, . . . , X∗

ij−1, X∗
ij+1, . . . , X∗

iM.

Similarly, the elements of E2 can be obtained as follows:

E
[

N
∑

c=1

X∗
csX

∗
ct|X̃, Y, 	(k)

]

=
N

∑

c=1

P(X∗
cs = 1, X∗

ct = 1, Yc, X̃c|	(k))

P(Yc, X̃c|	(k))

=
N

∑

c=1

∑

Xc

∑

X∗
ck,k�=s,t

P(Yc|X∗
cs = 1, X∗

ct = 1, T∗, 	(k))P(X∗
cs = 1, X∗

ct = 1, T∗|Xc, 	(k))P̃

∑

Xc

∑

X∗
c

P(Yc|X∗
c , 	(k))P(X∗

c |Xc, 	(k))P̃
,

where P̃ = P(X̃c|Xc, 	(k)), and T∗ denotes

X∗
i1, . . . , X∗

is−1, X∗
is+1, . . . , X∗

it−1, X∗
it+1, . . . , X∗

iM, s, t=1, . . . , M.

Iterative formula of γ

Let

I
ij

(st) =
{

1, X∗
ij = s, XM

ij = t ; s = 0, 1 ; t = 1, . . . , 4,

0, else,

where i = 1, . . . , N; j = 1, . . . , M. Thus we obtain that the

second term of eq. (1)

N
∑

i=1

∑

xi

∑

x∗
i

ω
(k)

xix
∗
i

ln P(x∗
i |xi, 	) =

N
∑

i=1

∑

xi

∑

x∗
i

ω
(k)

xix
∗
i

M
∑

j=1

ln P(x∗
ij|xM

ij , 	)

=
N

∑

i=1

∑

xi

∑

x∗
i

ω
(k)

xix
∗
i

M
∑

j=1

[

ln
γj − γj1

γj

· I
ij

(12) + ln
γj1

γj

· I
ij

(02) + ln
γj1

γj

· I
ij

(13) + ln
γj − γj1

γj

· I
ij

(03)

]

. (2)

Through maximizing eq. (2) we obtain:

γ
(k+1)
j1 =

γj ·
N
∑

i=1

∑

xi

∑

x∗
i

ω
(k)

xix
∗
i
(I

ij

(02) + I
ij

(13))

N
∑

i=1

∑

xi

∑

x∗
i

ω
(k)

xix
∗
i
(I

ij

(12)+I
ij

(02)+I
ij

(13)+I
ij

(03))

, j=1,· · ·, M.

Iterative formula of θ

To find θ (k+1), we maximize the above Q-function

eq. (1) and obtain that

θ (k+1) =

N
∑

i=1

∑

xi

k(xi)P(Xi = xi|X̃i, Yi, θ
(k))

N(M + 1)
.
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In each step of our iterative algorithm, all parameters in

	 have closed-form solutions. Given the initial value 	(0)

of 	, we can get the MLE of parameter vector 	 when the

above procedure is iteratively carried out until convergence.

Besides estimating the effects and positions of QTL, the esti-

mate of the error rate θ can also be obtained by the method

at the same time.

Simulation study

Simulation design

We conduct simulation studies to evaluate the proposed

method (PM) of simultaneous multiple-interval mapping in

the presence of genotyping errors and compared our method

with the ordinary method (OM) in which genotype errors are

not considered.

For the sake of simplicity, we considered the situation that

a biological trait is contributed by two QTL located within

two marker intervals of equal length on a chromosome. The

length of marker interval is 10 cM, which can be converted to

the recombination rate 0.0906 (Zhou 2010). Two settings of

sample size are designed in the simulation, with N = 500 and

N = 1000, separately. To evaluate the influences of different

factors for QTL mapping (e.g., genotyping errors, heritabil-

ity and signs of β1 and β2) we, respectively simulate marker

genotypes with error rates of 0, 0.01, 0.05 and 0.1, consid-

ering three scenarios of heritability (h2 =0.05, 0.1, 0.2) by

choosing different true values of parameters and design dif-

ferent sign combinations of β1 and β2. Besides, we also con-

sidered three cases of recombination rates γ11 = 0.02, γ21 =
0.03; γ11 = 0.02, γ21 = 0.05; γ11 = 0.05, γ21 = 0.06.

For demonstration purpose, we provide the generating pro-

cess of simulation data for each set of parameters in detail:

(i) according to the true values of recombination rates of two

marker intervals, we randomly generated genotype vector Xi

of markers for the two maker intervals. (ii) Based on geno-

type vector Xi, we generated genotypes X∗
i1 and X∗

i2 of two

latent QTL according to the conditional probabilities given

in table 1. (iii) Generate phenotype value of individual i from

the model: Yi = α +X∗
i1β1 +X∗

i2β2 + ǫi, where ǫi ∼ N(0, σ 2),

X∗
ij = 1 if the genotype is homozygous, and 0 otherwise. X∗

ij

and ǫi are independent. (iv) According to the true value of

error rate θ , we randomly assign whether the genotype of a

marker has error to obtain X̃i. (v) Repeat steps (i) to (iv) for

N times, then the observed data {(X̃i, yi), i = 1, · · · , N} can

be obtained.

For each set of parameters, we compute the estimates by

PM and OM in which genotype errors are not considered,

and the whole processes was repeated 500 times. To evaluate

the accuracy of estimates, the mean square errors (MSE) for

each parameter was also calculated.

Simulation results

The estimates of parameter and MSE when N = 500, h2 =
0.2, γ11 = 0.02, γ21 = 0.03 with different error rates θ are

listed in table 2. When θ = 0, we get the same results with

the two methods, which is intuitive. This also shows that the

OM can be seen as a special case of the new method. With

the increase of θ , the deviation of each estimate from its true

value becomes higher and higher for both methods, as well

as the corresponding MSE. But the accuracy of the proposed

method is higher than that of the OM all along except for α.

Further, we consider the total MSE of all parameters (TM),

which is the mean of MSEs of all parameters except θ . It can

be seen from table 2 that each value of the TM of the pro-

posed method (PM) is uniformly lower than the correspon-

ding one of the OM. Thus the new method can reduce the

influence of genotyping errors on QTL mapping. The same

conclusion can be made for other cases when h2 = 0.05, 0.1,

and γ11 = 0.02, γ21 = 0.05 and γ11 = 0.05, γ21 = 0.06.

Table 2. Simulation results with different error rates when N=500, h2 = 0.2.

θ=0 θ=0.01 θ=0.05 θ=0.1

Parameter True value PMa OMb PM OM PM OM PM OM

α 1.0003 1.0055 1.0055 0.9963 1.0041 0.9949 0.9990 0.9085 0.9812
— (0.0377)c (0.0377) (0.0396) (0.0391) (0.0407) (0.0390) (0.0494) (0.0458)

β1 −0.7314 −0.7381 −0.7381 −0.7133 −0.6860 −0.5582 −0.5280 −0.4819 −0.4141
— (0.1914) (0.1914) (0.2323) (0.2337) (0.2552) (0.2952) (0.2950) (0.3715)

β2 1.5866 1.5857 1.5857 1.5675 1.5531 1.4683 1.4192 1.4418 1.3345
— (0.1801) (0.1801) (0.2128) (0.2193) (0.2458) (0.2594) (0.3189) (0.3275)

σ 2 1 1.0024 1.0024 0.9893 1.0052 0.9820 1.0356 0.9681 1.0385
— (0.0477) (0.0477) (0.0483) (0.0489) (0.0493) (0.0584) (0.0564) (0.0589)

γ11 0.02 0.0207 0.0207 0.0259 0.0271 0.0270 0.0275 0.0278 0.0287
— (0.0142) (0.0142) (0.0160) (0.0176) (0.0165) (0.0174) (0.0168) (0.0180)

γ21 0.03 0.0289 0.0289 0.0320 0.0321 0.0332 0.0337 0.0333 0.0400
— (0.0084) (0.0084) (0.0087) (0.0088) (0.0121) (0.0131) (0.0133) (0.0143)

TMd — 0.0798 0.0798 0.0927 0.0946 0.1032 0.1138 0.1249 0.1394

PMa, the proposed method; OMb, the ordinary method; (·)c, MSE of estimate for each parameter; TMd, the mean of MSEs of all parameters
except θ .
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Table 3. The simulation results with different heritabilities when N=500, θ = 0.01, γ11 = 0.02, γ21 = 0.03.

α̂ β̂1 β̂2 σ̂ 2 ˆγ11 ˆγ21

h2 β1 β2 PMa OMb PM OM PM OM PM OM PM OM PM OM

0.05 −0.7314 0.3282 1.0088 0.9996 −0.7033 −0.6860 0.3466 0.3470 0.9865 0.9879 0.0279 0.0288 0.0319 0.0332
(0.0395)c (0.0392) (0.2414) (0.2420) (0.2347) (0.2353) (0.0509) (0.0519) (0.0168) (0.0171) (0.0128) (0.0131)

0.05 0.7314 0.3282 0.9943 1.0046 0.7748 0.7842 0.2908 0.2882 0.9870 0.9860 0.0291 0.0297 0.0327 0.0338
(0.0414) (0.0413) (0.2337) (0.2362) (0.2249) (0.2256) (0.0508) (0.0516) (0.0170) (0.0173) (0.0130) (0.0136)

0.1 −0.7314 0.9064 0.9894 1.0076 −0.7077 −0.7057 0.9196 0.8860 0.9878 1.0128 0.0267 0.0274 0.0320 0.0324
(0.0389) (0.0381) (0.2360) (0.2386) (0.2115) (0.2185) (0.0484) (0.0493) (0.0165) (0.0171) (0.0110) (0.0113)

0.1 0.7314 0.9064 0.9889 1.0102 0.7561 0.7653 0.9194 0.8859 0.9886 0.9871 0.0269 0.0275 0.0323 0.0325
(0.0385) (0.0383) (0.2339) (0.2347) (0.2113) (0.2166) (0.0485) (0.0490) (0.0169) (0.0170) (0.0128) (0.0133)

0.2 −0.7314 1.5866 0.9963 1.0041 −0.7133 −0.6860 1.5675 1.5531 0.9893 1.0052 0.0259 0.0271 0.0314 0.0315
(0.0376) (0.0371) (0.2323) (0.2337) (0.2128) (0.2193) (0.0483) (0.0489) (0.0160) (0.0176) (0.0087) (0.0088)

0.2 0.7314 1.5866 0.9922 0.9952 0.7501 0.7512 1.5693 1.5602 0.9893 1.0052 0.0261 0.0271 0.0323 0.0326
(0.0379) (0.0373) (0.2204) (0.2272) (0.2108) (0.2185) (0.0483) (0.0489) (0.0166) (0.0176) (0.0114) (0.0114)

See table 2 for explanation of PMa, OMb and (·)c.

To study the influences of heritabilities as well as signs

of QTL effects on parameter estimating, in table 3 we listed

the simulation results when N = 500, θ = 0.01, γ11 =
0.02, γ21 = 0.03. It can be seen that with the decrease of her-

itability, the deviations of estimates β̂1, β̂2, ˆγ11, ˆγ21 increase

and the corresponding MSEs grows higher and higher, but

the new method still outperforms the OM. When QTL effects

β1 and β2 have opposite signs, the estimates of α̂, σ̂ 2, ˆγ11

and ˆγ21 are closer to their own true values and have smaller

MSEs than the case that β1 and β2 have same signs. We

get the same conclusion when γ11 = 0.05, γ21 = 0.06 and

γ11 = 0.02, γ21 = 0.05. So we conclude that the signs

of β1 and β2 have influences on the accuracy of parameter

estimation.

The estimates of error rate θ and the MSEs for different

scenarios are listed in table 4. We can see that the MSE of

θ̂ becomes higher and higher with the increase of θ for each

group of heritability and QTL effects, which means that the

accuracy becomes lower and lower. When β1 and β2 have

Table 4. Estimates of error rate θ with different heritabilities and
QTL effects.

True value of θ

h2 β1 β2 0 0.01 0.05 0.1

0.05 −0.7314 0.3282 0.0003 0.0097 0.0494 0.1006

(< 10−4)a (0.0027) (0.0021) (0.0032)
0.05 0.7314 0.3282 0.0005 0.0092 0.0512 0.0987

(< 10−4) (0.0048) (0.0213) (0.0216)
0.1 −0.7314 0.9064 0.0008 0.0111 0.0508 0.1050

(< 10−4) (0.0074) (0.0074) (0.0086)
0.1 0.7314 0.9064 0.0010 0.0115 0.0411 0.0600

(< 10−4) (0.0082) (0.0223) (0.0482)
0.2 −0.7314 1.5866 0.0012 0.0114 0.0422 0.0800

(< 10−4) (0.0077) (0.0189) (0.0304)
0.2 0.7314 1.5866 0.0015 0.0084 0.0399 0.0562

(< 10−4) (0.0086) (0.0221) (0.0493)

(·)a, see table 2 for the explanation.

opposite signs, θ̂ is closer to the true value and has lower

MSE than the case that β1 and β2 have same signs. For the

same θ , the values of MSE become lower and lower with the

decrease of heritability.

In the PM, variance estimate for estimate of each parame-

ter can be obtained by calculating the inverse of the observed

Fisher information matrix (Louis 1982). Therefore, we also

construct confidence intervals for each parameter in our sim-

ulations. As expected, for each parameter the frequency that

the confidence intervals included the true value of the para-

meter is close to the considered nominal value 95% (e.g.,

in 500 simulation replicates, the frequency that the confi-

dence intervals of β1 included the true value is equal to

0.936).

In addition, the simulation results are better when sam-

ple size, N = 1000 than N = 500 for both methods, i.e.,

with the increase of N, the values of MSE all decrease cor-

respondingly. So increase in sample size will improve the

performance of QTL mapping. But the proposed method is

however better than the OM. Totally, the above simulation

results suggest that the PM is an efficient mapping method

when genotype data exist errors.

Real example

Here we analysed a real barley dataset by the PM in this

study to show its practicability when performing multiple-

interval mapping in presence of genotyping errors. The bar-

ley dataset (DH population, which is completely similar

to BC population) was from the North American Genome

Mapping Project (Tinker et al. 1996). The DH population

contained 145 lines and the 1500 cM genome consisted of

seven linkage groups, which included M =127 markers. The

phenotype of kernel weight across the environment was

mainly analysed here, to detect the latent QTL. Xu (2007)

and Ma et al. (2011) also investigated the dataset. Part of

the genotypes in the dataset were missing (<5%), and the

missing values were imputed by the corresponding modes
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or directly by 0 in existing methods. Here we considered

the imputed missing values as data with genotyping errors,

and therefore the PM can be applied to deal with the

dataset.

Because of the large number of markers, there existed dif-

ficulty in performing multiple-interval mapping directly. To

reduce the dimension, we performed multiple-interval map-

ping based on the six significant markers (2, 12, 21, 43, 75

and 102) which were detected by larger effects in Ma et al.

(2011). During the analysis, we used the above six markers as

well as their neighbouring markers to construct marker inter-

vals, and then the estimates of positions and effects of the six

detected QTL were obtained by the PM, respectively: (5.22,

0.404)@7; (90.41, 0.325 )@1; (1.51, 0.205 )@1; (20.08,

0.166 )@3; (119.17, 0.155 )@5; (173.47, 0.124 )@1, where

the notation for the estimates of positions and effects, e.g.,

(5.22, 0.404)@7 indicates chromosome 7, position 5.22 cM

and effect 0.404.

The first three primary QTL that we detected by the PM

are consistent with the reported results in the published paper

(Tinker et al. 1996). In Xu (2007), the first three signifi-

cant markers detected are markers 1, 11 and 101, but the

further detection result of QTL is not provided. Compared

with the results of Ma et al. (2011), the parameter esti-

mate results of the first three primary QTL are closer, but

there exists some difference in the effect estimates of the

forth, fifth and sixth QTL. We hope the new results of esti-

mate by the PM can provide valuable references on the

further detection and filtration of trait loci. Besides estima-

ting QTL effects and positions, the estimate of error rate

of marker genotype is also obtained in our analysis, i.e.,

θ̂ = 0.0364, which approximately coincides with the result

estimated by the number of missing values in the original

dataset. All these estimate results by the PM show that it is

effective on QTL mapping when using genotype data with

errors.

Discussion and conclusion

Currently there are numerous studies on QTL mapping, most

of which assume that the observed genotypes are correct.

However, most genotype datasets contain certain measure

errors. In this study, we propose an algorithm of simulta-

neously estimating all model parameters using genetic data

with genotyping errors. A computer program written in

MATLAB is available upon request. Simulation results show

that the estimates of genetic parameters are exactly affected

by the genotyping errors and the new method performs bet-

ter on QTL mapping than the method that does not con-

sider genotyping errors sufficiently. Heritability has influ-

ences on the accuracy of estimates of QTL effects and posi-

tions, which can be improved with relatively high heritabil-

ity. The results of QTL mapping are also affected by the

population size. In practice, expanding population scale will

improve the accuracy of QTL mapping, which is consistent

with the conclusion of Jeon (1995).

The PM can also be applied to cases of intercross fam-

ilies and markers with different error rates, in which we

only need to adjust the the presentation of ϕi and the condi-

tional probabilities (table 1) when conducting QTL mapping.

The process of estimating parameter vector 	 is completely

analogous with backcross case.

Here, we mainly consider the estimation problem of

parameter vector 	. Of course, after getting the estimate of

	, we can further discuss whether the QTL significantly exist

in the considered marker intervals. Let H0 : β1 = β2 =
0, H1 : at least one interval has QTL. The test statistic is

LOD = Log10[L(α̂, β̂1, β̂2, σ̂ 2, ˆγ11, ˆγ21, θ̂ )�

L(α̃, 0, 0, σ̃ 2, ˜γ11, ˜γ21, θ̃ )].

A threshold needs to be chosen, which has significant influ-

ence on factual mapping. If the LOD score exceeds the

threshold, it means that at least one QTL is declared to exist.

While there are many factors that affect the threshold, such

as sample size, genome size and density of markers, etc.

(Lander and Botstein 1989). Thus the threshold should be

chosen according to the practical situation. Permutation can

be used to choose the threshold (Churchill and Doerge 1994),

which can promise the accuracy of significant tests, although

it is computation-intensive and time-consuming.

Indeed, the PM also has some shortcomings. Because of

the genotyping errors and the unknown genotypes of latent

QTL, our method may encounter a large amount of compu-

tation when the number of markers is large. To overcome

this difficulty, we suggest using the idea of two-step method

(Ma et al. 2011), i.e., the markers with larger effects are

detected and retained in all markers at first, and then marker

intervals are constructed by the selected markers to esti-

mate all parameters simultaneously. Besides, the EM algo-

rithm itself has limitation. For example, sometimes it has

a slow convergence speed and the speed of convergence

may depend on the initial values of parameters. We sug-

gest that choosing different initial values in the estimating

process and comparing each results to decrease the possible

impact caused by initial values of parameters. Since QTL

mapping plays an important role in the study of the genetic

epidemiology, in our future work we will make further inves-

tigations and develop methods that are suitable for more

markers.
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