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Abstract

Development of microarray technology has resulted in an exponential rise in gene expression data. Linear computational
methods are of great assistance in identifying molecular interactions, and elucidating the functional properties of gene net-
works. It overcomes the weaknesses of in vivo experiments including high cost, large noise, and unrepeatable process. In this
paper, we propose an easily applied system, Stepwise Network Inference (SWNI), which integrates deterministic linear model
with statistical analysis, and has been tested effectively on both simulated experiments and real gene expression data sets. The
study illustrates that connections of gene networks can be significantly detected via SWNI with high confidence, when single
gene perturbation experiments are performed complying with the algorithm requirements. In particular, our algorithm shows
efficiency and outperforms the existing ones presented in this paper when dealing with large-scale sparse networks without
any prior knowledge.

[Zhang L., Xiao M., Wang Y. and Zhang W. 2010 Reverse engineering large-scale genetic networks: synthetic versus real data. J. Genet. 89,
73–80]

Introduction

Systems biology studies biological systems by systemati-
cally perturbing them genetically. The scope of systems bi-
ology is monitoring the elements of biology, integrating var-
ious levels of data, and, ultimately, modelling the biological
process computationally to describe the structure of the sys-
tem and reconstruct the molecular networks. An enormous
challenge for systems biology is how to simulate the com-
plex biological system by efficient computer modelling tools.
Such tools are gaining importance as a paradigm shift is oc-
curring in biology away from a descriptive science toward
a predictive one, along with large-scale technologies begin-
ning to generate vast amounts of quantitative data (Faith et
al. 2007).

*For correspondence. E-mail: wzhang@shu.edu.cn.

Computational models and computer-aided tools have al-
ready achieved widespread acceptance within engineering
science and bioinformatics fields. In practical research, it is
difficult, both for experiments and computation, to reveal all
the elements in a gene network because of the complicated
experimental design, high noise, and unrepeatable process
(Styczynski and Stephanopoulos 2005; Margolin and Cali-
fano 2007; Schumacher et al. 2007). Other considerable dif-
ficulties are addressed as: firstly, the number of gene ex-
pression profiles available is much less than the number of
genes which can be abstracted to ill matrix problem; sec-
ondly, there is lack of sufficient valuable previous knowledge
to help choosing motifs and central regulators; thirdly, the
linkages between genes have not been well defined so gener-
ally the gene interactions detected by inferring methods are
not physical interactions but the influent interactions. Due
to the different mathematical formalisms used to model net-
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works, there is finite overlap with each inferred result. Till
now, there is no standard model describing the regulatory
mechanism for the genes and even the post-transcriptional
modification. Many mature theories and models from sys-
tems area cannot be simply applied to gene network recon-
struction because of poor data, thus also making the problem
indeterminate.

Recently many methods integrating computer science
and statistics have been applied to infer the underlying
gene network via microarray expression profiles, including
Boolean networks (Liang et al. 1998), Bayesian networks
(Friedman et al. 2000; Beal et al. 2005), relevance networks
(Butte and Kohane 1999), graphical models (De la Fuente et
al. 2004), genetic algorithms (Iba and Mimura 2002), neu-
ral networks (van Someren et al. 2001), controlled language
-generating automata (Chen 2004), linear ordinary differen-
tial equations (Yeung et al. 2002), and non-linear differen-
tial equations (Mendes et al. 2003). All these models offer
unique advantages in many aspects in gene regulatory net-
work (GRN) construction, although they do also have their
shortcomings. For example, Boolean networks use the dis-
crete variable model to approximate gene states as either ON
or OFF, which is unable to capture some behaviours of gene
circuits. Bayesian models, however allow a natural way to
select one model from a set of competing ones to best de-
scribe the experimental data, easily leading to an NP-hard
problem. Hence, these cause significant increase in comput-
ing complexity in learning the network architecture. Based
on language-generating automata, Chen (2004) designed an
alternative model which regards each gene as an automaton
and the pathway can be computed by the intersection of lan-
guages; however this approach has not yet been tested on real
experimental data.

Linear models use a set of ordinary differential equa-
tions to describe a gene regulatory system, in which each
gene is influenced by all the others. Such models can con-
veniently represent continuously changing gene expression
values. The mRNA concentrations measured from microar-
ray experiments and global or local perturbations to the gene
pool are put into the linear model to generate an N × N ma-
trix, where N is the number of genes. Regulations can be
weighted with sign that distinguish active and repressed reg-
ulatory states of genes. Because there are far more genes
than experiment samples, the gene expression data sets be-
come ill-posed. As a result, there is no exclusive solution
to the equations and the task to confirm N × N parameters
seems daunting. In other words, the scarcity of time-course
or steady-state data is a major difficulty of GRN inference
for all methods (Zak et al. 2003). Theoretically, this problem
can be overcome by increasing time points and integrating
multiple microarray data sets from many public databases
(Wang et al. 2006). On the other hand, if the number of genes
comprising the network can be reduced to be generally equal
to the experimental samples, the ill-posed problem may be
corrected and a more stable GRN can be reconstructed. It is

worth mentioning that complicated experimental design with
precise computational modelling to pick valuable genes or
regulatory modules typically lose scalability and systematic
view on the network. Hence, current GRN inference meth-
ods do not perform well with regard to either simplicity or
accuracy.

In this paper, we develop a rapid and scalable method
for reconstructing GRN using steady-state gene expression
measurements without any prior information about gene
functions or network structure. We determine the first-order
model from expression changes resulting from a set of dif-
ferent transcriptional perturbations. Based on the multiple
stepwise linear regression model, we generate a gene net-
work that is sparse and consistent with biologically plausibil-
ity, while conventional approaches often derive densely con-
nected regulatory relationships among nodes. Our method,
called stepwise network inference (SWNI), has distinct ad-
vantages specifically in detecting large-scale gene networks.
Further, inferring GRN is modelled as matching and opti-
mizing the possible regulated subsets, thereby a reliable and
consistent network structure can be expected. Both simulated
and experimental data sets are used to testify the biological
effectiveness and computational efficiency of SWNI method.

Methods
General model for gene networks

The dynamics of a genetic network in perturbation can be ex-
pressed by a set of ordinary differential equations (De Jong
2002):

dx
dt
= f (x, p) − s(ë). (1)

This expression describes the time evolution of the mRNA
concentration of the genes in the network. Vector x represents
the expression level of the genes, vector p is a set of tran-
scriptional perturbations exerted on genes and ë describes the
self-degradation rate; these are all row vectors. The perturba-
tion should be small enough (typically 10% of the original
mRNA concentration) to ensure that the system can return
to the original steady state point. In other words, the network
should not be driven out of the basin of attraction of the stable
steady state point. With these assumptions, the gene regula-
tory process can be approximated by a linear system near the
steady state point. Thus, for a genetic network consisting of
N genes we have:

dx
dt

N∑

j=1

wi jx j − λi xi + pii = 1, . . . ,N, (2)

Where xis are the mRNA concentrations of gene i; wi js are
the weighted strength of the influence of gene j on gene i, λis
describe the self-degradation rate of gene i, and pis are the
external perturbation to the expression of gene i. If repeating
perturbation M times, for each gene in each experiment l we
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can rewrite the above equation as:

dxil
dx
=

N∑

j=1

wi jx jl − λil xil + pil, l = 1 . . .M, (3)

For simplicity, we absorb the self-degradation rate λil s into
coupling the weighted strength wi js and get ai js, yielding

dxil
dx
=

N∑

j=1

ai jx jl + pil, i = 1 . . .N, l = 1 . . .M. (4)

Then we use matrix notation for compaction, yielding:

dxl
dt
= AxTl + P

T
l , l = 1 . . .M, (5)

where xl is an 1 × M vector of measured mRNAs in M dif-
ferent experiments, A is an N ×N weighted connectivity ma-
trix composed of ai jswhich is unknown. Therefore, inferring
GRN is transformed to retrieving matrix A.

Linear regression solution

As analysed, the gene expression level is measured at steady
state, so,

dX
dt
= 0. (6)

It seems that for the system of equation AX + P = 0 where X
and P can be measured from experiments conveniently, the
solution is obtained simply by inverting X if there exist N
experiments for N genes:

A = −PX−1. (7)

However, there exist two main problems on retrieving a reli-
able solution (Zak et al. 2003). The first one is, typically, the
number of experiments is fewer than gene numbers (M ≤ N)
because of costly experiments. The other problem is that A is
extremely sensitive to noise in both of the measured data X
and P, so we can confirm that even if M ≥ N, the solution by
(7) is unstable and unreliable.

To circumvent those problems, we can assume that the
maximum number k of regulators acting on each gene is less
than M, thus the number of weights ai j will be reduced. A
multiple linear regression method (Gardner et al. 2003) tries
to identify which combination of k out of N genes is selected
as regulatory inputs for gene i by computing the sum of devi-
ations squared for all possible combinations. For each gene,
the solution minimizing the least square error is selected.

MinSSEli = Min
M∑

l=1

(−pil − ãixTl )2, (8)

and
ãTi = (XxT )−1X(−pTi ). (9)

The above process contsists of two steps: the first one is iden-
tifying the variable k, and the second one is identifying k, out

of N regulatory inputs. Unfortunately, the strategy of regu-
latory inputs has limitations in both of quantity and quality.
Simultaneously, the test of statistical significance lacks reli-
ability.

SWNI solution

The major inadequacy of current regression method is how
to identify the value of k, which is the maximum regulatory
relations for each gene. In order to fix on the maximum sub-
set size, for example, for all the k = (1, . . .M) (M is the
number of experimental samples), the NIR algorithm com-
putes all the inferred genetic networks (regression models)
in which each row contains k nonzero genes (regressors) re-
spectively. In fact, it makes a traversal of linear regression
2M − 1 (CkM = C

1
M +C

2
M + · · · +CMM ) times for each gene and

is computationally impossible for large networks. It is com-
putationally costly even to make a simple traversal, which
should be avoided. Then for all regression models, the NIR
method intends to choose the one with smallest SSE and best
significant fit. However, with the increase in k (the number of
regressors), the SSE becomes smaller consecutively, which
is not expected to be. From this phenomena, when k = M,
the network model fits best, clearly an undesirable prop-
erty. Therefore, the identification of k is still a problem that
seems difficult to figure out based on quantificational analy-
sis. With qualitative analysis, such as the dynamic stability of
networks, balance between coverage and false positives pro-
duces a relatively suitable k. One unreasonable result gener-
ated from this strategy is that every gene set has to be acted
upon by the same number of regulators, k. Thus, if in the
real genetic network there are more than k regulatory inputs
to certain genes, some of them will be chosen before regres-
sion. Moreover, the common regression method ignores the
significance test on individual regressor variables that is cru-
cial for eliminating those dispensable regressors from a re-
gression model and keeping the important ones, although it
applies significance test on the holistic model to determine if
there really exists a linear relationship between the dependent
variable and the regressor variables. The typical method ap-
plies significant test as a kind of afterwards validation which
can not work on the existing fact. In contrast, our method
SWNI uses F test and partial F test to guide the selection of
predictor variables in the process of regression which makes
the results more reliable.

The underlying idea of SWNI is: for each gene, we se-
lect the connectivity with the highest probability, one by one.
Besides overall F test, the partial F test is utilized to evalu-
ate whether the selected individual regulatory input provides
the best fit to the regression model. Every time we add a new
relationship, it is necessary to repeat the partial F test upon
the old ones to ensure they also have statistical significance
with the new model. The process continues until there are no
more new regulators that can be added, and no selected reg-
ulatory relationships that can be deleted. Finally, we estab-
lish the stepwise linear regression model within all selected
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relationships to calculate the correlation coefficients between
each gene and its regulators. We summarize our iterative pro-
cedure as follows:
Step 1, choose the first regulatory inputs for gene i.
First, for −P = AX, let −P = Y for convenience. Assume
that gene i is regulated by only one gene j ( j = 1, . . .N). We
need to choose one from N regression equations including
one predictor variable only.

ŷi = a(1)
i j x

(1)
j , (10)

where ŷi is an estimate of yi. The coefficient ai j is the
weighted influence of regulator j to gene i. Next for j =
1 . . .N, the predictor is selected by F test (P value < 0.03) to
get the regression coefficients. Then compute,

F(1)
j =

Δ SSR j
SSE (N − k) , (11)

where ΔSSR is the partial sum of square due to the regression
of x j, SSE is the sum of square error due to the linear regres-
sion of y to x, k is the number of connectivity (in step one
k = 1), and N-k is the degree of freedom. For the significant
level α = 0.05, if F(1)

j > F1−α (1, n − 1), the first connection
can be selected into the model. Otherwise, no connection is
selected in step one.
Step 2, choose the second regulatory inputs for gene i.
Based on step 1, we make another choice from N-1 regulators
for gene i. The following equation includes the first selected
gene and the second possible connection.

ŷi = a(1)
i j x

(1)
j + a

(2)
i j x

(2)
j . (12)

Next, the partial F test is applied to the second possi-
ble predictor. For the significant level P value, if αin < αout,
the second gene can be selected. It is important that if the
second gene is chosen, the first one must be evaluated by
partial F test. But, if for the significant level αout = 0.1,
F(1)
j < F1−α(1, n − 2), it will be eliminated. Here we should

consider carefully that αin must be different from αout, gen-
erally set αin < αout or the closed cycle loop will be easy
to generate, then the predictor will be endlessly selected and
deleted, which is not desirable.
Step 3, the condition for stopping selection.
We continuously select regulators following the rules in step
2. If the selected variables are always significant fit for the
model, a new selection will be considered. At the end, the
model may include k variables which can not be eliminated
and there is no regulator that can be selected into the model.
Thus, the final regression model for gene i is:

−Pi = ãiX. (13)

Where pi is a 1 × M vector for the expression level of gene
i in total M experiments ãi, is a 1 × k vector representing the
influence coefficient of k selected confident regulatory inputs
j to gene i, and X becomes a k × M matrix.

Experiments and results
In this section, the performance of our method is first eval-
uated using gold standard networks with random scale-free
structure by varying the network size, and average degrees.
Because the mechanisms of simulated gene networks are
completely known, we are able to faithfully evaluate the pre-
diction result of our algorithm. However, the model used for
generating data is actually a simplification of real molecu-
lar networks, and this might lead to systematic deviations.
Meanwhile, the shortcoming of biased evaluation can also
be addressed using only real steady-state expression data. By
combining both assessment approaches, we are likely to ob-
tain a more reliable picture of the performance of the algo-
rithm. Next, we will describe in detail how to use synthetic
data and real experimental data to evaluate our method.

Application to synthetic data

Apart from manual design of some small benchmark net-
works, three classes of directed networks are currently used
as models for generating in silico gene regulatory network
structures: random (Kauffman 1974), ‘small-world’ (Watts
and Strogatz 1998) and scale-free (Albert and Barabasi 1999,
2000). Networks with scale-free topology are perhaps the
best suited for simulating GRNs, though it may still be con-
troversial, we opt to construct the model in scale-free class.
There are some evidences that metabolic networks display
properties similar to scale-free networks. Even at the level of
gene networks, this similarity also exists, for instance, based
on expression profiles of yeast mutants studied by (Feath-
erstone and Broadie 2002). According to their connectivity
in networks, the distribution of vertices follows a power law
that the minority of vertices have a very large number of con-
nections, while a large number of vertices have only a few
connections (Mendes et al. 2003).

Instead of constructing more complicated graph models,
which would be unfair in assessment, we believe that the
fairest way to compare reverse engineering methods is based
on real biological network structures. Following the scale-
free topology, 10 ‘gold standard’ networks of size 50 were
generated using an Arabidopsis thaliana transcriptional regu-
latory network (Mendoza et al. 1999) as source. Meanwhile,
the generated networks must be stable which can be testi-
fied by the eigenvalues of the corresponding matrixes. The
dynamics are asymptotically stable if real parts of all eigen-
values are negative or the largest eigenvalue has negative real
part. The more negative the leading eigenvalue is, the faster
the system returns to equilibrium following small perturba-
tions (Chen and Aihara 2002).

For each stable system (simulated network), steady-state
data were generated resulting from M local perturbations by
solving (7) for X, and adding an error term E : X = −A1P+E.
To be more precise, in each numerical experiment the ex-
pression level of a different single gene was increased at the
same rate, because for the linear model, the size of the per-
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turbation is not important and it was set to 10% in this case.
Normally distributed noise, with zero mean and standard de-
viation which was multiplied by 1/10th the absolute value of
the simulated gene expression level was also added. Where
A is the simulated network, P is a diagonal matrix that is set
to identity and E can be seen as experimental error, and the
effects of nonlinearity of gene regulations. In addition, the
noise E is added proportional to the size of each element,
since large values will receive more absolute noise than low
ones.

In order to evaluate the accuracy of our predictive model,
we also justified the performance of various alternative al-
gorithms listed in table 1 and facilitated comparison among
them. All the algorithms were implemented in MATLAB 7.0
and run on all the ‘gold standard’ data sets using default pa-
rameters: fifty-node scale-free networks with average degree
2.9. We averaged the results over 10 data sets that were gen-
erated from the 10 gold standard networks.

We compared simulated test networks with the predicted
networks via the algorithms and present in a structure known
as a confusion matrix. The standards presented in table 2 (b)
can be used to construct a point in either receive operating
characteristic (ROC) space or precision-recall (PR) space.
Both of the two curves are useful for presenting results for
binary decision problems and measuring the quality of the
network reconstruction in this study. ROC curve can illus-
trate an overly optimistic view of the performance of the al-
gorithm by describing the trade-off between sensitivity and
the false positive rate. However, for simulated networks here,
which have similar topology to real GRNs, which are gener-
ally sparse, the ROC curve often suffers from a high false
positive rate. The PR curve instead is based on computing
precision and recall (true positive rate), and therefore gives
a more accurate picture when dealing with a highly skewed
data set (Davis and Goadrich 2006). Moreover, looking at the
PR curve can highlight differences between algorithms that
are not apparent in ROC space. The goal in ROC space is to
be in the upper-left-hand corner, the more, the better. How-
ever, PR curve in the upper-right-hand corner of the space is
considered good.

Results of the application of six network inference algo-
rithms on the same generated data set are described in figure
1. PR curve and ROC are displayed in two columns. It seems
that the two approaches, SWNI and NIR, which are built
on the basis of linear ordinary differential equations, signifi-
cantly outperform the others in this case for larger area under

the ROC curve they occupy. SWNI recovers almost all the
real directed interactions (high sensitivity and high precision)
and has visible improvement compared to NIR which covers
most of the true connections in the network with high sen-
sitivity and little decrease in accuracy. At the same time, be-
cause of only few detected true edges, BANJO and clustering
failed, as their performance is comparable with the random
model (experiential P ≤ 0.1). ARACNE have large space
in improvement of TPR and Precision. When observing the
ROC and PR curve, the algorithms are similar ranged by their
performance, in agreement with the results of Davis et al.
(2006) that a curve dominates in ROC space if and only if it
dominates in PR space. Moreover, it is important to remark
that the prediction coverage listed in table 1 shows small
gap between the algorithms compared to the ROC curves.
As a subclass of two kinds of evaluation standards: accuracy
(including root mean squared error, ROC curves, precision-
recall, etc.) and usefulness (including coverage, confidence,
etc.), coverage been used only can not estimate the recon-
struction method roundly.

Further, in order to test the performance of the SWNI
method on networks with different size and sparseness, 100
random scale-free networks with an average degree 1 was
generated of sizes 10, 20, 50, 100, 200, 500, respectively. We
also generated another 100 test networks with an average de-
gree 2.4, 2.7, 4.4, 4.7, 6.5, 7 corresponding to network sizes
10, 20, 50, 100, 200 and 500.

In figure 2, the reconstruction results of all the 200 ar-
tificial networks with SWNI is shown for different network
sizes in different average degrees, which reveal the statisti-
cal property of the system. In this study, the area under the
curve (AUC) of both quantities in ROC and PR will be used
to give a compact description for varying number of genes.
By comparing the two lines in AUC (ROC) space in figure
2, it is possible to examine the influence of average degree
on the performance of our algorithm. An AUC (ROC) close
to 0.5 corresponds to random, and higher than 0.8 is good.
Under equal conditions (network topology and gene num-
bers), SWNI performed better for sparser networks, and the
AUC (PR) also confirm that. If we focus on another network
parameter, we can find that the method performance is also
influenced by the network size. SWNI performs well in all
conditions, and significantly improves with increase of net-
work size from 10 to 200, then tends to stabilize. However, it
is interesting that while AUC (ROC) keeps growing with the

Table 1. Features of the gene network inference algorithms and prediction coverage on our data set.

Algorithm Class Type of data Prediction coverage

SWNI Ordinary differential equation Steady-state 87%
ARACNE (Basso et al. 2005) Information-theoretic approach Steady-state/time-series 84%
Clustering (Amato et al. 2006) Hierarchical clustering Steady-state/time-series 63%
NIR Ordinary differential equation Steady-state 85%
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Table 2. Common algorithm evaluation metrics.

True edges Zero edges
(a) Confusion matrix

Predicted true TP FP
Predicted Zero FN TN

(b) Definition of metrics

True positive rate (TPR/sensitivity/recall)=TP/(TP+FN)
True negative rate (TNR/specificity) = TN/(TN+FP)
False positive rate (TPR) = FP/(FP+TN)
Precision = TP/(TP+FP)
Coverage = TP+TN/(TP+TN+FP+FN)

increase of gene number until 200 genes, the contrary trend
can be observed for AUC (PR). The reason is that along with
the rise of network size and sparsely, our algorithm can reach
higher sensitivity (large amount of correctly predicted true
edges, small false predictions on true edges) and specificity
(many correctly inferred zero edges, and few spurious edges)
at the cost of reducing precision (too high FP relative to TP).

Application to real steady-state gene perturbation data

We also collected steady-state with single gene perturbation
microarray data sets in table 3 for evaluation purpose in two
organisms: Arabidopsis thaliana and Escherichia coli. The

‘gold standard’ of known regulatory interactions in the two
regulatory networks was used to assess the performance of
the algorithms. However, the real data sets are not suited for
individually comparing between our algorithms and the oth-
ers, owing to the limited number of data and the imperfect
mechanical knowledge of the real network. Analysis per-
formed in silico in the previous section is better suited for
this task. Here, we still chose a ten-gene network controlling
flower morphogenesis in A. thaliana proposed by Mendoza
et al. (1999), and a nine-gene transcript sub-network of the
SOS pathway in E. coli controlling cell survival and repair
after DNA damage as the test networks (Kauffman 1974).

Figure 3 presents the performance of the three gene
network reconstruction models, SWNI, NIR and regulatory
strengths (RS) (De la Fuente et al. 2002), using the avail-
able experimental data. When we look at the specificity (fig-
ure 1), the SWNI approach outperforms the other two algo-
rithms for reaching nearly 97%. Meanwhile, the RS approach
get zero specificity because it does not ‘select’ regulators
but set all genes connected (no true negatives). As for the
performance precision of the algorithms, SWNI are signifi-
cantly better than both NIR and regulatory strength since it
tends to choose the most confident connections and has high
positive predictions with low-negative predictions as well.

Figure 1. Evaluating the reconstructions results on the gold standard networks
of 50 genes with average degree equals to 2.9.

Figure 2. Performance of SWNI applied to 100 scale-free networks with differ-
ent network sizes and average degree.
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Table 3. Real GRNs used as test networks and the experimental data sets.

Organism Type of data Number of genes Average-degree True edges Zero edges

Arabidopsis thaliana Local perturbation,
Steady-state

10 2.9 29 71

Escherichia coli local perturbation,
Steady-state

9 5.4 49 32

For instance, SWNI predicts 11 connections in the E. coli
sub-network and 10 of them are true, while NIR predicts 45
edges, of which only 28 really exist. On the other hand, by
setting too high a threshold of selecting significant gene in-
teractions, SWNI unavoidably ignores many secondary im-
portant connections and causes low sensitivity on both data
sets (many false negatives). Furthermore, higher noise lev-
els in the real data sets than the simulated ones, or imperfect
knowledge of the real gene network, may also affect the sen-
sitivity of SWNI. When focusing on the overall performance
(specificity, precision and coverage) of SWNI, we found that
the results relative to the first network with smaller average
degree is considerably better than the second, in line with the
in silico experimental results. Although the two test data sets
we used in this case are not very informative, since the cor-
responding test networks are small and densely connected,
SWNI still performs satisfactorily.

Discussion
We have proposed a rapidly inferring method SWNI based on
linear regression and tested our approach on both simulated
data sets and experimental gene expression data, which veri-
fied the efficiency and effectiveness of the algorithm. SWNI
is a deterministic algorithm based on linear regression, and
if the noise on the data is not more than 20%, it does not
require large data sets for reaching high sensitivity and ac-
curacy. It applies significance test not only on the holistic
model to determine if there really exists a linear relationship
between the dependent variable and the regressor variables,
but also on individual regressor variables that is crucial for
eliminating those dispensable regressors from a regression
model and keeping the important ones (Shieh et al. 2008).
The performance of SWNI can be further considerably im-
proved, both algorithmically and in terms of modelling. The
novelties and merits of SWNI are summarized as follows:

First, the predictive power is higher for sparse networks
than dense ones (Soranzo et al. 2007), in particular via SWNI
algorithm. When the network becomes larger and sparser, the
precision will drop with increase in true positives and cover-
age. As expected, there are many spurious edges relative to
correctly prediction positives, though they are not meaning-
ful to correctly predicted negatives, because that most of the
elements in the sparse weighted matrix are zero.

Second, a linear computational model in this paper is
used to reconstruct GRN. Although reverse engineering non-
linear dynamical systems with large noise using linear model
is a notoriously difficult problem, it has been demonstrated

that the use of a linear mapping leads to the efficiently cor-
rect deduction of the connectivity of an underlying nonlinear
behaviour (Gardner and Faith 2005). As for the network gen-
erated from real data sets with SWNI, we can find that our
novel approach is robust to nonlinear behaviour. Of course, it
may be because structural perturbations we used in this study
are more efficient than dynamic perturbations for the purpose
of nonlinear system prediction. Nevertheless, SWNI infers a
remarkably high number of true edges comparing with the
NIR and RS algorithms. Most positive predictions are true,
though not every true edges of the network are recovered
(many more true positives than false positives). Predictions
with high specificity and precision about gene interactions
may further give insights about gene pathway. Another ad-
vantage of such a linear strategy is that the model can capture
implicitly regulatory mechanisms that may not be measured
by microarray experiments at the metabolite level.

Third, there is a realization that a model can only de-
scribe some properties of the real gene expression networks.
SWNI is an unavoidably biased to single gene perturbation
and steady-sate expression data for uncovering gene regula-
tions. It emphasizes the most confident connections in the
networks, leaving out other aspects that are relevant for the
purpose of the study. In fact, the performance of all algo-
rithms on the simulated data sets are biased as they are based
on different theories. High predictive accuracy of SWNI can
be some due to the linear ODE are also used to generate the
simulated gene expression data in this case. Meanwhile, the
performance of other algorithms can be further improved by
modifying their parameters. For example, the NIR algorithm
can be affected by varying the parameter k that each gene can
be regulated at most by other k genes. However, as the best
fitted parameters are chosen for all the algorithms separately
and noise is added to the simulated data, our data sets should
not affect the results considerably and the reported perfor-
mance of them should not be far from the true one.

Further, the best performance versus run-time are
achieved by SWNI approach, while the traversal problem
of NIR causes both large time complexity and space com-
plexity. Our numerical experiments suggest that when the
number of genes is more than 200 or so and if the average
degree is smaller than 10 (a reasonable estimate for real bio-
logical networks), our algorithm shows better efficiency. Be-
sides, proper parallel computing algorithm will be designed
to solve larger-scale problems because a prohibitive amount
of computer time is required on a classical single-CPU com-
puter (Zomaya 2006). Thus, the study on developing and uti-
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lizing high performance computing system enables complet-
ing the gene network detection task in a reasonable time.

Acknowledgements

The authors are grateful to Ruisheng and Wang for helping to im-
prove the methods. This work was supported by Shanghai Leading
Academic Discipline Project under Grant No. J50103.

References
Albert R. and Barabasi A. L. 1999 Emergence of scaling in random

networks. Science 286, 509–512.
Albert R. and Barabasi A. L. 2000 Topology of evolving networks:

local events and universality. Phys. Rev. Lett. 85, 5234–5237.
Amato R., Ciaramella A., Deniskina N., Del Mondo C., di Bernardo

D., Donalek C. et al. 2006 A multi-step approach to time series
analysis and gene expression clustering. Bioinformatics 22, 589–
596.

Basso K., Margolin A. A., Stolovitzky G., Klein U., Dalla-Favera
and Califano A. 2005 Reverse engineering of regulatory net-
works in human B cells. Nat. Genet. 37, 382–390.

Beal M. J., Falciani F., Ghahramani Z., Rangel C. and Wild D. L.
2005 A Bayesian approach to reconstructing genetic regulatory
networks with hidden factors. Bioinformatics 21, 349–356.

Butte A. J. and Kohane I. S. 1999 Unsupervised knowledge dis-
covery in medical databases using relevance networks. In Fall
symposium (ed. N. Lorenzi), pp. 711-715. American Medical In-
formatics Association. Hanley and Belfu, Washington, USA.

Chen L. and Aihara K. 2002 Stability of genetic regulatory networks
with time delay. IEEE Trans. Circuits Syst. 49, 602–608.

Chen P. C. 2004 A computational model of a class of gene networks
with positive and negative controls. BioSystems 73, 13–24.

Davis J. and Goadrich M. 2006 The relationship between precision-
recall and ROC curves. In proceedings of the 23rd international
conference on machine learning, pp. 233–240. ACM, New York,
USA.

De Jong H. 2002 Medeling and simulation of genetic regulatory
systems: a literature review. J. Comput. Biol. 9, 67–103.

De la Fuente A., Brazhnik P. and Mendes P. 2002 Linking the
genes: inferring quantitative gene networks from microarray
data. Trends Genet. 18, 295–298.

De la Fuente A., Bing N., Hoeschele I. and Mendes P. 2004 Dis-
covery of meaningful associations in genomic data using partial
correlation coefficients. Bioinformatics 20, 3565–3574.

Faith J. J., Hayete B., Thaden J. T., Mogno I., Wierzbowski J. et
al. 2007 Large-scale mapping and validation of Escherichia coli
transcriptional regulation from a compendium of expression pro-
files. PLoS Biol. 5, 54–66.

Featherstone D. E. and Broadie K. 2002 Wrestling with pleiotrophy:
genomic and topological analysis of the yeast gene expression
network. Bioessays 24, 267–274.

Featherstone D. E., Rushton E. and Broadie K. 2005 Developmental
regulation of glutamate receptor field size by nonvesicular gluta-
mate release. Nat. Neurosci. 5, 141–146.

Friedman N., Nachman I. and Pe’er D. 2000 Using Bayesian net-
works to analyze gene expression data. J. Comput. Biol. 3, 601–
620.

Gardner T., di Bernardo D., Lorenz D. and Collins J. 2003 Inferring
genetic networks and identifying compound mode of action via
expression profiling. Science 301, 102–105.

Gardner T. S. and Faith J. 2005 Reverse-engineering transcription
control networks. Phys. Life Rev. 2, 65–88.

Iba H. and Mimura A. 2002 Inference of a gene regulatory net-
work by means of interactive evolutionary computing. Inform.
Sci. 145, 225–236.

Kauffman S. 1974 The large scale structure and dynamics of gene
control circuits: an ensemble approach. J. Theor. Biol. 44, 167–
190.

Liang S., Fuhrman S. and Somogyi R. R. 1998 A general reverse
engineering algorithm for inference of genetic network architec-
tures. Pac. Symp. Biocomput. 3, 18–29.

Margolin A. A. and Califano A. 2007 Theory and limitations of ge-
netic network inference from microarray data. Ann. N. Y. Acad.
Sci. 1115, 51–72.

Mendes P., Sha W. and Ye K. 2003 Artificial gene networks for
objective comparison of analysis algorithms. Bioinformatics 19,
22–29.

Mendoza L. Thieffry D. and Alvarez-Buylla E.R. 1999 Genetic con-
trol of flower morphogenesis in Arabidopsis thaliana: a logical
analysis. Bioinformatics 15, 593–606.

Schumacher M., Binder H. and Gerds T. 2007 Assessment of sur-
vival prediction models based on microarray data. Bioinformatics
23, 1768–1774.

Shieh G. S., Chen C., Yu C. and Huang J. 2008 Inferring transcrip-
tional compensation interactions in yeast via stepwise structure
equation modeling. BMC Bioinformatics 9, 1471–2105.

Soranzo N., Bianconi G. and Altafini C. 2007 Comparing associ-
ation network algorithms for reverse engineering of large-scale
gene regulatory networks: synthetic versus real data. Bioinfor-
matics 23, 1640–1647.

Styczynski M. P. and Stephanopoulos G. 2005 Overview of compu-
tational methods for the inference of gene regulatory networks.
Comp. Chem. Eng. 29, 519–534.

van Someren E. P. Wessels F. A, Backer E. and Reinders M. J. T.
2001 Robust genetic network modeling by adding noisy data.
Proc. IEEE-EURASIP Workshop on nonlinear signal and image
processing. Baltimore, Maryland, USA.

Wang Y., Joshi T. and Zhang X. S., Xu D. and Chen L. 2006 Infer-
ring gene regulatory networks from multiple microarray datasets.
Bioinformatics 22, 2413–2420.

Watts D. J. and Strogatz S. H. 1998 Collective dynamics of ‘small-
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