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Abstract
Most traits of interest to medical, agricultural and animal scientists show continuous variation and complex mode of inheri-
tance. DNA-based markers are being deployed to analyse such complex traits, that are known as quantitative trait loci (QTL).
In conventional QTL analysis, F2, backcross populations, recombinant inbred lines, backcross inbred lines and double hap-
loids from biparental crosses are commonly used. Introgression lines and near isogenic lines are also being used for QTL
analysis. However, such populations have major limitations like predominantly relying on the recombination events taking
place in the F1 generation and mapping of only the allelic pairs present in the two parents. The second generation mapping
resources like association mapping, nested association mapping and multiparent intercross populations potentially address the
major limitations of available mapping resources. The potential of multiparent intercross populations in gene mapping has
been discussed here. In such populations both linkage and association analysis can be conductted without encountering the
limitations of structured populations. In such populations, larger genetic variation in the germplasm is accessed and various
allelic and cytoplasmic interactions are assessed. For all practical purposes, across crop species, use of eight founders and a
fixed population of 1000 individuals are most appropriate. Limitations with multiparent intercross populations are that they
require longer time and more resource to be generated and they are likely to show extensive segregation for developmental
traits, limiting their use in the analysis of complex traits. However, multiparent intercross population resources are likely to
bring a paradigm shift towards QTL analysis in plant species.

[Rakshit S., Rakshit A. and Patil J. V. 2012 Multiparent intercross populations in analysis of quantitative traits. J. Genet. 91, 111–117]

Introduction

The establishment of the first linkage map by Sturtevent
(1913) led to a continuing interest among geneticists to iden-
tify genes and to localize them on genetic maps. During the
initial period, the focus was on morphological traits show-
ing discrete mode of inheritance. However, majority of the
traits of interest to medical, agricultural and animal scien-
tists show continuous variation. Such traits are known as
quantitative traits. With the understanding of the inheritance
of such complex traits through multiple factors or poly-
genes, biologists realized the challenges ahead to handle such
traits. Karl Sax first associated morphological markers with
quantitative traits (Sax 1923). Gelderman (1975) coined the
term quantitative trait locus (QTL) to denote ‘a region of
the genome that is associated with an effect on a quanti-
tative trait’. Using morphological traits alone, identification
of such loci was very difficult as they show high genotype ×
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environment and epistatic interactions and morphological
traits represent only 5% of the whole genome, besides being
stage-dependent in expression.

Discovery of DNA structure by Watson and Crick (1953),
and subsequent discoveries in the field of molecular biol-
ogy have brought a paradigm shift in the way genes and
genetic maps are viewed and constructed. New array of
DNA-based markers like restriction fragment length poly-
morphism (RFLP), random amplified polymorphic DNA
(RAPD), amplified fragment length polymorphism (AFLP),
simple sequence repeat (SSR) and single nucleotide poly-
morphism (SNP) have transformed the linkage analysis,
more particularly the QTL studies. The principles and vari-
ous methodologies of QTL analysis have been reviewed by
various authors (Gupta 2002; Mackay 2004; Flint et al. 2005)
and are not discussed here. However, it must be stressed
that all these methodologies rely on meiotic recombination
among markers and detection of the recombinants in the
segregating mapping populations. For such analyses, large
population with accurate genotyping and phenotyping are
required (Keurentjes et al. 2011).
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Conventional mapping resources

In early QTL studies, the F2 and backcross (BC) popula-
tions were most commonly used. However, such populations
are not fixable due to their inherent heterozygous genetic
constitution. This restricts their wide utility in QTL anal-
ysis. To address these limitations, biologists nowadays are
extensively using recombinant inbred lines (RIL), backcross
inbred lines (BIL) and double haploids (DH) (Rakshit et al.
2002; Collard et al. 2005). Among these resources, RIL,
derived by single seed descent from F2 individuals from
hybrids between two distinct homozygotes, are most com-
monly used in QTL analysis (Keurentjes et al. 2011). To
avoid complications of segregation of multiple loci (like
epistasis) in QTL analysis, introgression lines (IL) and near
isogenic lines (NILs) are also in use. In these, small chro-
mosomal regions from donor parents are introduced in a
recurrent parental background. Advantage of NIL over RIL
is that often it allows detection of minor QTL, which are
missed in RILs (Keurentjes et al. 2007). Seeds of these pop-
ulations can be retained indefinitely, making such popula-
tions potentially immortal (Huang et al. 2011). However, all
these populations are derivative of biparental crosses. Such
populations have two major limitations. Firstly, they prin-
cipally rely on the recombination events taking place in F1
generation and not enough time is available to shuffle the
genome in small fragments. As a result, the QTL get placed
on a large chromosomal region (Li et al. 2010). To circum-
vent this limitation, Darvasi and Soller (1995) introduced
the concept of advanced intercross lines (AICL), which is
produced by randomly and sequentially intercrossing a pop-
ulation derived from a biparental cross. Repeated cross-
ing reduces the linkage disequilibrium (LD) and increases
the precision of location of the QTL. Second limitation of
biparental cross-derived mapping populations including AIC
is that it allows mapping of only the allelic pairs present in
the two parents. Thus, the whole genetic variation cannot be
exploited in such studies. Goffinet and Gerber (2000) sug-
gested combining QTL results from different independent
analyses through meta-analysis, while Li et al. (2005) have
suggested methods to collate data generated from indepen-
dent biparental studies. Recently Bentsink et al. (2010) iden-
tified 11 QTL for seed dormancy in Arabidopsis by simul-
taneously analysing six RIL populations. However, none of
these techniques can examine epistasis and interactions of
QTL with genetic background, which underline quantitative
traits.

Second generation mapping resources

The second generation mapping resources propose to address
many of the limitations associated with conventional map-
ping populations. In recent past, potentiality of association
mapping in QTL analysis has been emphasized by various
authors (Gupta et al. 2005; Rafalski 2010; Nordborg and

Weigel 2008). Two approaches are followed in association
mapping: candidate gene based and genomewide association
(GWA) mapping. In both approaches, maximum trait differ-
ences available in the germplasm are statistically associated
with specific genotypes for common SNPs or SNP haplo-
types. However, association mapping is generally influenced
by predominantly unknown population structure, often lead-
ing to spurious associations (Hirschhorn and Daly 2005). On
the other hand, compensating for population structure may
remove true positives (Keurentjes et al. 2011). The situation
becomes much more complicated in crop plants where high-
density-consensus maps are not available. These two factors
strongly restrict the widespread adoption of such analyses.
Another limitation of GWA is that rare alleles, even those
having large effects, may remain undetected as is the case
with the CRY2 allele from Cvi (Cape Varde Islands) acces-
sion of Arabidopsis (Atwell et al. 2010; Brachi et al. 2010).
In recent past, to circumvent these limitations, nested asso-
ciation mapping (NAM) populations have been established
in maize (Yu et al. 2008) and Arabidopsis (Bentsink et al.
2010; Brachi et al. 2010). In making such populations, a cen-
tral parent is crossed with other diverse parents in star design
(Huang et al. 2011). For example in maize the NAM popu-
lation has been generated by pooling 200 RIL from 25 fami-
lies, each being developed by intercrossing 25 diverse maize
inbred lines to one common parent, B73 (Yu et al. 2008;
Buckler et al. 2009; McMullen et al. 2009). Such popula-
tions help in fine mapping of QTL. However, interactions of
QTL with genetic background cannot be examined in such
population as one parent is common in all component sub-
populations. Consequently, Cavanagh et al. (2008) proposed
a multiparent advanced generation intercross (MAGIC) pop-
ulation to address the major limitations of available mapping
resources, and this concept was also utilized in Arabidopsis
multiparent recombinant inbred line (AMPRIL) population
as an additional resource for dissecting the genetics of natural
varieties (Huang et al. 2011).

Multiparent intercross population, a multi-utility
mapping resource

Advanced intercrosses (AIC) are proposed to address the
major limitation of lower resolution of biparental crosses.
Yalchin et al. (2005) extended AIC in mice by involving
multiple parents (heterogeneous stocks) in the crossing
scheme. Consequently, they could map a QTL explaining
10% of the phenotypic variation for anxiety in mice to
a 4.8-Mb region. Prior to this, in mice, a Complex Trait
Consortium was created involving 94 different laboratories
across 13 countries to analyse complex traits (Churchill
et al. 2004). The concept of eight-way ‘funnel’ breeding
scheme of Complex Trait Consortium in mice was extended
to crop plants by the name MAGIC population by Cavanagh
et al. (2008). Under this scheme as many diverse founder
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lines as the investigator wish may be deployed to create the
mapping population. If n founder lines are taken, they need
to be intercrossed for n/2 generations till all the founders are
combined with equal proportions. Once the intercrossing is
over RILs may be derived from them upon selfing (figure 1).
Major limitation of this tool is that with increase in founder
size the intercrossing cycles also proportionately increases.
In species like Arabidopsis with short generation period
higher number of founders may be used. However, for all
practical purposes across crop species use of eight founders
as described in figure 1 is most appropriate. At G2 the dou-
ble crosses segregate, thus replicated crosses involving more
recombinant plants are required. At G3 the progenies of these
crosses are again intercrossed to effect 8-way intercrossing.
From next generation (G4) the recombinant progenies are
advanced by selfing for 6–7 generations to obtain MAGIC
RIL. At each intercrossing cycle hybridity of each plant to be
intercrossed may be confirmed through genotyping. High-
throughput SNP genotyping platforms and genotype by
sequence approaches are of much use in this regard (Davey
et al. 2011). As an alternative economical method, SSR
markers may also be employed. In a simulation study it has
been demonstrated that a fixed population of 1000 MAGIC
individuals is adequate to map a single additive locus that
accounts for 5% of the phenotypic variation to within
0.96 cM distance (Valder et al. 2006). It was also shown that,
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Figure 1. Funnel breeding scheme for MAGIC population devel-
opment (modified from Cavanagh et al. 2008).

with 500 lines, sufficient resolution may be obtained even in
presence of high epistasis. Thus a population size of 1000 is a
highly reliable resource. There are more recent reports of fine
mapping of several known QTL and identification of novel
QTL for germination and bolting time in Arabidopsis, using
only 527 MAGIC lines derived from 19 diverse founders
(Kover et al. 2009). Further, the potential of the technique
has been demonstrated by studying flowering time candi-
date genes in 275 Arabidopsis MAGIC lines (Ehrenreich
et al. 2009). With preliminary success of these studies
now MAGIC resources are being created in many plant
species including Arabidopsis (Kover et al. 2009), wheat
(http://www.niab.com/pages/id/93/MAGIC_Populations_in_
Wheat), rice (Bandillo et al. 2010; Leung et al. 2011) etc.

A variant of MAGIC strategy has recently been reported
by Huang et al. (2011). They developed AMPRIL population
to include eight Arabidopsis founders in the population. They
crossed the founders to produce F1 hybrids, which were then
crossed in diallel fashion (figure 2) to generate six connected
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Figure 2. Construction of AMPRIL population. Four founder
accessions (P1, P2, P3 and P4) are crossed to produce two hybrids
(A and B) and one four-way cross. The regulting population
is selfed for three generations (F1 to F4). For development of
AMPRIL population in same scheme eight founder accessions (P1
to P8) led to four hybrids: A, P1 × P2; B, P3 × P4; C, P5 × P6;
D, P7 × P8. These hybrids were crossed in diallel scheme (adapted
from Huang et al. 2011).
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four-way crosses. The resulting offspring were selfed for
three generations and genotyped in F4, and phenotyped in F5
generation. Following this strategy, they identified four QTL
for flowering time. However, they failed to detect number of
QTL that were detected in biparental populations involving
separately the founders of the AMPRIL population.

In multiparent recombinant inbred populations both link-
age and association analyses can be conducted with-
out encountering the limitations of structured populations
(Brachi et al. 2010). However, the statistical complex-
ity in analysis of such population is very high as com-
pared to biparental crosses (table 1). A statistical package,
HAPPY, specifically to analyse heterogeneous stocks includ-
ing MAGIC has been reported (http://spud.well.ox.ac.uk/
arabidopsis). This program does not require any pedigree
information. It generally uses analysis of variance F statistics
to test for linkage. Since MAGIC population has an extent
of kinship among the RIL, the program uses linear mixed
effects model (empirical Bayes) and hierarchical Bayes QTL
mapping in analysing the data. Huang et al. (2011) adapted
a mixed model methodology to test main effect of QTL
and their interaction among themselves and with different
genetic background. Huang and George (2011) have recently
developed a versatile computational platform, R/mpMap to
address the complex statistical need of multiparent cross
derived mapping populations. They have implemented inter-
val mapping in the platform using haplotype probabilities. It
has interfaces with earlier mapping platforms, R/qtl (Broman
et al. 2003) and R/happy (Mott et al. 2000), thus becoming a
useful resource.

To compare utility of different types of populations for
mapping, Broman (2005) calculated the number of cross-
overs that accumulate in offspring population (i.e. number
of informative crossovers) in different mapping populations.
For backcross population, or a double haploid population,
the expected number of informative crossover per morgan

distance for a single offspring (γ ) is 1. In case of two-way
and four-way RILs, γ is 2 and 3, respectively. For MAGIC
population, γ = 6 (Kover et al. 2009), while for AMPRIL it
is 3.625. Thus, MAGIC gives maximum number of informa-
tive crossovers among different mapping populations. Dar-
vasi and Soller (1997) suggested a measure of expected
total number of informative crossover per centimorgan in a
population as a measure of precision of QTL location. For
AMPRIL, Huang et al. (2011) calculated this value as 19 per
cM, while for MAGIC and NAM populations, it is 32 per cM
and 100 per cM respectively. Thus MPRIL population has
wide advantages to map QTL effectively.

Further comparison between the most commonly used
mapping resources are presented in table 1. Since diverse
founders are used in MAGIC and AMPRIL populations
larger genetic variation in the germplasm is accessed, which
is not possible in biparental populations. With use of more
parents in the population various allelic and cytoplasmic
interactions are also accessed, and assessed in such sec-
ond generation mapping populations. It is highly probable
to obtain useful MAGIC RIL having agronomic superiority
due to desirable allelic recombination, which may directly
be used in the breeding programme. During MAGIC or sim-
ilar population development, seeds at any generation may
be retained and advanced to develop RIL, which will allow
both coarse and fine mapping. In a large MAGIC popula-
tion with >1000 RIL it is also possible to assess epistatic as
well as G×E interactions to understand complex traits like
yield, quality traits, abiotic stress tolerance etc. Keurentjes
et al. (2011) have made a comparison between the ability
of detection of QTL for flowering time in Arabidopsis using
different mapping populations. They pointed out detection
of many QTL at similar positions using various populations.
However, the number of alleles detected was much lower
in multiparent populations. Huang et al. (2011) attributed
this to the complexity of the genetic interaction leading to

Table 1. Comparison between biparental linkage analysis, association mapping and MAGIC.

Properties Biparental Association MAGIC AMPRIL

Founder parents 2 ≥100 ≥8 8
Crossing requirement Yes No Yes Yes
Time to establish Moderate Low Long Long
Population size ∼200 ∼100 ∼1000 ∼500
Suitability for coarse mapping Yes No Yes Yes
Suitability for fine mapping No Yes Yes Moderate
Amount of genotyping required Low High High High
Amount of phenotyping required Low High High High
Relevance of population structure No Yes No No
Statistical complexity Low High High High
Use of germplasm variation Low High High High
Practical utility Low High High Moderate
Relevance over time Low High High High

Modified from Cavanagh et al. (2008)
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dilution of QTL detection power. They hypothesized that due
to comparable allelic effects among founder relatives, few
QTL remained undetected in their study. Secondly, they also
suggested that segregation of QTL with different effects in
different subpopulations needed to be accommodated in the
QTL model. In this regard, the recent analysis environment
R/mpMap developed by Huang and George (2011) may be
helpful.

Another limitation of MAGIC or similar multiparent inter-
cross populations is that they are likely to show extensive
segregation for developmental traits, like maturity and plant
height. Segregation for such traits may influence the overall
performance for complex traits like yield or drought toler-
ance. Thus, it may limit their utility in analysis of such traits
(Varshney et al. 2009; Gupta et al. 2010). A careful selec-
tion of parents can address this limitation. Other limitation
of such mapping resources is that development of such pop-
ulation needs more time and resources than traditional map-
ping populations (table 1). Large scale phenotyping of such
a population is another limitation which may be addressed
using high throughput phenotyping methods. However, such
facilities are not readily available with the breeders, lim-
iting wider applicability of such next generation mapping
resources.

Conclusions

MAGIC and similar populations combine the advantages of
linkage analysis and association studies. Thus, they have
immense potential in augmenting the QTL analysis. With
availability of genome sequence in several crops includ-
ing rice, sorghum and maize, and initiation of sequencing
projects in many more, MAGIC populations will be an ideal
resource to generate high-density maps using germplasm
of direct relevance to the breeders. With the availability of
next generation sequencing and advanced statistical anal-
ysis platforms such analysis will be further practical and
affordable. Since such populations can be tested across envi-
ronments, and by various investigators, there is an urgent
need to initiate MAGIC population development in a con-
sortium manner taking clue from Complex Trait Consortium
in mice.
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Appendix

.Glossary of terminology used.

Terminology Definition

Advanced intercross lines (AIL) AIL are randomly and sequentially intercrossed population that initially originated
from a cross between two inbred lines

Association mapping Association mapping, also known as linkage disequilibrium mapping, is a method
of mapping QTL that takes advantage of historic linkage disequilibrium to link
phenotypes (observable characteristics) to genotypes by establishing
statistical association

Backcross population Segregating population derived by back crossing F1 hybrid to one of its parents
Backcross inbred lines (BIL) Inbred lines derived from backcross populations through repeated selfing
Double haploids (DH) Individuals obtained by chromosome doubling of haploids
F2 populations Progenies obtained by selfing of or intermating among F1 hybrids
G×E interactions A condition where the relative differences among phenotypes and/or their ranking

vary according to environmental conditions
Genetic or linkage maps A linear or circular diagram that shows the relative positions of genes

on a chromosome as determined by linkage analysis
Heterogeneous Organisms with dissimilar traits
Intergenic ineractions (epistasis) A situation of effect of one gene being influenced by the alleles of another gene
Markers A phenotypic trait or a DNA sequence which can be placed on linkage maps
Multiparent advanced generation Segregating population derived through intercrossing multiple parents (≥8)

intercross (MAGIC) population
Nested association mapping A population developed by pooling equal number of progenies from large number

(NAM) population of crosses involving one common parent
Polygenes One among many genes involved in quantitative inheritance
Quantitative trait loci (QTL) Region of the genome that is associated with an effect on a quantitative trait
Recombinant inbred lines (RIL) Fixed population developed by selfing each F2 individuals from a biparental cross
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