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SIMULATION OF EXTREME WAVE INTERACTION WITH 

MONOPILE MOUNTS FOR OFFSHORE WIND TURBINES 

Feng Gao1, Clive Mingham1 and Derek Causon1 

Extreme wave run-up and impacts on monopile foundations may cause unexpected damage to offshore wind farm 

facilities and platforms. To assess the forces due to wave run-up, the distribution of run-up around the pile and the 

maximum wave run-up height need to be known. This paper describes a numerical model AMAZON-3D study of 

wave run-up and wave forces on offshore wind turbine monopile foundations, including both regular and irregular 

waves. Numerical results of wave force for regular waves are in good agreement with experimental measurement and 

theoretical results, while the maximum run-up height are little higher than predicted by linear theory and some 

empirical formula. Some results for irregular wave simulation are also presented. 
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INTRODUCTION  

During the last decade, a large number of offshore wind farms were built. Observations on existing 

wind farms have clearly shown that wave interaction with monopile foundations can be quite significant 

(De Vos et al. 2007). Wave run-up and wave impacts may cause unexpected damage to wind farm 

facilities and platforms. To assess the forces due to wave run-up, the distribution of run-up around the 

pile and the maximum run-up height need to be known.  

Previously, run-up on circular cylinders has been studied experimentally and mathematically. By 

using linear wave diffraction theory, Sarpkaya and Isaacson (1981) obtained results for the wave 

elevation around a circular cylinder surface. Niedzwecki and Duggal (1992) performed a small-scale 

experimental study to investigate wave run-up on rigid full length and truncated circular cylinders under 

regular and random wave conditions. They found that linear diffraction theory underestimates the wave 

run-up for all but very low wave steepness and employed a semi-empirical variation of the formula to 

predict the wave run up. Chan et al. (1995) studied the run-up and especially the forces on a circular 

cylinder under the influence of a plunging breaker. From that study it became clear that the breaking 

process has a great impact on the maximum horizontal forces and also influences the run-up. Kriebel 

(1998) focused on the run-up for periodic waves on a plane bed. The results were compared with 1st 

and 2nd order analytical wave diffraction theories and indicated that the non-linearity of the waves has 

a large effect on the total run-up. Büchmann et al. (1998) used a second order boundary integral method 

to study run-up on a structure with and without an ambient current. Mase et al. (2001) set up analytical 

equations for the run-up on small diameter foundations without explicitly including the diameter of the 

cylinder, even though basic diffraction theories appear to show that the diameter has a clear effect on 

the run-up. Martin et al. (2001) investigated run-up on columns caused by steep regular waves in deep 

water. They compared their experimental results with various theories and conclude that most theories 

underestimate the run-up values and the semi-empirical method suggested by Niedzwecki and Huston 

(1992) overestimated the run up in most of the test cases considered. Recently, De Vos et al. (2007) 

suggested a new formula for prediction of the maximum wave run-up on monopile foundation, which is 

based on a small-scale experimental study that examines both regular and irregular wave run-up on 

cylindrical pile foundations. 

In this paper, some results of numerical simulations involving regular and extreme wave impact and 

run-up on monopile foundations for offshore wind turbines will be presented. Simulations were carried 

out by using the AMAZON-3D code, which solves the incompressible Navier-Stokes equations in both 

air and water regions simultaneously with the free surface captured automatically as a contact surface in 

the density field. A time-accurate artificial compressibility method and high Godunov-type scheme was 

adopted to replace the pressure correction solver used in other methods (Qian et al. 2006). The 

Cartesian cut cell technique was used to generate a boundary fitted mesh. The advantages of this 

approach were outlined by Causon et al. (2001) including its flexibility for dealing with arbitrarily 

complex geometries and moving bodies. 
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NUMERICAL METHOD  

Governing equations and numerical solution  

For incompressible, unsteady, viscous flows, the Navier-Stokes equations with a variable density 

field can be modified using the artificial compressibility method and written in the integral form:  
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in which Q represents the vector of flow variables, Fc and Fv are the convective and viscous flux terms, 

and B stands for the source terms. They are defined as follows: 
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where ρ is the density, p is the pressure, β is the compressibility coefficient, g is the gravitational 

acceleration. zyx nwnvnuU   is the contra-variant velocity and n = (nx, ny, nz) is the outward 

pointing unit normal vector at a mesh cell face. 

The viscous stress tensor is defined as ijij S 2 , in which µ is the dynamic viscosity and Sij is the 

rate of the strain tensor defined as 
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The flow equations (1) are discretised by the cell-centred finite volume method over each cell of 

the flow domain, which gives 
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where Ωij indicates the grid cell indexed by the subscript ij and R is the residual of the flow equations. 

Supposing the grid cell Ωij has m faces then integration of the fluxes across the faces will result in 
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The convective flux across a grid cell face is computed by Roe’s approximate Riemann solver  
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where 
kQ and 

kQ are the reconstructed data values on the right and left of face k, A is the Jacobian 

matrix which can be expressed as  

































0

00









zyx

zzyx

yzyx

xzyx

zyx

nnnU

nUwnwnwnwU

nvnUvnvnvU

nununUunuU

nnn

A          (7) 

The eigenvalues of the matrix are  
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More details of the finite volume solution method for incompressible two-fluid flows on a Cartesian 

cut cell mesh can be found in the work of Qian et al. (2006) and Gao et al. (2007). 

By discretizing equation (4) in time and omitting the subscripts for simplicity, the following first-

order Euler implicit difference scheme can be employed  
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To achieve a time-accurate solution at each physical time step in unsteady flow problems, equation 

(9) must be further modified to obtain a divergence free velocity field. This is accomplished by 

introducing a pseudo time derivative into the system of equations, as 
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where τ is the pseudo time and Ita = diag[1, 1, 1, 1, 0]. The right hand side of equation (10) can be 

linearized using Newton's method at the m + 1 pseudo-time level to yield 
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where Im = diag[1/Δτ+1/Δt, 1/Δτ+1/Δt, 1/Δτ+1/Δt, 1/Δτ+1/Δt, 1/Δτ]. When Δ(Q
n+1

)
m
 =Q
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 - Q
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is iterated to zero at each time step, the density and momentum equations are satisfied identically and 

the divergence of the velocity at time level n + 1 is zero. The system of equations can be written in 

matrix form as 

  RHSQULD s                                                                                                  (12) 

where D is a block diagonal matrix, L is block lower triangular matrix, and U is a block upper triangular 

matrix. Each of the elements in these matrices is a 5×5 matrix. An approximate LU factorization (ALU) 

scheme can be adopted to obtain the inverse of equation (12) in the form 
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Within each time step of the implicit integration process, the sub-iterations are terminated when the 

L2 norm of the change in successive sub-iterations 
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is less than a specified limit ɛ. In the present study this value is set ɛ = 10
-4

. 

Wave generation  

In the numerical wave tank, the three components of velocity are specified at the inflow boundary 

to generate the required wave with the pressure and density extrapolated from the interior of the 

computational domain by assuming zero spatial gradients. This definition allows the desired waves to 

propagate into the computational domain through this boundary.  

For regular wave generation, linear wave theory is used to calculate the input velocity profile and 

wave elevation; however, for an extreme wave, the exact velocity profile for a true physically realisable 

nonlinear wave under the given conditions is not known a priori. Thus, a viable approach is to input 

reasonable approximate wave conditions along the inflow boundary to simulate the real phenomenon. 

This leads to the notion of the extreme wave formulation as a focused wave group in which many wave 

components in a spectrum are focussed simultaneously at a particular position in space in order to 

model the average shape of an extreme wave profile consistent with the random process within a 

specified wave energy spectrum. The derivation here refers to the works of Dalzell (1999) and Ning et 

al. (2009) in which a first or second-order Stokes focused wave can be imposed in such a manner.  

Assuming waves are focused at a specified point xf at time tf, linear wave theory defines the wave 

elevation at an arbitrary point as 
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where N is the total number of wave components, and ai, ki, fi represent the wave amplitude, the wave 

number and the wave frequency of the ith wave component, respectively. The dispersion relation 

establishes the relation between space and time, i.e. between ki and fi. 

With a chosen wave energy frequency spectrum and by setting the phases of all the wave 

components as zero at the focal point, the amplitude ai of each wave component i can be calculated 

from  
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where )( fSi  is the desired frequency spectrum, f is the increment in frequency depending on the 

number of wave components and the frequency band width and FA is the total input wave amplitude of 

the focused wave. 

In this study, a JONSWAP wave spectrum formulated as (17) is selected to generate the extreme 

wave. Where
3

1H  is the significant wave height; pT and pf are the peak wave period and frequency 

respectively. The peak enhancement factor γa is chosen as 3.3. 
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Force calculation  

The analytical solution of the linearized diffraction problem for a circular cylinder at arbitrary 

water depths was given by MacCamy and Fuchs (1954). Accordingly, the first-order non-dimensional 

maximum horizontal force maxF is 
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where ρ is the water density, h is the water depth, k is the wave number, H is the incident wave height, r 

is the cylinder radius, and J’1(kr) and Y’1(kr)  are derivatives of the Bessel functions of the first and 

second kind of order one respectively. 

For a vertical circular cylinder in finite water depth, Kriebel (1990) presented a complete closed-

form solution for the velocity potential resulting from the interaction of second-order plane waves; 

Rahman et al. (1999) also presented an analytical solution for the second order wave force.  

In this numerical simulation, the pressure p can be obtained from the derived /p  by solving the 

governing equations (1).  The total force is obtained by integration of the pressure field around the 

cylinder contour 
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where bS  is the cylinder surface as defined approximately by the boundary fitted cut cell surface. 
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Wave run-up  

Using different approaches Kriebel (1992) and Martin et al. (2001) have carried out an extension of 

diffraction theory to the second order. They found that there is a large influence of using second order 

theory to calculate run-up and it is not sufficient to attempt an extrapolation based on linear diffraction 

theory. However, they have given the following approximate result for run-up on the up-wave side of a 

circular cylinder 
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where Ru is the predicted wave run-up, D is the diameter of cylinder, L is the wave length and ηmax is the 

wave crest. 

The threshold of linear diffraction is widely regarded as D/L<0.2. In this range, linear diffraction 

theory suggests that the scattered wave energy is negligibly small. However, this is not the case for 

steep waves. There are significant nonlinear contributions in the case of steep waves; thus, fully non-

linear modeling is advisable for a steep wave run-up calculation. 

Recently, De Vos et al. (2007) suggested a new formula to predict the maximum wave run-up on a 

cylindrical foundation based on a small-scale experimental study as follows 
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where ηmax is the maximum wave elevation and u is the horizontal particle velocity at the wave crest. 
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where H is the incident wave height, g is the gravitational acceleration, d is the still water depth, k is the 

wave number and ω is the wave frequency. 

NUMERICAL RESULTS  

The present numerical simulations were first carried out with regular waves and then with extreme 

waves. The numerical wave tank has dimensions 8m × 3.6m × 0.9m, with a still water depth of 0.45m 

(Fig. 1). A circular cylinder of diameter 0.325m is positioned with its center at the middle of the tank. 

Different waves are generated at the left inflow boundary with propagation to the right. The right side 

boundary is set as open boundary which allows fluids to freely enter or leave the computational domain 

according to the local flow velocity and direction. The front and back side wall boundaries are set as 

solid walls. Several wave gauges are set along the center line of the tank to record wave elevations.   

                          

 
Figure 1. Numerical wave tank set up 

A non-uniform block structure mesh was used in the background of the computation domain; a 

relatively fine mesh was used in the area near the cylinder and around the water free surface. Around 

the structure of cylinder, the Cartesian cut cell technique was used to generate a fully boundary-fitted 

mesh. Details of the Cartesian cut cell technique can be found in the works of Causon et al. (2001) and 

Ingram et al. (2003). Part of the 3D computational mesh around the vertical circular cylinder is shown 

in Fig. 2. Totally there are 258×39×62 cells in the domain with the size of smallest cell of dimension 

0.02m.  
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        Figure 2. 3D computational mesh around the vertical cylinder 

 (blue parts are in air and red parts are in water)  

Regular wave simulation  

Four simulations are carried out for regular waves and compared with theoretical and experimental 

data found in Kriebel(1998). The parameters of these test cases are shown in Table 1, where Am is 

wave amplitude, T is wave period and kr is the scattering parameter corresponding to wave number k 

and cylinder radius r. 

 
Table 1. parameters of test case for comparisons with 

experiments reported in Kriebel (1998). 

 Case1 Case2 Case3 Case4 

Am (m) 0.0535 0.048 0.0621 0.074 
T (s) 1.95 1.75 1.50 1.25 

kr 0.271 0.308 0.374 0.481 

 

   

(a) case1: kr = 0.271, kH = 0.178                          (b) case2: kr = 0.308, kH = 0.182 

   

(c) case3: kr = 0.374, kH = 0.286                                        (d) case4: kr = 0.481, kH = 0.438 

Figure 3. Comparison of wave force time series for various combinations of kr and kH 
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Sample time series of horizontal force on the cylinder compared to measurements from Kriebel 

(1998) and both linear and second order analytical predictions are presented in Fig 3. Each figure shows 

the results over one wave period in which the wave crest phase is centered in the figure. It can be seen 

that numerical results are in generally good agreement with the experimental and theoretical results.  

The numerical results for maximum wave run up compared with the approximation formulae are 

shown in Fig. 4. Although the present numerical results are a little higher than the empirical Eq. (23) 

predictions, they are acceptable, while Eq. (22) which is based on liner diffraction theory is much less 

accurate as Martin et al. (2001) has mentioned.  Fig.5 shows the time history of wave elevation at 

different wave gauges for first two test cases. The locations of the wave gauges are along the center line 

of the wave tank; gauge 1 is located just in front of the cylinder and gauge 2 is just behind the cylinder. 

The wave run up situation can be seen clearly.   

 

Figure 4. Comparison of maximum wave run-up  

 

 
(a)   case1 

    
(b)   case2 

Figure 5. Time history of wave elevation at two different wave gauges for various cases 

Extreme wave simulation 

The calculation domain for the extreme wave simulations are almost the same as for the regular 

wave simulations, the only difference being that the center of the cylinder is moved to x = 3.78m. The 

focus point for the extreme wave is set just in front of the cylinder at x = 3.61m and focus time is about 

5.2s. Following the work of Ning et al. (2009), two test cases are chosen from their different 

experimental cases for these numerical simulations. The input characteristics of the relevant wave 

groups are listed in Table 2. The JONSWAP energy spectra with the same peak frequency fp = 0.83Hz 

is used. 

 
Table 2. Input characteristics of wave groups for extreme wave 

Case Frequency band 
f (Hz) 

Input amplitude 
AF (m) 

Wave period 
T (s) 

Wave length 
λ (m) 

2 
3 

0.6-1.3 
0.6-1.4 

0.0632 
0.0875 

1.20 
1.25 

2.00 
2.18 
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The time history of the horizontal forces acting on the cylinder for the two test cases is presented in 

Fig. 6. It can be seen that the maximum force appears around the focus time and larger amplitude waves 

produce larger impact forces. The maximum force is about 81.6N for case2 and 100.2N for case3, 

which are quite similar to the experiment results.  

  

(a)   case2                                                                           (b) case 3 

Figure 6. Time history of horizontal force acting on cylinder for various cases 

Fig. 7 shows the time history of wave elevation at different wave gauges for these test cases. The 

location of the wave gauges is along the center line of wave tank with the one in front of the cylinder set 

at x = 3.61m and the other just after the cylinder at x = 3.95m. The wave run-up can be seen clearly, 

and the maximum run-up appears close to the focus time. The value of maximum run-up height is about 

0.110m for case2 and 0.152m for case3, which are a little higher than the predictions by empirical 

formula (23) as in the regular wave simulations.  

 
(a)   case2 

 
(b)  case3 

Figure 7. Time history of wave elevation at different wave gauges for various cases 

CONCLUSIONS 

The characteristics of wave run-up and horizontal wave force on the monopile foundation of an 

offshore wind turbine have been investigated numerically using a Navier-Stokes solver. The numerical 

results for wave force have been shown to be in good agreement with experiment measurements and 

results using second order theory. The maximum run-up height is only a little higher than the theoretical 

and empirical formulae predictions.  

It can be concluded that the present flow code AMAZON-3D has the potential to be a usable tool 

for the detailed investigation of wave interactions with structures of this type. As the code can simulate 

breaking waves, further simulations including impacts from extreme waves breaking on offshore 

monopile mounts could be performed. In addition wave interactions with multiple structures will also 

be performed in the future. 



 COASTAL ENGINEERING 2012 

 

9 

ACKNOWLEDGMENTS 

This work was financially supported by the EPSRC (UK), Supergen Wind Energy Technologies 

Core, Towards the Offshore Wind Power Station, under grant Ref: EP/H018662/1.  

REFERENCES 

Büchmann, B., Skourup, J. and Cheung, K.F. 1998. Run-up on a structure due to second order waves 

and a current in a numerical wave tank, Applied Ocean Research, 20, 297-308. 

Causon D.M., Ingram D.M. and Mingham C.G. 2001. A Cartesian cut cell method for shallow water 

flows with moving boundaries. Advances in Water resources, 24, 899-911. 

Chan, E.S., Cheong, H.F. and Tan, B.C. 1995. Laboratory study of plunging wave impacts on vertical 

cylinders, Coastal Engineering, 25, 87-107. 

Dalzell J.F. 1999. A note on finite depth second-order wave-wave interactions. Applied Ocean 

Research, 21, 105–111. 

De Vos L., Frigaard P and De Rouck J. 2007. Wave run-up on cylindrical and cone shaped foundations 

for offshore wind turbines. Coastal Engineering. 54, 17–29. 

Gao F., Ingram D.M., Causon D.M. and Mingham C.G. 2007. The development of a Cartesian cut cell 

method for incompressible viscous flows, International Journal for Numerical Methods in Fluids, 

54, 1033-1053. 

Ingram D.M., Causon D.M. and Mingham C.G. 2003. Developments in Cartesian cut cell methods. 

Mathematics and Computers in Simulation, 61, 561–572. 

Kriebel, D.L. 1990. Nonlinear wave diffraction by vertical circular cylinder. Part I: diffraction theory. 

Ocean Engineering, 17, 345–377. 

Kriebel, D.L. 1992. Nonlinear wave interaction with a vertical circular cylinder. Part II: Wave run-up, 

Ocean Engineering, 19, 75-99. 

Kriebel, D.L. 1998. Nonlinear wave interaction with a vertical circular cylinder: Wave Forces, Ocean 

Engineering, 25, 597-605. 

MacCamy, R.C. and Fuchs, R.A. 1954. Wave forces on piles: A diffraction theory. Technical 

memorandum no. 69. Beach Erosion Board Office of the Chief Engineers. Department of the 

Army. 1–17. 

Martin, A.J., Easson, W.J. and Bruce, T. 2001. Run-up on columns in steep, deep water regular waves. 

Journal of Waterway, Port, Coastal, and Ocean Engineering 127, 26–32. 

Mase, H., Kosho, K. and Nagahashi, S. 2001. Wave run-up of random waves on a small circular pier on 

sloping seabed. Journal of Waterway, Port, Coastal and Ocean Engineering. 127, 192–199. 

Niedzwecki, J.M. and Duggal, S.D. 1992. Wave run-up and forces on cylinders in regular and random 

waves. Journal of Waterway, Port, Coastal, and Ocean Engineering. 118, 615–634. 

Niedzwecki, J.M. and Huston, J.R. 1992. Wave interaction with tension leg platforms. Ocean 

Engineering. 19, 21–37. 

Ning D.Z., Zang J., Liu S.X., Eatock Taylor R. Teng B. and Taylor P.H., 2009. Free-surface and wave 

kinematics for nonlinear focused wave groups, Ocean Engineering. 36, 1226-1243. 

Qian L., Causon D.M., Mingham C.G. and Ingram D.M. 2006. A free-surface capturing method for two 

fluid flows with moving bodies, Proceedings of the Royal Society London A. 462, 21-42. 

Rahman, M., BORA, S.N. and Satish, M.G. 1999. A Note on Second-Order Wave Forces on a Circular 

Cylinder in Finite Water Depth. Applied Mathematics Letters, 12, 63-70 

Sarpkaya, T., Isaacson, M. 1981. Mechanics of Wave Forces on Offshore Structures. Van Nostrand 

Reinhold Co., New York. 


