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Introduction

One of the most common designs for identification of genes
involved in complex human diseases is the transmission dis-
equilibrium test (TDT) design (Spielmann et al. 1993). This
design consists in the collection of cases (affected individu-
als) and their two parents (commonly called triads of case–
parents). The analysis of such data is based on comparison of
the numbers of transmissions and nontransmissions of alle-
les for a candidate locus from parents to affected child. Here
we mean by a candidate locus any variant or marker near or
within the coding sequence of a candidate gene, whose func-
tion or position (or both) suggest its involvement in disease
aetiology.

Differential transmission of alleles, if any, indicates link-
age and association between the candidate locus and the dis-
ease. Consider, without loss of generality, a candidate locus
with two alleles A and a (in the case of multiple alleles such
as for STR markers, one would consider testing each allele
A against all others pooled in one non-A (a) allele). The ex-
pression of the TDT statistic is T = (b − c)2/(b + c), where
b (respectively c) is the number of heterozygous parents who
transmit the A (respectively a) allele to their affected child.
Thus, for a triad to be informative (contribute to T value), at
least one parent needs to be heterozygous for the candidate
locus. TDT is a test of both linkage and association; the null
hypothesis is linkage and/or association and it was shown
that the expectation of TDT under the alternative hypothesis
is proportional to (1−2θ)δ, where θ is the recombination frac-
tion between the candidate locus and the disease locus and δ
the linkage disequilibrium between the two loci.

Under the null hypothesis, heterozygous parents transmit
either allele (A, a) to an affected offspring with equal proba-
bility. For a large number of triads (>20), the distribution of
T can be approximated by a chi-square distribution with one
degree of freedom (d.f.). Many approximations have been

*For correspondence. E-mail: Ahmed.Rebai@cbs.rnrt.tn.

proposed to compute power of the TDT statistic for a given
sample size and gene parameters or conversely to get sam-
ple size needed to reach a given power (Knapp 1999; Schaid
1999; Chen and Deng 2001; Brown 2004). In their seminal
paper, Risch and Merikangas (1996) showed that for a mul-
tiplicative mode of inheritance (MOI) for the susceptibility
gene, sample size depends on two parameters: the frequency
of the risk allele at the candidate locus (p) and the genotypic
relative risk (GRR) attributable to that locus. GRR could
be expressed as a function of a single parameter, denoted
γ, depending on the MOI (Schaid 1999). Various analytical
approaches based on the normal distribution of the square
root of the TDT statistic have since been proposed and have
yielded comparable results (Chen and Deng 2001; Iles 2002).
However, none of these methods has provided a simple ex-
pression of sample size as a function of p and γ.

Deng and Chen (2001) showed that under the alterna-
tive hypothesis the test statistic TDT follows approximately
a noncentral chi-square. They gave the general expression of
the noncentrality parameter as a function of sample size, al-
lele frequencies, penetrances and prevalence of the candidate
locus.

Here we build on their work and derive analytical expres-
sions of the noncentrality parameter as a function of p and γ
for different MOI. Using approximations for the noncentral
chi-square quantile computation we provide expressions of
sample size N as simple functions of p and γ, for a given
power and significance level and for different MOI. The per-
formance of our approximations is assessed by comparison to
other methods. Extension of our approximations to compute
sample size for case–control association studies is discussed.

Materials and methods

Parameter settings

We consider a candidate locus with two alleles A and a where
A is putatively associated with the disease status (increasing
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disease risk). The frequency of A in the general population
is p. We denote by f0, f1 and f2 the penetrance or preva-
lence (the probability of developing the disease when having
a genotype) of genotypes aa, Aa and AA, respectively. The
genotypic risk ratio (GRR) of a given genotype is defined
as the ratio of its prevalence to that of a reference genotype
(with no copy of the risk allele, here aa). We thus have to
specify two GRRs (g0 = 1) : g1 = f1/ f0 and g2 = f2/ f0
that can be expressed according to a single parameter (de-
noted γ) depending on the MOI (table 1). For complex dis-
eases, where MOI is generally unknown, four common mod-
els are generally considered in power studies of TDT: reces-
sive, dominant, additive and multiplicative. Therefore, only
two parameters need to be specified in power computations:
γ and p. Note that γ = 1 should correspond to no effect of
the candidate locus and all GRRs should be equal in this case.
This explains why we used 2γ − 1 for the additive model (as
in Schaid 1999) and not 2γ as used by other authors (Camp
1999; Knapp 1999).

Analytical approximation

Deng and Chen (2001) have shown that the TDT statistic fol-
lows approximately a noncentral chi-square distribution un-
der the alternative hypothesis of linkage and association. Us-
ing similar computation to those of Nielsen et al. (1998) we
can get the general expression of the noncentrality parameter
λ as a function of sample size N, frequency p, and genotypes
and disease prevalence as below:

λ = N
2p(1 − p)[pg2 + (1 − 2p)g1 − (1 − p)]2

[pg2 + g1 + (1 − p)][p2g2 + 2p(1 − p)g1 + (1 − p)2]
.

(1)
Starting from this expression and using table 1, we found, af-
ter some algebraic developments using Maple®, the follow-
ing expressions of λ for the multiplicative and additive MOI
(similar expressions are obtained for other MOI):

Multiplicative: λM = N
2p(1 − p)(γ − 1)2

[1 + p(γ − 1)](γ + 1)
(2)

Additive: λA = N
2p(1 − p)(γ − 1)2

[1 + γ + 2p(γ − 1)][2p(γ − 1) + 1]
. (3)

Using the approximation proposed by Winer et al. (1991)
for a noncentral chi-square with one d.f. and noncentrality
parameter λ, the power at a significance level α can be com-
puted as

π = Pr(χ2
(1,λ) > Cα) ≈ Pr(Z > Z0),

where Ca is the α-quantile of a central chi-square with 1 d.f.,
Z a standard normal deviate and Z0 the π-quantile of the nor-
mal distribution. Z0 and λ are related by

Z0 =

√
2Ca(1 + λ) − √λ + (λ + 1)2

√
1 + 2λ

. (4)

For a power of π = 80% we have Z0 = −0.84. We can obtain
λ for any given power and significance level by numerically
solving equation 4. Table 2 gives values of Cα and λ for dif-
ferent α values and for 80% power, calculated using Maple ®.

From equations (2) and (3) we computed N for different
values of p, ranging from 0.01 (rare) to 0.5 (common), and
γ (ranging from 1.5 to 4). We considered a power of 80%
and α = 5 × 10−8 to allow comparison with other published
results (see Discussion).

Performance assessment

To assess the performance of the approximations provided
by the analytical equations above, we computed the number
of triads needed, N, for the same sets of parameters using
the numerical method implemented in TDT Power Calcula-
tor (TDT-PC) computer program (Chen and Deng 2001). We
also calculated simulated power (10,000 replications) cor-
responding to sample sizes obtained with our formulas for
many parameter combinations (p = 0.01, 0.1, 0.2, 0.3, 0.4,
0.5, and γ = 1.5, 2.0, 2.5, 3.0, 3.5, 4.0). This power should
be close to 80% for our approximation to be a good method
for sample size computation.

Table 1. Genetic models and their respective genotypic relative risks.

Mode of inheritance

Genotype relative risk Multiplicative Additive Recessive Dominant
g1 (for Aa genotype)∗ γ γ 1 γ
g2 (for AA genotype) γ2 2γ − 1 γ γ

*A is the risk allele.

Table 2. Value of noncentrality parameter λ for different values of significance level α and for 80% power.

α 0.05 0.01 0.005 0.001 5 × 10−4 10−4 5 × 10−5 10−6 5 × 10−6 5 × 10−8

Cα∗ 3.841 6.634 7.879 0.827 12.115 15.136 16.448 19.511 20.837 29.716
λ 13.584 21.248 24.519 32.046 35.263 42.687 45.867 53.211 56.358 77.104
*α-Quantile of a central chi-square distribution with 1 degree of freedom.
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Results

Sample size calculations and comparison with other methods

Studying mathematical properties of N as a function of p and
γ we found that N(p, γ) is an increasing function of both pa-
rameters (for γ > 1). Evolution of sample size N for the
multiplicative and additive MOI are reported in figures 1 and
2. Comparing our results for different values of γ and p with
results obtained from the method of Chen and Deng (2001)
based on numerical integration, we found that sample sizes
are very close to each other (within 3%) on either side, indi-
cating absence of bias in the comparison (results not shown).
Similar results were found for all four MOI (in table 1).

Figure 1 gives the evolution of N according to γ for
p = 0.1 and p = 0.5 and for multiplicative and additive MOI.
Figure 2 depicts evolution of N as a function of p for γ = 2.
We see a typical U-shaped function. In fact, using analyti-
cal derivations one can show that N, for any fixed γ, has a
minimum at frequency

p = (1 +
√
γ)−1 for multiplicative MOI, (5)

p =
√

6γ3 + γ2 − 4γ + 1

/
6γ(γ − 1) for additive MOI. (6)

Figure 1. Sample size as a function of GRR parameter γ and for
p = 0.1 and p = 0.5 and for both multiplicative (M) and additive
(A) MOI.

Values of these minima vary from 0.45 to 0.33 and from 0.37
to 0.20 when γ varies from 1.5 to 4, respectively. They are
0.41 and 0.31 for γ = 2 (figure 2).

From figures 1 and 2, one can see that sample sizes ob-
tained under the multiplicative MOI are always smaller than
those found under the additive MOI. The difference increases
when γ decreases (for γ > 1) and p increases.

Figure 2. Sample size as a function of frequency p for γ = 2 for
additive (A) and multiplicative (M) MOI.

As consistently reported by all methods, we see from our
data that for rare alleles (p < 0.10) and small GRR (γ < 2)
more than 2200 triads are needed to achieve 80% power
at 5 × 10−8 level; TDT, like most commonly used associa-
tion tests, is inefficient. For non-rare and common alleles
(0.1 ≤ p ≤ 0.50), often reported as risk alleles for com-
plex diseases, sample sizes needed are in the range 600–2000
for low GRR (γ ≤ 2) and 100–350 for relatively high GRR
(γ > 2).

Precision

The average simulated power for the parameter combinations
studied was 80.9% and 79.6% for multiplicative and additive
MOI, respectively. The corresponding standard deviations
are 0.0093 and 0.0081, showing that simulated power is very
close to the expected value of 80%. Note that it is only for
high GRR (γ = 4) and the multiplicative model that the simu-
lated power is always larger than 80% (84.3%±3.1%). Thus
for low and medium GRR (1.5 ≤ γ ≤ 3.50) our method gives
correct power.

Discussion

Comparison with other methods

Among all previously described sample size computation
methods for TDT, our method has the great advantage of sim-
plicity, while keeping good performance compared to oth-
ers. Our equations (2) and (3) could be easily implemented
in any programming language. For commonly used signif-
icance levels, the values of parameter λ could be obtained
from our table 2.

Another expression of N has been proposed by Schaid
(1996) for multiplicative MOI, based on a formulation of
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TDT as a general score test: λM = N
log(γ)22p(1 − p)γ

[1 + p(γ − 1)](γ + 1)
.

This expression is derived for log-additive model and small
GRR. As expected, it reduces (at the first-order Taylor series
expansion since log(γ) ≈ γ−1 for γ close to 1) to our expres-
sion (2) for small GRR and gives very close sample sizes for
γ ≤ 2.

Practical use of our approximation for sample size computation

Most previous studies that addressed sample size or power
computation have focussed on evaluation and comparison of
performance of the methods rather than on practical recom-
mendations for experimenters on how to use them in design-
ing TDT studies. Even available programs are not easy to
use by experimenters. A particular problem is that before
any sample size calculation one should choose which MOI
to consider, and should give a value for allele frequency and
GRRs, whereas in practice all these parameters are unknown.
If one considers that the disease locus in not the marker itself
(incomplete linkage or linkage disequilibrium) the computa-
tions become even more problematic. Below we give some
practical guidelines for sample size computation using our
method.

How to choose risk allele frequency: The HapMap project (The
International HapMap Consortium 2003) provides data on
thousands of single-nucleotide polymorphism (SNP) mark-
ers throughout the genome. One can find which are the best
SNP markers to use (depending on the origin of the popula-
tion studied: African, European, Asian) and their allele and
haplotype frequencies. So if one is interested in testing a
candidate locus for association with a common disease, one
could use an average allele frequency of the minor alleles of
the considered SNPs or even the frequency of the haplotypes
of this allele. Most alleles reported to be associated with
increasing risk in complex diseases have frequencies in the
range 0.1–0.5. So, if experimenters have no idea of the risk
allele frequency, they can either use p = 0.3 as an average
or compute the minimal sample size needed for any given
γ (the corresponding frequencies are thus obtained from our
expressions (5) and (6) and are in the range 0.20–0.50).

How to choose mode of inheritance (MOI): Risch and Merikan-
gas (1996) advocated the use of the multiplicative MOI for
calculating sample sizes. This model is, in fact, a conve-
nient approximation for complex diseases because the tests
based on the multiplicative model (even if the true MOI is
not) remain valid in the sense of having correct size (be-
cause of independence of parental transmissions). However,
it may not be optimal in all situations in the sense of being the
most powerful and the sample sizes it provides are underesti-
mates (Schaid 1999). Moreover, results from many associa-
tion studies show that the additive MOI is better suited to de-
scribe the effect of susceptibility genes of complex diseases
(the multiplicative model attributes extreme GRR to the AA

genotype). We propose here that computations be done for
both models providing a sample size interval within which
the experimenter may choose.

Which power and significance level to use: There is a consen-
sus on the use of 80% power for sample size but less strin-
gent power (for example 50%, which corresponds to miss-
ing or finding a true positive with equal chances) could be
used if one is looking for association with a candidate lo-
cus for the first time. A significance level of 5 × 10−8 is
used in most studies. This value was proposed in Risch and
Merikangas (1996) on the basis of a Bonferroni correction
accounting for five diallelic markers being tested in each of
100,000 genes (one million tests). However, since the total
number of genes in the human genome is currently estimated
in the range 25,000–35,000 (Pennisi 2003) and recent stud-
ies (Goldstein et al. 2003) show that 150,000 representative
SNPs are enough for a genome scan in European popula-
tions, a level of about 2 × 10−7 may be more appropriate.
If we consider that a genewide test is performed to ensure a
genomewide level of 5% for a genome with 30,000 genes (all
of which are potentially candidates) and a disease having 10
risk genes, a per test level of 5 × 10−5 is more appropriate
(van den Oord and Sullivan 2003). We recommend this level
for future sample size calculations.

For which GRR: Most candidate genes that were reported to
be associated with complex diseases have low to moderate
GRR (1.5 ≤ γ ≤ 3). A value of γ = 2 is, in this context, a
good compromise. However, if sample size computations are
to be done for a replication study, after an initial positive or
negative report, one can roughly estimate γ by the ratio b/c,
where b and c are transmission and nontransmission respec-
tively (Schaid 1999).

Generalization to case–control sample size computation

Long et al. (1997) gave the expression, under multiplicative
MOI, of the noncentrality parameters of the chi-square test
used in case–control association studies. We derived similar
expressions for other MOI and used our approach (based on
approximation (4)) to obtain the expression of sample size as
a function of p, γ and disease prevalence.

Implementation

A Microsoft Excel worksheet implements our approach and
computes sample sizes for 80% power, for a given γ or p or
both and a chosen significance level α. This worksheet also
implements our method for case–control designs and is avail-
able on request. Another implementation, in the R language
(http://www.r-project.com/) as part of an R package contain-
ing tools for power and sample size computation for many
genetic problems, is also available.
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Application

We planned to study association of the DSS1 gene (MIM
601285) in autistic disorder (MIM 209850) with a TDT de-
sign. A first investigation with 28 triads and marker D7S479
showed significant association, although the number of infor-
mative transmissions was very small (only 5). We explored
the HapMap data and found eight SNP within the DSS1 cod-
ing sequence. Frequencies of the minor allele are in the range
0.12–0.43 with an average of 0.28. We thus computed sam-
ple size with p = 0.28, γ = 2, 80% power and α = 5 × 10−5.
We found that we need N = 218 and 315 trios for multiplica-
tive and additive MOI, respectively. For α = 5% the sample
sizes were 65 and 93, respectively.

We think that the sample sizes obtained by our approach
and according to the guidelines we provide would be of great
help to human geneticists in determining sample size require-
ments when designing their association studies.
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