STEADY CURRENTS INDUCED BY SEA WAVES PROPAGATING
OVER A SLOPING BOTTOM

Erminia Capodicas&ietro Scandutaand Enrico Foti

A numerical model aimed at computing the mean vlagenerated by a sea wave propagating over angjop
bottom, offshore the breaker line, is presented Model is based on the assumption that the flaidaih can be
partitioned into two boundary layers and a coreoregvhere at a first order of approximation thewflcan be
regarded as irrotational. The irrotational flowdsmputed by using a theory based on the assumpfiamall
amplitude waves which allows both fully absorbedves and partially reflected waves at the coasttmebe
considered. The distribution of the mean veloc#tycontrolled by the ratio between the thicknesthefboundary
layer and the wave amplitude. When this ratio iglsrthe mean velocities are rather constant atbegdepth and a
second boundary layer develops close to the bottomhe case of fully reflected waves such boundager
separates and the mean vorticity can be conveateidom the bottom.
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Introduction

It is well known that the motion of the fluid pafts under sea waves, apart a predominant
oscillating component also presents a mean Lagrangglocity known asnass transport. Under the
assumption of irrotational flow, Stokes (1847) skdvthat such a mean velocity causes the migrafion o
the fluid particles in the direction of wave prop#gn. This result is valid for waves propagatingan
unbounded domain and in this particular case thennhegrangian velocity is also denotedSxskes
drift. For waves propagating in a bounded domain, agsvpropagating towards the coast or waves in
a laboratory wave flume, the mass conservationires|that a backward flow must be generated which
balance the integral of the Stokes drift alongdéapth.

Although this steady flow is weak compared to tkeiltating component, it plays an important role
in the transport of sediment and pollutants ingba environment; for such a reason in the pastsit h
been the object of several studies. The experirheatults of Bagnold (1947) showed important
differences with the the irrotational wave theosyancerns the profiles of the steady current. Such
discrepancies were explained by Longuet-Higgin8 Jor the case of small amplitude waves by
introducing the effect of the viscosity.

The main effect of the viscosity is to induce a m&eynolds stress in the boundary layers which
generates a mean Eulerian velocity. Close to thetmothe mean Eulerian velocity is of second order
in the wave slope and it persists outside the bagnkhyer. At the free surface it is the mean oitsti
that is of the second order and it persists abther edge of the boundary layer.

The residual hydrodynamic quantities at the outieeof the boundary layers affect the mean
velocity in the core region by the mechanisms &fudion and convection. Indeed, the distribution of
the mean vorticity in the core region is descriliyda diffusion-convection equation in which the
importance of the diffusive effects with respecttie convective ones is given by the ratio betwiben
thickness of the boundary layer and the wave aog#it

When a sea wave propagates over a constant degtthanvave attenuation because of energy
dissipation can be neglected, the convective teversish and the mean velocity profiles can be
computed according to the diffusion solution of baat-Higgins (1953). When the wave attenuation
cannot be neglected and/or the water depth is owstant, the convective terms cannot be neglected
unless the thickness of the boundary layer is facgeof the same order of magnitude of the wave
amplitude. Usually, both in the field and in labtorg experiments the convective effects prevailsrov
the viscous ones, apart close to the bottom whesecand boundary layer develops in which the two
effects have the same importance. The existeneesetond boundary layer in an oscillating fluid was
highlighted for the first time by Stuart (1966) thg his study on the mean motion around a cylinder.

After the work of Longuet-Higgins (1953) many othdrave been carried out in order to analyze
different aspects of the problem, as for exampleeD@d977), Liu (1977) and Iskandarani and Liu
(1991). Most of the previous works were aimed ad@ng the mass transport due to waves propagating
over an horizontal bottom.
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The case of waves propagating over sloping bottamimportant features that is interesting to
analyze. When a sea wave propagates in water aokaking depth it steepens until breaks. After
breaking the mechanism which produces the steadyifl more complicated as the lost of regularity of
the free surface causes the production of vortisitych is difficult to evaluate. However, thanks to
studies such as Svendsen (1984), Stive and Wingb6j1enuch information are known as regards the
mean current in the breaking region.

On the other hand few studies have been carrieéhaartder to analyze the steady current outside
the breaking region. Among these we mention thekvadrHunt and Jones (1963) who developed
formulas to compute the mean flow in the bottomraary layer for the case of three-dimensional
waves, without considering the flow far from thetbm. Recently, Blondeaux et al. (2002) developed a
mathematical model to compute the mean flow induogdh sea wave propagating over a sloping
bottom. The authors simplified the governing edquadi by introducing the shallow water
approximations and therefore limitations on théorbetween water depth and wavelength.

The aim of the present work is to develop a mathieadamodel to describe the mean velocity in
the region offshore from the breaker line withony éimitation about the ratio between the watertdep
and the wavelength. The flow is assumed laminath®iReynolds number is high enough such that the
thickness of the boundary layers is small and foegeit is appropriate to consider the presenca of
core region where at a first approximation the flzam be considered as irrotational.

Formulation of the problem and numerical approach

We consider a plane sloping beach and a sinuse@a propagating along the direction normal to
the coastline as shown in Fig. 1. The wave has raular frequencyc™ and in deep water is
characterized by an amplituda, and a wavenumbek,. Hereinafter a star is used to denote
dimensional quantities.

* direction of wave propagatio
y _ propag
* _ = *
shoreline X still water level N o

Figure 1. Sketch of the problem that shows a seawa  ve propagating towards the coast.

Since we consider waves of constant characterigtiong the coast, the mean flow can be
considered two-dimensional, therefore it is suffittito introduce a reference system with thexis
lying on the still water level, orthogonal to theastline and directed offshore and with tiieaxis
vertical and directed upwards. The origin of thiemence system is fixed at the intersection betwken
still water level and the sloping bottom which isdribed by the equation = -8 x", where 3 is the

slope of the beach. The problem is formulated medisionless form by introducing the following
dimensionless variables:

* * * *  * u*,v* P* *
)=y, t=to, v =) = P e
a'a P a0

where t”is the time,(u",v' )are the velocity components along tke and y~ axis respectively,o” is
the density, P"is the dynamical pressure which is linked to the total presgiy the relation

p =P -p'g’y, g being the acceleration of gravity. The flow is described bydminuity and the

momentum equations along with the boundary conditions. bichadary conditions are defined as
follows: (1) the free surface is a material surface; (2) thd ffelocity vanishes at the bottom; (3) the
stress vanishes at the free surface. After writing the goveegjngtions and the boundary conditions in
dimensionless form, we observe that the flow depends dnltbeing three dimensionless parameters:
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where” is the kinematic viscosity of the fluid. The paramedgprovides a measure of the importance

of the nonlinearities. In the following we assume that gfasameter is much smaller than one as it
seems to be realistic for sea waves offshore the breaker line.aflmmgierd is the dimensionless
thickness of the boundary layer and it also provides a meakthre diffusive effects. This parameter
takes values much smaller than one.

Since we have two parameters much smaller than one, all the vadables expanded in a double
power series as shown in the following for the velocity

U = Ug + gLy +O(85); Ug = Ugg + dgy +O(3%); Uy = Uy + Ay, +O(67) . (3)
We substitute (3) in the governing equations and in thedaoy conditions and solve the problems at
the different orders of approximation. At the first ordéapproximation the flow in the core region is

irrotational, therefore all the variables depend on the dimelesi® potentialp= ¢ k, /(o a, ).

In this study the solution for the potential functiastbeen computed according to Stoker (1947),
who provided expressions for anglé®f the sloping bottom in the forrd = 7/(2n , Wwheren is an

integer number. The expressions provide the potential o$tavaling waves which can be combined in
order to obtain the potential of partially reflected waves atdastline. In the following the irrotational
velocity, given by the gradient of the potential functior| kaé written in the following form:

U,V)=(U,V)e", 4)

where i is the imaginary unit.
The irrotational flow does not satisfy the no slip canditat the bottom and the vanishing of the
stress at the free surface. In order to satisfy such conditi@nmtroduce the boundary layers. At the

bottom the boundary layer is better described in a reference systeyr) obtained by rotating the
reference syster(x, y i the clockwise direction until the axis coincides with the bottom.

At the first order of approximation we obtain th@yis constant in the direction orthogonal to the
bottom and equal to that induced by the irrotational flothatouter edge of the boundary layer. The
velocity ugo in the boundary layer is equal to that induced in a visfloigsclose to a flat plate by a
sinusoidally time-oscillating pressure gradient (Stokes Jayat is given by
@+

L _ariyY
ugo =)y, o-e "), (5)

The mean Eulerian velocity emerges by solving the problem airdles a, . Here we report only the
expression of the mean Eulerian velocity at the outer edge bbthwlary layer (Mei et al. 2005),

T+

o :—E[U' U ] @+i), (6)
4 x* )yg

where + denotes the conjugate of a complex number and the ber average.

The analysis of the free surface boundary layer is much moreicated than that of the bottom
boundary layer as it requires the use of a curvilinear coordiyatem which fits with the free surface
(Longuet-Higgins 1953) or the use of a Lagrangian approdahl@77) in order to be properly carried
out. The vanishing of the stress at the free surface inducesc#latmg velocity component of order
o0 which adds to the irrotational velocity and produces theitg result:

n 6[_] : +i i
Ugg = (U)y=0 - 5(6—J (1—|)e(1 )ylo et . (7)
Y Jy-0
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At the second order of approximation a mean vaytiemerges which does not vanishes at the outer
edge of the boundary layer where it assumes thenfislg expression:

(8)

B :Zi[au av) |
y=0

X Ox

Egs. 6 and 8 provide two boundary conditions ferrtrean flow in the core region.
In the core region the second order mean vortigify is described by a convection-diffusion

equation (Longuet-Higgins 1953). Since the shaptheffluid domain is a circular sector, it is more
appropriate to write this equation in a polar camate system,

_ — _ 2
Ug + 1000199 Ugs 90 |10@ _ 10 [ 0w, L 0% | g
r a9 ) or a Jr a8 ror\ or r? 092

where ug and ug, are the velocity components of the Stokes drifbglther andd directions
respectively;i,,is the stream function of the mean Eulerian vejocit

_ 10 _ 0
Uy or :?%: Uigs =~ erlo ) (10)

and ¢ is a parameter which has the following expresséon(é’/ao)zl ané provides a measure of the

importance of the viscous effects with respech&donvective ones.
The system of partial differential equations whadscribes the mean flow in the core region is
completed by the equation that links the vortititghe streamfuction,

_ |10 617710j 1 0%,
S Pl i k. (1) . 11
w.I.O |:r ar (r ar +r2 0792 ( )

For field conditions and in many laboratory expens, the parameter in Eq. 9 is much smaller than
one. Therefore the nonlinear terms are importadttha solution must be determined by a numerical
approach. In principle Egs. 9, 10 and 11 shoulddieed in a domain which extends from a position
r =r,, offshore from the breaker line, up to= 0 . However, since the solution must be computed by a

numerical approach, the fluid domain must be trtectat a position=r, >r,. Along the boundary of

this domain appropriate boundary conditions must ibeoduced for the vorticity and the
streamfunction. The bottom is a streamfunctionrefoee here it is possible to fix arbitrariff;, = 0.

On the mean free surface the streamfunction casbtmned by imposing that the flux of the Eulerian
velocity, computed by integrating the velocity frdtre bottom up to the free surface, must vanish.
Following Blondeaux et al. (2002) we obtain

@10)y=0 = —i—z(L]\7+) y=0 - (12)

As regards the vorticity, on the mean free surfaeantroduce the value determined at the outer edge
of the free surface boundary layer given by Ecit&he bottom, a predetermined value of the vditici
does not exists as the vorticity depends on the filo the interior of the fluid domain. In order to
determine a boundary condition for the vorticityts bottom, as suggested by Roache (1972), we writ
Eqg. 11 aty=-£x. Finally, it is also necessary to introduce a loauy condition along the side

boundaries at =r; andr =r, . Unfortunately, there are not natural boundarydéins to be imposed
in the previous locations as the computational dorhas been truncated from the rest of the fluid
region just along =r, andr =r,. However, the mathematics oblige us to selectumtbary condition

in order to close the problem. This is a commotiiadity to many computational fluid dynamics
problems when the boundaries are open and inflavaatflow along them may coexist. Although a

general approach to determine an appropriate boyramdition does not exist, in these cases it is
possible to state that the minimum requirementumhscondition is that it must not influence the
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solution in particular far from the boundary (Samwid Gresho 1994). After considering different
boundary conditions, along the side boundary we latvoduced the following condition:

2
%:o. (13)

As in Blondeaux et al. (2002) the appropriatenddhis boundary condition has been checked for the
case of standing waves by comparing the solutidaiodd by using Eq. 13 with that obtained by using
the conditiong;, = 0along all the boundary after the two side boundaniere placed under a node or

an antinode of the free surface.

The equations have been integrated numerically fyite difference approach. The computational
grid is uniform along the direction while along the9 direction it is stretched in order to cluster the
grid points close to the bottom and close to tee Burface where a large gradient exists.

The solution has been obtained by the method effdlse transient, according to which a time
derivative is added to the right hand side of Eqnél the solution is advanced in time until a sfead
condition is attained. During the false transidi@ time advancement has been performed by a semi-
implicit method. The convective terms and the daiires with respect ta of the viscous term have
been evaluated explicitly while the derivatives hwiespect tod of the viscous term have been
evaluated implicitly.

Discussion of the results

The results in Fig. 2 show the trend of the medacity at the outer edge of the bottom boundary
layer versus the distanae from the shoreline, computed by Eq. 6, for différealues of the reflection
coefficient K, . We observe that for a reflection coefficient dqoazero, which corresponds to waves

fully absorbed at the coastline, the steady velasitdirected towards the coast and increasesisn th
direction as the water depth decreases. For riflecoefficients larger than zero, the mean vejocit
oscillates between negative values for small réflaccoefficients and between positive and negative

values for large reflection coefficients.
2.5

=]
3

5 10 15 20 25 30

r
Figure 2. Trend of the mean velocity just outside t  he bottom boundary layer for different values of th e
reflection coefficient K . The angle @ of the beach is equal to 6°

A first check on the numerical model has been peréa by comparing the mean Lagrangian
velocity with that computed by the diffusion soduti of Longuet-Higgins (1953), which is valid for
large values of the parameterA very good agreement has been obtained betveetwb results as it
can be observed in Fig. 3 for a slope of 1:30. diffesion solution has been evaluated by using the
local values of wavelength and wave-height estithdtem the solution of the irrotational velocity
field. The results also show that for a viscous-hated flow the diffusion solution of Longuet-Higgi
(1953) can be applied even on a bottom with a skgpemall as 1:30. We did not investigate whether a
good agreement can be achieved even in the casbezch with a larger slope. Finally, in Fig. 8adh
be observed that the integral along the depthefitban Lagrangian velocity vanishes as predicted by
the theory.
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* - Longuet-Higgins (1953)
present results

60 -40 -20 0 20 40
Yo

Figure 3. Mean Lagrangian velocity profile at x=3.5  along a beach with a slope of 1:30. The numerical results
have been obtained for &>>1.

A more significant validation of the numerical cotlas been carried out by comparing the
numerical results with the experiments of Hwung &imd(1990) who carried out measurements of the
mean velocity at different stations along a botteitih a slope of 1:15. In Fig. 4 it can be obseraed
fairly good agreement between numerical resultseapetrimental measurements. A discrepancy can be
observed for the velocity profile closer to the r&ioe, which is probably due to the turbulence
induced by the wave breaking and advected offshptée mass transport velocity.
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Figure 4. Comparison between the velocity profiles obtained by the present numerical model and those
measured by Hwung and Lin (1990) for T *=1.41 S, ag=5.3cm,e= 2.7><10'4 , beach slope 1:15. (a) h *=0.8 cm,
(b) h*=13 cm, (c) h *217.4 cm. Continuous line: numerical results; stars : experimental measurements.

Indeed, in the present model the flow is assumetniar, therefore the effects of the turbulence
cannot be reproduced. This explanation and thelitalof the model are supported by the fairly good
agreement that can be observed in Fig. 4 whenigositnot very close to the breaker line are
considered.

We observe that far from the bottom the profiles mther constant along the vertical, hence the
inertial effects prevails over the viscous oness€lto the bottom inertial and viscous effectsodiuthe
same order of magnitude, therefore a second boyridger appears which is characterized by a
thickness of the order a¥/ a, .

In Fig. 5a the mean velocity profiles along the evflume are reported for the same parameters of
Hwung and Lin (1990) and in Fig. 5b for anotherecelkaracterized by a larger value of the parameter
£ . The viscous effects are larger in the right fegurhe first three velocity profiles from the lafte in
the same locations as those shown in Fig. 4. Fersthaller value of the paramete(Fig. 5a), in
shallow waters and close to the free surface thenmelocity is directed offshore but in deep witer
becomes directed onshore. The tendency of the melaeity to change sign decreases when the
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parametere increases as shown in Fig. 5b. This result is tuthe disappearance of the second
boundary layer at the bottom for large viscousctéfe
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Figure 5. Mean velocity profiles along the channel for a beach with a slope of 1:15 (a); £=2.7x10"%, (b) £=1072.

The representation of the velocity field by stradaes for the case of Hwung and Lin (1990) is
shown in Fig. 6a. We observe the presence of alesamiint at X, y)=(14,-0.14) which is due to the
inversion of the velocity as previously explainétdcan also be observed that the mean free suiface
not a streamlines of the mean flow. On the othedlthe mean free surface would be a streamlideif t
streamfunction of the mean Lagrangian velocity vemesidered.

In Fig. 6b, where the isolines of the vorticity afgown, we observe that large values of negative
vorticity is present near the bottom, which witressthe presence of a second boundary layer. Outside
this layer the vorticity is rather low, only neaetshoreline we observe a layer with moderate gabfie
positive vorticity. This positive vorticity seems be due to the interaction between the negative
vorticity close to the bottom and the positive ity generated in the free surface boundary layer.
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Figure 6. Streamlines (a) and vorticity (b) of the mean velocity for a slope of 1:15 and  €=2.7x10*. Increment
between two adjacent contour lines: (a) 0.01 (b) 1. 5. Thick line: positive values, thin line: negative values.

When the value of the parameter is increased, the vorticity appears to be disteédumore
uniformly in the fluid domain.

Up to now we have considered progressive waves lebetp absorbed at the coastline. In the
opposite case of a progressive wave fully reflectethe coastline, a standing wave is generatedhwhi
gives rise to a mean flow characterized by recating cells which depends on the steady streaming
generated at the outer edge of the bottom bourdgey. We highlight that for standing waves both th
streamfunction and the vorticity on the mean figdase are equal to zero. In this case if we chtlose
position of the side boundaries such that they aiden with the edges of the cells, the boundary
condition for the streamfunction arises naturaiiyl & can be written ag;, = 0.
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3 4 5 6 7 8 9 o3 4 5 6 7 8 9
X X

Figure 7. Streamlines (a) and vorticity (b) of the mean velocity for a fully reflected wave at the coa  stline
propagating over a beach with a slope of 1:10, for £=0.01. Increments between two adjacent contour line  s:
(a) 0.02 (b) 1.5. Thick line: positive values, thin  line: negative values.

In Fig. 7 the streamlines and the vorticity contplats for a fully reflected wave propagating on a
bottom with a slope of 1:10 and far equal to 16 are shown. We observe that positive and negative
cells are present. The mean velocity is directedangs under the antinodes of the free surface and
downwards under the nodes. The vorticity generatethe bottom is convected upwards mainly under
the antinodes, that is along the line of separdietween a positive cell and the negative cellgiac
just offshore, as it clearly appears in Fig. 7bisTdauses the centers of the previous two cellEjgn
7a, moving the one towards the other as an incredshe vorticity causes a clustering of the
streamlines.

In order to analyze the influence of an incredgh® convective effects with respect to the viscou
ones, we have repeated the previous simulationsimgla value ofs an order of magnitude smaller
than the previous one. In such a case we obsehadthie negative and the positive cells interact
causing the confinement of the positive cells cls¢he bottom and the merging of all the negative
cells as it can be observed in Fig. 8a, where d¢alts of a simulation carried out by introducihg t
condition #;, = 0along the boundary is shown. Analogous results Hmen observed by using the

boundary conditiord?%,,/dr? = Oat the side boundaries. We have carried out diffesinulations by

changing the values of the parameters but in alldkses the negative cells were those that merged
together. In order to gain insights about the meisina that gives rise to the merging of the cells, w
analyzed the flow field at an intermediate timeingithe false transient, when a steady conditicn ha
not attained yet.

3 4 5 6 7 8 9 T3 4 5 6 7 8 9

Figure 8. Streamlines (a) and vorticity (b) of the mean velocity for a fully reflected wave at the coa  stline
propagating over a beach with a slope of 1:10, for £=0.001. Increments between two adjacent contour lin  es:
(a) 0.02 (b) 1.5. Thick line: positive values, thin  line: negative values.

By carefully analyzing the vorticity field in Fi§, it appears that along the separation line betwee
a negative cell and the positive cell placed justte right, the vorticity of the negative cellsisonger
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than the vorticity of the positive cell, because thtter is placed in deeper water where the \igyrtic
generated on the bottom is weaker.

3 4 5 6 7 8 9
X

Figure 9. Vorticity for a fully reflected wave att  he coastline on a beach with a slope of 1:10 and fo  r &=0.001.
Increments between two adjacent contour lines: 1.5. Thick line: positive values, thin line: negative v alues.
The results shown in this figure are pertinent to a time during the false transient when a steady cond ition
has not attained yet.

The stronger negative vorticity induces a downwaddion of the fluid in the positive cell which is
incorporated by the negative cell. When the pasitrell becomes small enough, the negative cell
merges with the negative cell placed immediatefghafre and starts to feed it with its vorticity.elrh
process than propagates offshore until all the thageells do not merge together.

Conclusions

In this paper the results of a model developeddeinto compute the steady flow induced by a sea
wave propagating over a sloping bottom, outsidestiré zone, have been presented. The performance
of the model has been checked by comparing the memheesults both with those of the theory and
with those of experimental measurements.

In the case of a sea wave fully absorbed at thetlooa the mean velocity close to the bottom is
directed onshore because of the steady streamimgaed in the bottom boundary layer. Close to the
free surface, in shallow waters the velocities directed offshore, while in deep waters they are
directed onshore. The inversion of the velocityduwes a saddle point in the representation of the
velocity field by streamlines.

For small values of the ratio between the thickrefghe boundary layer and the wave amplitude,
far from the bottom the velocity varies rather digwvhile large variations can be observed clostnéo
bottom where a second boundary layer is generatéthwvs adjacent to the Stokes layer.

In the case of fully reflected waves at the coasilipositive and negative recirculating cells are
generated which produce upward ejections of vdytithat can reach the free surface. We have
observed that when the convective effects are Jdhgepositive and the negative cells interact sbah
the negative cells incorporate the fluid of theifhes cells. The steady regime is characterized by
positive cells confined close to the bottom andatieg cells merged into one large cell.
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