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Abstract

We have studied DNA sequence variation in and around the genes ICAM 1 and TNF, which play functional and correlated roles
in inflammatory processes and immune cell responses, in 12 diverse ethnic groups of India, with a view to investigating the
relative roles of demographic history and natural selection in shaping the observed patterns of variation. The total numbers of
single nucleotide polymorphisms (SNPs) detected at the /CAMI and TNF loci were 29 and 12, respectively. Haplotype and
allele frequencies differed significantly across populations. The site frequency spectra at these loci were significantly different
from those expected under neutrality, and showed an excess of intermediate-frequency variants consistent with balancing
selection. However, as expected under balancing selection, there was no significant reduction of Fgr values compared to
neutral autosomal loci. Mismatch distributions were consistent with population expansion for both loci. On the other hand,
the phylogenetic network among haplotypes for the TNF locus was similar to expectations under population expansion, while
that for the ICAMI was as expected under balancing selection. Nucleotide diversity at the ICAMI locus was an order of
magnitude lower in the promoter region, compared to the introns or exons, but no such difference was noted for the TNF gene.
Thus, we conclude that the pattern of nucleotide variation in these genes has been modulated by both demographic history
and selection. This is not surprising in view of the known allelic associations of several polymorphisms in these genes with
various diseases, both infectious and noninfectious.

[Sengupta S., Farheen S., Mukherjee N. and Majumder P. P. 2007 Patterns of nucleotide sequence variation in /JCAMI and TNF genes in

twelve ethnic groups of India: roles of demographic history and natural selection. J. Genet. 86, 225-239]

Introduction

The intercellular adhesion molecule one (/CAM1) and tumor
necrosis factor @ (TNF) genes are known to play important
functional and correlated roles in inflammatory processes
and immune cell responses in a wide range of diseases, both
noninfectious and infectious (Bjornsdottir and Cypcar 1999;
Dobbie et al. 1999; Fernandez-Arquero et al. 1999; Knight
and Kwiatkowski 1999; McGuire et al. 1999; Negoro et al.
1999; Striz et al. 1999; Kawasaki et al. 2000; Zeggini et
al. 2002; Thio et al. 2004). Both ICAM1 and TNF, appear
to play an important roles in malarial susceptibility (Hill
1992; Fernandez-Reyes et al. 1997; McGuire et al. 1999).
The pathogenecity of Plasmodium falciparum has been
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ascribed to the ability of the infected red blood cells to ad-
here to capillary endothelium (Paloske and Howard 1994).
ICAMI has been shown to be an endothelial cell adhesion re-
ceptor for Plasmodium falciparum (Berendt et al. 1989). In
a histopathological study, it was shown that the presence of
parasitised erythrocytes in cerebral vessels colocalized with
endothelial expression of /CAMI, indicating that ICAM]1 is
an endothelial receptor for infected erythrocytes in cerebral
malaria (Turner et al. 1994). Therefore, similar to the MHC
locus (Grimsley et al. 1998), it is possible that heterozygotes
for different variants at the JCAM1I locus enjoy a selective
advantage when exposed to various pathogens, since /[CAM
acts as a receptor. Thus, balancing selection may play an
important role in maintaining genetic variation at this locus.
Various alleles in the TNF promoter have been found to
be associated with cerebral malaria and severe malarial ane-
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mia (McGuire et al. 1999). However, TNF seems to have
both beneficial and detrimental functions. It can activate host
defense and promote resistance to infectious diseases, and it
can also be involved in toxicity (Kwiatkowski et al. 1993;
Gimenez et al. 2003). Thus, natural selection may not oper-
ate in a homogeneous or unidirectional mode at this locus. It
is also known that there is an interaction between the ICAM 1
and TNF gene products in the inflammatory processes and
immune cell responses in a wide range of diseases. The cy-
tokine TNF is known to upregulate the endothelial adhesion
molecule ICAM1 (Meager 1999).

The facts stated above indicate that a complex set of in-
teracting evolutionary forces may operate at the ICAMI and
TNF loci in maintaining the DNA sequence variation. More-
over, this variation is also determined in part, by the evolu-
tionary histories of the populations sampled to estimate it.
We, therefore, sought to explore the relative roles of demo-
graphic history and natural selection on the nature and ex-
tent of the DNA sequence variability at these two interacting
loci. For this, we have carried out a systematic survey, by
DNA sequencing, of polymorphisms in and around these two
genes in 208 individuals drawn from 12 population groups
of India with diverse ethnic, ecological and epidemiological
backgrounds. We have analysed these data, in conjunction
with mitochondrial DNA (mtDNA) sequence data, to draw
appropriate inferences.

Materials and methods

Populations

There are over 1000 endogamous ethnic groups present in
India (Singh 1992). These groups are broadly classified into
two major clusters—tribes and castes. The tribes are con-
sidered as the authochthones of India. The vast majority of
tribal groups live in isolation, inhabit geographically remote
areas and practice hunting and gathering or primitive forms
of agriculture. The caste groups belong to the Hindu reli-
gious fold, and practice various occupations. It is generally
acknowledged that there has been considerable admixture of
the caste populations with local tribals and with immigrants
from other regions of the world in prehistoric and historic
times (Thapar 2003). Both tribal and caste populations are
spread throughout India. Because of their different ancestral
histories, in this study we have sought to obtain representa-
tion of both caste and tribal groups from diverse geographi-
cal regions of India, to further reduce the possibility of biases
that may stem from regional differences in prevalence of in-
fections and other diseases.

This study was initiated after obtaining appropriate
ethical approvals. Blood samples were drawn with in-
formed consent from normal, healthy individuals unrelated
to the first cousin level. These individuals belonged to
12 distinct ethnic groups (six tribal and six caste) in-
habiting five different geographical regions of mainland
India and the Andaman and Nicobar Islands (figure 1).
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Figure 1. Geographical locations and background information re-
garding the study populations.

Anonymized blood samples from the Jarawas were collected
and stored at the Regional Medical Research Centre, Indian
Council of Medical Research, Port Blair and were used in
this study, after obtaining the approval of the Ethics Com-
mittee of the Regional Medical Research Centre, Port Blair.

Experimental protocols

The ICAM1 gene maps to 19p13.3—p13.2 and contains seven
exons. The TNF gene maps to 6p21.3 and contains four ex-
ons. Genomic sequences of these two genes were down-
loaded from the UCSC Genome Browser (http://genome.
ucsc.edu). The genomic region encompassing ICAMI was
repeat-masked using the program RepeatMasker2 (http://ftp.
genome.washington.edu.cgi-bin/RepeatMasker). Appropri-
ate primers to amplify the exons, introns, the 5" and a portion
of the 3’ untranslated regions (UTRs) of these genes (exclud-
ing the repeat-masked region of ICAM1) were designed. The
total number of bases resequenced for each individuals were
6000 and 3046, respectively for the ICAMI and TNF genes.

DNA amplification conditions by PCR were optimized
using control samples. PCR products were cleaned us-
ing Exonuclease I and Shrimp Alkaline Phosphatase, and
subjected to sequencing on an ABI-3100 automated se-
quencer using dye-terminator chemistry (primer sequences
and PCR conditions are given in table 1 of appendix.)
ABI trace files thus generated were analysed using the
PHRED software (http://www.mbt.washington.edu/phrap.
docs/phred.html), which assigns quality score to each base.
The PHRED outputs for all the individuals for any given
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PCR amplicon were aligned using PHRAP software (http:
//www.phrap.org/phredphrapconsed.html). The resulting as-
semblies were viewed using CONSED (http://www.phrap.
org/phredphrapconsed.html) that allows identification of the
putative sequence variants. All samples with putative variant
alleles were resequenced in reverse direction for confirma-
tion.

Statistical analysis

Allele frequencies at each variant site were computed by the
gene-counting method. Maximum likelihood estimates of
haplotype frequencies from the ICAMI and TNF polymor-
phic sites were obtained via the EM algorithm using the pro-
gram HAPLOPOP (Majumdar and Majumder 1999). Esti-
mation of standard diversity indices, mismatch distributions
and statistics for testing neutrality, including coalescent sim-
ulations, were performed using the Arlequin (Schneider et al.
2000) and DnaSP (Rozas et al. 2003) packages.

A number of statistics for testing neutrality of mutations
were computed, their tests of significance were performed
by coalescent simulations (1000 simulation runs were per-
formed for each case) using DnaSP. Observed and expected
allele frequency spectra were computed using a computer
program written by us. The expected number of sites at
which the derived allele is present i times in a sample of
size n was computed as, {s,/a,}/i, where s,, denotes the
observed number of sites and a, = Z;‘;ll(l/ i) (Watterson
1975; Fu 1995). Phylogenetic relationships among haplo-
types were obtained by the Network software (http://www.
fluxus-engineering.com/sharenet.htm).

Results and discussion

At the ICAM1 locus, 29 variant sites were identified by re-
sequencing the ICAM1 gene in 208 individuals drawn from
the 12 different ethnic groups. These have been reported in
Sengupta et al. (2004) and are summarized in table 1. Tribal
groups possess 22 of these 29 sites, while caste groups pos-
sess 21. Transition substitutions are more prevalent (64%)
than transversions (35%); one insertion/deletion (indel) poly-
morphism was observed. All variant sites are biallelic, except
for one site where a third T-allele appeared as GT heterozy-
gotes in two Konkan Brahmins of Maharashtra (we removed
these two individuals from the allele frequency estimation
for that site, and also from haplotype reconstruction.) In-
terestingly, we observed two fairly common nonsynonymous
SNPs (Glycine to Threonine) in our samples at nucleotide
positions 13487 and 13542, that have not been reported ear-
lier. The 29 SNPs detected by resequencing represent an
overall occurrence of 1 SNP per 213 bp; 1 per 207 bp in
introns and 1 per 177 bp in exons. The minor allele frequen-
cies of six of the seven nonsynonymous SNPs are above 5%
in one or more ethnic groups in our sample. Only five of
29 sites are shared among all the 11 ethnic groups inhab-
iting mainland India. A wide differences in allele frequen-
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cies across groups are observed (table 1). The Jarawas are
monomorphic for 25 of 29 sites.

At the TNF locus, 12 SNPs (nine transitions and three
transversions) and two indels were identified. Four new
SNPs were discovered, of which three are present only in the
Jarawa. One of these private sites among the Jarawa (C500T)
is highly polymorphic, the frequency of the rarer allele at this
site is 0.343. There is a wide variation in allele frequencies
across populations (table 2).

Nucleotide diversity values (x10*) across populations are
very similar (2.5-5.0) for ICAM1 (table 1), while there is
slightly greater variability (1.5-5.4) for TNF (table 2). Un-
fortunately, no comparable data on neutral autosomal loci
are available in Indian population groups. However, the nu-
cleotide diversities in Indian groups estimated from mtDNA
HVSI sequence data are in the range of 0.015-0.022 (Basu
et al. 2003). Although it appears to be a reduction of nu-
cleotide diversity at the ICAM1 and TNF loci by two orders
of magnitude compared to the mtDNA, it must be remem-
bered that the rate of nucleotide substitution in the HVSI re-
gion of mtDNA is known to be substantially higher than in
nuclear genomic regions. The average nucleotide sequence
diversity in autosomal regions has been estimated to be about
7.5 x 107* (Sachidanandam et al. 2001), although it can vary
by an order of magnitude across genomic regions (Reich et
al. 2002). Thus, there is no significant evidence of reduc-
tion or enhancement of nucleotide diversity in the ICAM1
and TNF genes.

However, when the nucleotide diversities were calculated
separately for various regions of the genes (table 3), we found
that there was a ten-fold reduction in nucleotide diversity in
the promoter region of the /ICAM1 gene compared to the in-
trons or exons of this gene, which exhibited similar levels
of nucleotide diversity. Such a difference was, however not
found in the case of the TNF gene. This finding is indica-
tive of positive selection pressure in the promoter region of
ICAM].

Frequencies of haplotypes at the ICAMI locus were es-
timated (table 4; table 2 of appendix) using genotype fre-
quency data of only those 17 polymorphic sites at which the
frequency of the rarer allele exceeded 0.05 in at least one
of the 12 populations. A total of 61 haplotypes are present,
about 34% (19 of 61) of which are shared by at least two
groups. Three haplotypes—HI1 (21% in the pooled sam-
ple), H5 (14%) and H9 (12%)—are the most frequent ones.
The southern-Indian Brahmin group, Iyer harbour the largest
number of haplotypes (16), while the Jarawas harbour the
lowest number (8). At the TNF locus, 36 haplotypes are ob-
served (table 5; table 3 of appendix), of which 11 are shared
among groups. Haplotype H1 frequency is 62.5% in the
pooled sample. The vast majority of the haplotypes observed
at both the loci have arisen by recombination.

To investigate the distribution of genetic variation at these
two loci, we computed the site frequency spectra for tribal
and caste groups, separately for the ICAM1 (figure 2a,b) and
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Table 2. Minor allele * frequencies at observed single nucleotide polymorphisms in and around the TNF gene in
12 ethnic groups of India and estimated nucleotide diversities.

Position Population code

& BHU MZO MNP SAN WBR KAD IYR MUR SBR MRT KBR JAR
nucleotide Tribe Tribe Caste Tribe Caste Tribe Caste Tribe Caste Caste Caste Tribe
change® Region a3 @n Jdn ae 16y 16y (A7) (16) (16) (15 (16) (35)
A-572C Promoter 0.059 0.031 0.067* 0.067*
G-308A Promoter 0.038 0.031 0.033 0.029 0.200* 0.061

G-303A Promoter 0.100
G-238A Promoter 0.154 0.024 0.125 0.031 0.029 0.031 0.033 0.033 0.094
T-77A Promoter 0.031 0.125 0.029 0.031 0.067

C4T Promoter 0.157
C56T Exonl (5UTR) 0.048 0.182

G420A Intronl 0.154 0.024 0.125 0.031 0.029 0.031 0.033 0.033 0.094
G489A Intronl 0.077 0.167 0.219 0.094 0.094 0.118 0.187 0.133 0.2 0.062
C500T Intronl 0.343
AATG

Indel at 625 Intronl 0.095 0.031 0.031 0.062 0.067

AG

Indel at 731 Intronl 0.048 0.031 0.094 0.031 0.033 0.129
A1304G Intron3 0.154 0.024 0.156 0.187 0.059* 0.062 0.100 0.036 0.133 0.147
A2053C Exon4 (3’UTR) 0.062* 0.031 0.087 0.031 0.067 0.143
Nucleotide diversity (7) x 10* 3.401 2.570 1.020 1.516 3.952 4.780 2.206 3.906 3.860 2.160 2.710 5.377

Figures in parentheses indicate the numbers of individuals sampled.
* The allele with a lower frequency in the pooled sample is designated as the minor allele. Blank cells frequencies

indicate zero frequencies;

Nucleotide positions have been counted from the transcriptional start site. Nucleotides in italics are the derived ones,

determined by comparing the human sequence with that of the chimpanzee. SNPs indicated in boldface have been

considered for haplotype determination;

o

cluded from allele frequency estimation;

*

Table 3. Nucleotide diversities (x10*) in differ-
ent regions of the ICAM1 and TNF genes among
tribal and caste populations of India.

Gene Region Tribe Caste
ICAM1 Promoter 0.281 0.568
Introns 4.178 4.193
Exons 5.847 6.612
Exons + UTRs 5.194 5.910
TNF*
Introns 6.235 4.368
UTR 3.597 2.716

*There are no polymorphic sites in the exons.

the TNF (figure 3a,b) loci. The differences between the
observed and expected site frequency spectra are statisti-
cally significant for both ICAM1 and TNF. The P-values cor-
responding to the Kolmogorov—Smirnov test statistic were
< 0.001 for each of the loci (the observed site frequency
spectrum is significantly different from that expected under
neutrality for most populations for each of the two loci, de-
tails are not presented for brevity). At both loci, there is
evidence of a significantly higher frequency of intermediate-
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A third allele T was detected as GT heterozygotes in two KBR individuals; These two individuals have been ex-

Significantly (P < 0.05) deviated from Hardy—Weinberg equilibrium.

frequency variants, which can result from balancing selection
(Bamshad and Wooding 2003).

While various demographic processes can also affect the
distribution of genetic variation, the effects of these processes
are more-or-less uniform over the entire genome. On the
other hand, natural selection affects functional and nonfunc-
tional regions of the genome differentially (Bamshad and
Wooding 2003). We have therefore, also computed the ob-
served and expected site frequency spectra for the ICAMI
locus separately for the promoter region, exons and introns
for tribal (figure 2c,d,e) and caste (figure 2f, g,h) groups.
Results for the TNF locus for these genomic regions are pre-
sented in figure 3 c,d,e for the tribal groups, and in figure 3
f,g,h for the caste groups. The site frequency spectra for
these regions—promoter, exons and introns—show the same
excess of intermediate-frequency variants compared to ex-
pectations under neutrality mentioned earlier, except for the
intron region of ICAM1 (figure 2e,h) where the pattern is
similar to that expected for a neutral locus (Bamshad and
Wooding 2003). These excesses are more pronounced for
TNF than for ICAMI. No formal statistical tests for dif-
ferences between the observed and expected site frequency
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spectra were done for these separate genomic regions since
the observed numbers of sites in these regions were small.
However, although for the ICAM1 promoter region a reduc-
tion in nucleotide diversity, consistent with positive selec-
tion was observed, there is no evidence of excess of low-
frequency alleles that is expected under positive selection.
Various statistics, notably Tajima (1989) D, Fu and Li’s
(1993) D+ and Fx*, and Fu’s (1997) Fg, have been proposed
to examine various characteristics of the site frequency spec-
tra for testing selective neutrality of mutations. Since popula-
tion amalgamation may significantly affect the values of the
test statistics, we have computed these statistics separately
for each population (tables 4, 5). Our results show that for
ICAMI1, the Fy values are statistically significant for 10 of
the 12 populations (table 4), while the other statistics are not
(except for one F* corresponding to the Jarawa). For TNF,
the Fg values are statistically significant for five of the 12
populations (table 5). The other statistics are not significant
for any of the populations, except for one D value. Through
computer simulations, Fu (1997) has shown that Fy is par-
ticularly sensitive to demographic history, in the sense that if
only Fg is significant while the other statistics are not, then
it is more likely to be due to population expansion than nat-
ural selection. One way to resolve this confounding effect
of positive or background selection and population growth is
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to investigate the mismatch distribution, which is expected to
be smooth and unimodal in an expanding population (Rogers
and Harpending 1992), but not necessarily so under selec-
tion. We have plotted the mismatch distributions among the
tribes and castes using data of the ICAMI and TNF loci and,
to obtain an independent calibration, also the data of the
mtDNA HVSI region taken from Basu et al. (2003), per-
taining to nine of the 12 populations considered here (fig-
ure 4). The mtDNA mismatch distributions are unimodal for
both the tribes and castes with raggedness values (Rogers and
Harpending 1992) of 0.02 and 0.03, respectively. The mis-
match distributions for both ICAM1 and TNF are also uni-
modal. The raggedness values for ICAM1 are 0.06 for tribes
and 0.05 for castes; the corresponding values for TNF are
0.07 and 0.04, respectively. The notable feature of the mis-
match distributions for TNF is that these have modes at 1 and
0, respectively, for tribes and castes. This feature was not ob-
served either for the ICAM1 or for the mtDNA data. Thus,
while the mismatch distributions for both the genes (ICAM1
and TNF) are in good agreement with a population expan-
sion model, the distribution for TNF is similar to that ex-
pected under a recent population expansion. However, since
demographic history is a characteristic of the population, the
implications of these distinct patterns are unclear. It is prob-
ably not due to a recent selective sweep operating at the TNF
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locus, because if there had been a recent selective sweep, one
would expect an excess of rare frequency alleles, while in
fact an excess of intermediate frequency alleles is observed
at this locus.

We have also examined the Fgr values at these loci, and
have computed them separately for promoter, intronic and
exonic polymorphisms for ICAMI (figure 5a) and TNF (fig-
ure 5b). The Fgr value over all polymorphic sites for TNF
(0.08; P < 0.001) is marginally higher than that for ICAM1
(0.06; P < 0.05). These values are only slightly higher than
observed (0.04) for neutral autosomal loci (Basu et al. 2003).
Since balancing selection is expected to reduce the Fs7 value
compared to neutral loci, our finding does not indicate any
strong effect of balancing selection at the loci under study.
There is, however, considerable variation in Fgr values be-
tween tribes and castes: for ICAMI these values are, re-
spectively 0.05 and 0.02, while for TNF, the values are 0.09
and 0.02, respectively. All the Fgr values are statistically
significant (P < 0.05). The tribal groups are more differ-
entiated than that of the caste groups, which may be a re-
sult of their isolation for a longer period of time than that
of the caste groups. Further, the locus-specific Fsr values
are highly structured by the position within the gene. For
ICAM]1 (figure 5a), the Fg7 values for polymorphic loci that
are in exons are substantially higher than those located in the
promoter region or in the introns. For TNF (figure 5b), the
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phisms.

exonic polymorphisms are located only in the untranslated
regions of the exons—these loci have higher values than
those located in the introns or in the promoter. The only
exception is the G-308A promoter polymorphism at which
a high Fgr value was observed; this polymorphism is known
to be associated with the susceptibility to severe malaria,
leishmaniasis, scarring trachoma and lepromatous leprosy
(Knight and Kwiatkowski 1999). One reason for observ-
ing higher Fgr values for exonic polymorphisms like that
of the TNF promoter polymorphism G-3084, is that these
polymorphisms may also be associated with certain diseases
that possibly have variable prevalence across populations.
Thus, these loci may be under selective influence in some,
but not all populations, resulting in wide differences in al-
lele frequencies across populations and consequently higher
Fsr values. Alternatively, high Fgr values may simply be
because of genetic drift which, however, is unlikely because
the observed pattern of Fgr values by genomic region (pro-
moter, exon, intron) would then not be expected.

To further examine whether the observed patterns of ge-
netic variation, especially at the ICAMI locus, are consis-
tent with population expansion, we have constructed median-
joining networks of the major haplotypes observed at these
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loci (figure 6). Under a population expansion model, a star
like phylogeny of haplotypes is expected (Takahata and Nei
1990; Rogers and Harpending 1992). Balancing selection,
on the other hand, is expected to retain multiple lineages
for a long time, resulting in a network in which there are
some high-frequency clusters and some low-frequency clus-
ters with long branches (Takahata and Nei 1990). Such a
pattern is observed for ICAM1, and to some extent for TNF.
However, for TNF, the network is essentially star like, con-
sistent with population expansion, as earlier inferred from the
mismatch distributions.

To summarize, nucleotide diversity levels in the genes
or their component regions (promoter, exon, intron) do not
show any statistically significant evidence of reduction or en-
hancement compared to other autosomal genes. The only
exception is the promoter region of ICAM1, where we have
noted a significant reduction of nucleotide diversity consis-
tent with positive selection. If a genomic region is under
positive selection, then it is expected that there will be a
significant excess of low-frequency alleles compared to neu-
tral expectations. This, however, was not observed. In fact,
consistent with balancing selection, at both the loci and in
their component regions there were significant excesses of
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H16
H17

Figure 6. Median-joining networks depicting phylogenetic rela-
tionships among haplotypes observed in at least three individuals at
the, (a) ICAM1 and (b) TNF loci. [The identification numbers of
haplotypes (nodes) and of polymorphisms given on the edges join-
ing the nodes are provided in table 2 and 3 of appendixes and for
ICAM1 and TNF, respectively. Many apparent reticulations are due
to recombination. ]

intermediate-frequency alleles; these excesses were greater
for TNF than for ICAM1. Thus, we did not observe a pattern
of nucleotide variation that is consistent with a simple and
uniform mode of natural selection in either genes. Since it is
known (Bamshad and Wooding 2003) that demographic his-
tories of populations can result in patterns of nucleotide vari-
ation that are similar to those expected under various mod-
els of natural selection, we have calculated statistics relevant
for inferring demographic histories. Fu’s (1997) Fg statis-
tic and unimodality of mismatch distributions indicated that
both the tribal and caste populations underwent significant
population expansion. The median-joining network of hap-
lotypes at the TNF locus was star like, consistent with pop-
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ulation expansion, but that of the haplotypes at the ICAM1
locus was not. The coefficient of population differentiation
Fgr also did not show any significant excess or reduction,
although higher values were observed for the promoter and
exon regions of both ICAMI and TNF, consistent with nat-
ural selection. Thus, we see that the patterns of nucleotide
variation in these genes, that perform related functions, is
complex and is not consistent with a simple model of se-
lection. Our results indicate that both natural selection and
differential demographic histories have jointly contributed to
the observed patterns of nucleotide diversity and haplotype
structure. The effect of natural selection seems more pro-
nounced in the promoter regions of these genes, although it
is unclear whether the selective pressure is balancing or pos-
itive.

The complexity of our results is comparable to those
found at the Duffy blood group (DARC) locus (Hamblin and
Di Rienzo 2000). The TNF gene is located between genes
that comprise the HLA gene cluster on chromosome six,
and there are functionally important genes (e.g., intercellular
adhesion molecule genes, erythropoietin receptor and low-
density lipoprotein receptor) located around the ICAMI gene
on chromosome 19. The pattern of selection operating on
the HLA gene cluster is known to be complex (Takahata et
al. 1992; Klein et al. 1993; Satta et al. 1994). Since the TNF
gene is located within this cluster, it is possible that hitchhik-
ing effects may have contributed to the pattern of nucleotide
sequence variation in the TNF gene. The same phenomenon
may have also operated on the ICAM1 gene, if indeed se-
lective effects have been strong on the nearby genes. More-
over, multiple distinct episodes of selection may have op-
erated on the TNF and ICAM1 genes, in view of their cen-
tral importance in interacting with pathogens and in other
noninfectious diseases. The ICAMIX/" variant has been
found to predispose individuals in Kenya to cerebral malaria
(Fernandez-Reyes et al. 1997). Although this variant was
found in several populations in our study, its frequency is
much lower than in Kenya. Similarly, many variants at the
TNF locus that have been found to be associated with var-
ious diseases, both infectious and noninfectious (Gimenez
et al. 2003), are found in widely differing frequencies (e.g.,
G-238A, G-308A), or not found at all in Indian population
groups. Thus, it is possible that temporal and spatial varia-
tions in prevalence of pathogens and diseases, together with
variable ancestral histories of population groups, have re-
sulted in the complex pattern of nucleotide sequence varia-
tion at these two loci.
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Table 2. Sixty-one ICAM1 haplotypes present in 12 ethnic groups of India.
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The numbers in italics correspond to the 17 polymorphic sites in the 5 — 3’ direction in the ICAM1 gene (table 1) used

to reconstruct the haplotypes.
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Table 3. Thirty-six TNF haplotypes present in 12 ethnic groups of India.
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