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NUMERICAL SIMULATIONS OF BREAKING SOLITARY WAVES 

Pierre Lubin1 and Stéphane Glockner2 

This paper presents the application of a parallel numerical code to breaking solitary waves impacting a seawall structure. 

The three-dimensional Navier-Stokes equations are solved in air and water, coupled with a subgrid scale model to take 

turbulence into account. We compared three numerical methods for the free-surface description, using the classical VOF-

PLIC and VOF-TVD methods, and an original VOF-SM method recently developed in our numerical tool (Vincent et al. 

2010). Some experimental data for solitary waves impinging and overtopping coastal structures are available in literature 

(Hsiao and Lin, 2010). Solitary waves are often used to model tsunami behaviors because of their hydrodynamic 

similarities. From a numerical point of view, it allows shorter CPU time simulations, as only one wave breaks. Here we 

apply the model to simulate three-dimensional solitary waves and compare qualitatively our results with the experimental 

data. We investigate three configurations of solitary waves impinging and overtopping an impermeable seawall on a 1:20 

sloping beach.  
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INTRODUCTION 

Up to date studies proved the importance of air entrainment for turbulence generation in breaking 

waves. But, as introduced by Ting (2008) concerning numerical results of three-dimensional flow 

structures under breaking waves, “the forms and evolution of large eddies obtained in numerical 

simulations may depend critically on how the free-surface deformation is modeled”. Numerical 

simulation of breaking waves is still a very challenging aim to achieve since small interface 

deformations, air entrainment and vorticity generation are involved during the overturning and the 

subsequent impact of the wave. 

Existing numerical models still cannot describe wave breaking satisfactorily, considering the air 

and water mixing areas where a broad range of relevant length and time scales is involved, making it 

extremely complicated to investigate experimentally and numerically. It is thus very important to use 

appropriate and accurate numerical schemes for the interface description. Moreover, performing 

numerical simulations of breaking waves still remains difficult as it requires a large number of mesh 

grid points, robust and accurate numerical methods, and long CPU time calculations to compute the 

hydrodynamics from the largest to the smallest length and time scales (Lubin et al. 2011). 

The scope of this paper is to show the results obtained for simulating three-dimensional solitary 

waves shoaling and breaking over a sloping beach with a seawall structures, using a recent original 

numerical method for simulating free-surface flows (Vincent et al. 2010). The ability of this method to 

deal with the free-surface deformations will be shown. 

MODEL AND NUMERICAL METHODS 

We solve the Navier-Stokes equations in air and water, coupled with a subgrid scale turbulence 

model. The numerical tool is well suited to deal with strong interface deformations occurring during 

wave breaking, for example, and with turbulence modeling in the presence of a free-surface in a more 

general way.  

Governing equations 

An incompressible multiphase phase flow between non-miscible fluids can be described by the 

Navier-Stokes equations in their multiphase form. The governing equations for the Large Eddy 

Simulation (LES) of an incompressible fluid flow are classically derived by applying a convolution 

filter to the unsteady Navier-Stokes equations. In the single fluid formulation of the problem, a phase 

function C, or ”color” function, is used to locate the different fluids standing C = 0 in the outer 

medium, C = 1 in the considered medium. The interface between two media is repaired by the 

discontinuity of C between 0 and 1. In practice, C = 0.5 is used to characterize this surface.  
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The resulting set of equations reads (Eqs. 1-4): 
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with velocity u and pressure p, assuming g as the gravity vector, ρ as the density, µ as the viscosity, µT 

as the turbulent viscosity, t as the time and F as the superficial tension volume force.  

The magnitudes of the physical characteristics of the fluids are defined according to C in a 

continuous manner as: 
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where ρ0, ρ1, µ0 and µ1 are the densities and viscosities of fluid 0 and 1 respectively. 

To deal with solid obstacles within the numerical domain, it is possible to use multi-grid domains, 

but it is often much simpler to implement the Brinkman theory, then considering the numerical 

domain as a unique porous medium. The permeability coefficient K defines the capability of a porous 

medium to let pass the fluids more or less freely through it. A real porous medium is modeled with 

intermediate values of K. If this permeability coefficient is great (K  + ∞), the medium is equivalent 

to a fluid. If it is nil, we can model an impermeable solid. It is then possible to model moving rigid 

boundaries or complex geometries. To take this coefficient K into account in our system of equations, 

we thus add an extra term (Eq. 2), called Darcy term, (µ / K) u. 

Large scale turbulence is described by solving the flow equations (Eqs. 1 and 2), the small scale 

turbulence, which is not resolved by the flow model, is taken into account through a subgrid scale 

model. To represent the dissipative effect of the small turbulent structures, a turbulent viscosity μT is 

calculated with the Mixed Scale model (Sagaut 1998). We use the procedure of wave generation 

developed by Lin and Liu (1999). The method consists in introducing an internal mass source 

function in the continuity equation (Eq. 1) for a chosen group of cells defining the source region. The 

method has been extensively verified and validated compared with analytical profiles to ensure 

accurate wave generation. 

Model (Eqs. 1 to 4) describes the entire hydrodynamics and geometrical processes involved in the 

motion of multiphase media. 

Numerical methods 

The time discretization is implicit and the equations are discretized on a staggered grid thanks to 

the finite volume method. The velocity/pressure coupling is solved with a pressure correction method 

(Goda 1978), which consists in splitting the Navier-Stokes system into two stages, a velocity 

prediction and a pressure correction. The space derivatives of the inertial term are discretized by a 

hybrid Upwind-Centered scheme and the viscous term is approximated by a second order centered 

scheme. The MPI library is used to parallelize the code. The MPI library is used to parallelize the 

code. The mesh is partitioned into equal size subdomains to ensure load balancing. Communications 

between processors are also minimized (Ahusborde and Glockner 2011).The HYPRE parallel solver 

and preconditioner library is used to solve the linear systems (Falgout et al. 2006). The prediction and 

correction steps are solved, respectively, thanks to a BiCGStab solver, associated with a point Jacobi 

preconditioner, and a GMRES solver, associated with a multigrid preconditioner. All the details are 

presented by Lubin et al. (2010).  

Interface description 

In this paper, we will present the numerical results obtained by using three different numerical 

methods for the free-surface description.  
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The interface tracking is first achieved by a Volume Of Fluid method (VOF), which is able to 

handle interface reconnections without interface reconstruction (Lubin et al. 2006). The explicit Total 

Variation Decreasing (TVD) Lax-Wendroff (LW) scheme of LeVeque (1992) is used to solve directly 

the interface evolutions without the reconstruction of C (Eq. 3). Then, we also used the classical 

Piecewise Linear Interface Construction (PLIC) VOF method of Youngs et al. (1982), which is able to 

handle interface reconnection with interface reconstruction to capture accurately strong interface 

distortions with large density and viscosity contrasts between fluids (Abadie et al. 1998). Considering 

the numerical difficulty and the large CPU cost induced to track every droplets and bubbles created in 

such flows (Deshpande et al., 2012), Vincent et al. (2010) proposed a hybrid Eulerian-Lagrangian 

numerical method (VOF-SM). The method is based on a Lagrangian sub-mesh description that 

employs Lagrangian markers to build a local Eulerian concentration. The interface tracking method 

allows a description of the multiphase flow at a scale smaller than the Eulerian grid cell (bubbles or 

droplets), with the usual Eulerian representation of the VOF presence function. The velocity field is 

discretized on a staggered grid, as usually. The computational domain is initially seeded with an equal 

number of markers in each computational cell. Each marker carries information such as volume and 

concentration. Once the Navier-Stokes equations have been solved on the Eulerian grid, the velocity is 

interpolated to advect the markers. Then, once the characteristics of the markers have been updated at 

the end of the transport step, the information is projected back to the Eulerian grid cells to reconstruct 

the macroscopic phase function C. The Lagrangian approach then allows an accurate and non-

diffusive Eulerian description of the phase function C, for which the scales are smaller than the 

Eulerian space step (Vincent et al. 2010). 

The accuracy of the numerical schemes and the conservation laws of mass and energy in the 

computational domain have been accurately verified. The numerical methods have already been fully 

described and extensively validated through numerous test cases including mesh refinement analysis 

(Lubin et al. 2006; Helluy et al. 2005; Lubin et al. 2010, 2011).  

NUMERICAL RESULTS 

After breaking near the shoreline, tsunami-wave trains form a sequence of turbulent bores 

propagating landward. These waves can also be seen collapsing upon nearshore breakwaters and 

generating violent impacts and overtopping flows. From a numerical point of view, the advantage of 

studying a single breaking wave is that the initial wave can be easily calculated thanks to analytical 

solutions. It also allows shorter CPU time simulations, as only one wave breaks. From the physical 

point of view, the wave breaking process and the evolution of the associated turbulent velocity field 

can be studied separately from the effect of return flow and residual turbulence. This would allow one 

to investigate the evolution of one breaking wave before tackling the more complicated problem 

involving a wave train. Many experimental data for solitary waves impinging and overtopping coastal 

structures are available in literature. These data can thus be used for further numerical model 

development and validation.  

The numerical results presented hereafter were simulated with the VOF-TVD and the classical 

VOF-PLIC techniques, to first discuss results obtained with the most prevalent methods in literature. 

We will then show the capacity of the VOF-SM method to deal with the breaking of a solitary wave 

over a seawall. 

Description of the experimental configuration 

We investigated solitary waves impinging and overtopping an impermeable seawall on a 1:20 

sloping beach, compared to the experimental results from Hsiao and Lin (2010). Three typical solitary 

wave cases with different breaking locations were studied:  

 Solitary wave breaking before the coastal structure: a turbulent bore is generated and propagates 

landward, then impacts and overtops the seawall (Type 1). 

 Solitary wave directly impacting on the seawall with overtopping flow subsequently generated 

(Type 2). 

 Solitary wave overtopping upon the seawall crown and collapsing behind the structure (Type 3). 

The experimental data showed detailed pictures of the free-surface deformations (overturning, 

splash-ups generation, air entrainment) and pressure recordings on the seawall.  
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Initial and boundary conditions 

To generate numerically the targeted solitary wave, we use the procedure developed by Lin and 

Liu (1999). The method consists of introducing an internal mass source function in the continuity 

equation (Eq. 1) for a chosen group of cells defining the source region: 

. ( , )S t u x  (5) 

where S(x; t) is calculated thanks to any chosen analytical wave solution. 

According to Lin and Liu (1999): 

2
( , ) ( )
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S t t

A
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where A is the area of the source region, c is the wave celerity, d being the water depth, H is the wave 

amplitude and (t) is the expected time history of free surface displacement (Lin and Liu 1999). Two 

wave trains of surface gravity waves are thus generated, as the free surface responds to a pressure 

increment defined within the source region cells. The area and the location of the source function 

have been designed applying the rules described by Lin and Liu (1999). The two identical wave trains 

propagate in opposite directions towards the both ends of the numerical domain. This method has 

already been implemented for the generation of regular waves breaking over a sloping beach (Lubin et 

al. 2011).  

Other source wave maker methods can be found in the literature, but whatever the method used to 

generate the waves, the internal source is usually located somewhere in the numerical domain and a 

damping boundary condition has to be set at the outgoing boundary to let the waves propagate outside 

the numerical domain without numerical reflexion. In order to save some CPU time and use shorter 

numerical domains, we chose to set the source region at the left boundary, where we imposed a 

symmetry boundary condition (Fig. 1). 

 

 
 

Figure 1. Solitary wave generated at the left boundary and propagating towards the right side of numerical 

domain. The velocity field is shown in the water responding to the increment of pressure due to the source 

function calculated in the horizontal rectangular area. 

The three-dimensional computational domain is 8 m long, 2 m high and 0.5 m wide. The sloping 

beach starts at x = 0 m, the source function being located at xS = 0 m and zS = 0.1 m. The center of the 

source region is at d/2, right above the toe of the sloping beach. The numerical beach is considered as 

an impermeable solid obstacle, the permeability coefficient K being initialized at zero (Eq. 2). The 

source region is 0.1 m wide and 0.06 m high. The calculation is made with the densities and the 

viscosities of air and water (ρa = 1.1768 kg.m−3 and ρw= 1000 kg.m−3, μa = 1.85 ×10−5 kg.m−1.s−1 and 

μw = 1×10−3 kg.m−1.s−1). The x-axis is taken parallel to the sloping beach, so the numerical domain is 

tilted off-vertical to match the bottom boundary with the bed slope. 
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Figure 2. Sketch of the initial condition in the numerical wave tank, showing the initial free-surface identified 

with the isocontour of the colored function C = 0.5. The seawall is located on the sloping beach. 

Only two types of solitary waves are presented in this paper, the initial parameters experimented 

by Hsiao and Lin (2010) being given in Table 1. 

 
Table 1. Initial solitary wave parameters (Hsiao and Lin, 2010). 

 Type 1 Type 3 

d (m) 0.2 0.256 
H (m) 0.07 0.0589 

 0.35 0.23 

 

Results and discussion 

First, Type 1 solitary wave is simulated with a VOF-TVD scheme, as already used by Lubin et al. 

(2006, 2011). 5 millions mesh grid points are used to discretize the numerical domain, with uniform 

grids in each directions (xmin = 8.10−3 m, zmin = 4.10−3 m, ymin = 5.10-2 m). 96 processors have 

been used, one day being needed to simulate 16 seconds of physical time. 

 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 

Figure 3. Type 1 solitary wave breaking from a) to f). VOF-TVD method. C  0.5. Slices taken in the middle of 

the 3D numerical domain. 
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The main free-surface deformations are correctly simulated (Figs. 3). The results are qualitatively 

in agreement with the experimental pictures shown by Hsiao and Lin (2010). As the wave propagates 

over the slope of the beach, it looses its symmetry and the forward face of the wave becomes almost 

vertical. A jet of liquid is ejected from the crest and free falls down forward into a characteristic 

overturning motion. As expected, the wave breaks before the seawall structure. Then, the jet hits the 

forward face of the wave and closes over the air to form a main pocket of air. A series of subsequent 

splash-ups are observed. Due to the coarse mesh grid, only large pockets of air are entrained in the 

water, and no bubbles can be observed during the turbulent bore propagation. 

The region of interest, where air and turbulence interacts, is also clearly affected by the numerical 

diffusion of the VOF-TVD scheme. Even if finer mesh grid cells are used, numerical diffusion will 

occur in strong mixing areas, which is the case in the turbulent bore region (Lubin et al. 2011). The 

overall behavior is qualitatively correct, but not satisfying concerning the air / water turbulent bore 

overtopping the seawall structure.  

Then, the classical VOF-PLIC method has been used to overcome this limitation and increase the 

accuracy of the free-surface description. 20 millions mesh grid points are used to discretize the 

numerical domain, with uniform grids in each directions (xmin = 1.10-4 m, zmin = 1.10−4 m, ymin = 

2.5 x 10-2 m). 384 processors have been used, 5 days being needed to simulate 3.4 seconds of physical 

time. 

 

 
Figure 4. Type 1 solitary wave breaking. VOF-PLIC method. C  0.5. Slices taken in the middle of the 3D 

numerical domain. 

 

It can be clearly seen that the overturning wave is simulated much more accurately (Fig. 4). The 

plunge point is still located before the seawall structure, as expected. The plunging jet is much better 

described than with the VOF-TVD method. This implies that the volume of air entrapped by the 

plunging tongue of water is greater than previously simulated. This is in accordance with the 

experimental pictures shown by Hsiao and Lin (2010). The impacting jet is touching the forward face 

of the wave and starts to separate, one part forming the splash-up and the other wrapping around the 

main entrapped pocket of air. The tip of the jet is much more detailed with small inclusions of air and 

droplets being generated due to the fine mesh grid cells. But reaching this level of accuracy induces a 

large CPU cost to track every inclusions generated by the splashing jet several days for few seconds of 

physical time simulated). 

Then, Type 3 has been simulated with the original VOF-SM method (Vincent et al. 2010). The 

Type 3 solitary wave involves less air entrainment. We first aim at testing the ability of the VOF-SM 

method to reproduce correctly the overtopping process. 5 millions Eulerian mesh grid points are used 

to discretize the numerical domain and 135 millions of Lagrangian markers, with uniform grids in 

each directions (xmin = 8.10−3 m, zmin = 4.10−3 m, ymin = 5.10-2 m). 384 processors have been 

used, 9 hours being needed to simulate 6 seconds of physical time. 

The results are qualitatively in agreement with the experimental results, considering the large 

free-surface deformations (Figs. 5). More particles initialized in each Eulerian grid cells would 

improve the accuracy, but these first results are very encouraging and give a clear indication that the 

VOF-SM method is a numerical method which can provide a description of the multiphase flow at a 

scale smaller than the Eulerian grid cell. 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 

Figure 5. Type 3 solitary wave breaking. VOF-SM method. Eulerian color function reconstructed from the 

Lagrangian markers. C  0.5. Slices taken in the middle of the 3D numerical domain. 

 

CONCLUSIONS 

The numerical results presented in this paper concerns the free-surface deformations occurring 

when simulating three-dimensional breaking solitary waves impacting a seawall structure. The 

breaking process, in terms of wave overturning and splash-up occurrence, is in accordance with the 

general observations given in the literature. Our model was found to be able to describe correctly the 

complicated two-phase flow interactions that happen when waves break. The air entrainment can be 

described, which is important as it plays a great role in the energy dissipation process, but was shown 

to be dependant on the numerical methods used to track the free-surface as already discussed by Lubin 

et al. (2011). We then presented the first results of this on-going work, as the original VOF-SM 

method is now under intensive development. While the main features of the flow are in accordance 

with the experimental results and the method proved its ability to deal with strong interface 

distortions in an agitated flow, it still needs to be improved for some technical and physical aspects 

(Vincent et al. 2010). It is a first step towards subgrid physical modeling of multiphase flows 

involving LES turbulence models (Labourasse et al. 2007; Vincent et al. 2008). Mimicking the LES 

approach for turbulence, the VOF-SM method will be an appropriate method to take into account the 

inclusions smaller than the mesh grid size. Considering the difficulty to capture all the small bubbles 

and droplets encountered in the wave breaking problem, the small interface structures can thus be 

considered as subgrid interfaces. 
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