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Abstract 

To improve the accuracy of depth-integrated models for water waves, it is important 
to express the vertical characteristic of wave motion properly. In the present study, a multi- 
level model for nonlinear dispersive water waves is derived, in which vertical profile of 
horizontal velocity is assumed to be a chain of quadratic portions. The properties of the 
model in dispersion relation and second order nonlinear interactions turned out to 
converge to that of the Stokes wave theory, with the increasing number of layers. 

Introduction 

In many coastal projects, depth-integrated horizontal wave models play very 
important roll in estimating wave deformation. To improve the accuracy of depth- 
integrated model, it is important to express the vertical characteristic of wave motion 
properly. In the long wave model such as widely used Boussinesq equations and modified 
Boussinesq equations by Nwogu(1993), the vertical distribution of horizontal velocities 
are assumed to be quadratic. The higher order Boussinesq type equations by Kioka- 

Kashihara(1995), Madsen et.al(1996), Gobbi,Kirby(1996) and so on, have high accuracy 
in dispersion and nonlinearlity. In these equations, vertical distribution of horizontal 
velocities are assumed to be bi-quadratic. Different approaches were used by Nadaoka 
et.al(1994), Nochino(1994) and Isobe(1994), who expressed the vertical characteristic of 
wave motion as a combination of some components with properly chosen vertical 
distribution functions. The components are combined by applying the Galerkin method or 
variational principle to the Euler equation of motion to yield the coupled vibration 
equation for water waves, which have high accuracy in dispersion and nonlinearlity. As 
vertical distribution functions, Nadaoka et.al(1994) employed hyperbolic cosine type 
function, whereas Nochino(1994) used the Legendre's polynomials, and Isobe(1994) 
chose even-order polynomial functions. 
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In the present work, with the objective of expressing the vertical characteristics of 
wave n : ion properly, a multi-level model for nonlinear dispersive water waves is derived 
and an Jyzed, in which vertical profile of horizontal velocity is assumed to be a chain of 
quadratic portions 

Model Eqiiations 

The conceptual diagram of the present multi-level model for nonlinear dispersive 
water waves is shown in Fig.l. Static water depth is divided into several layers, whose 
number is N and numberd downward. The upper edge of first layer corresponds to still 
water level, and lower edge of iV-th layer to the bottom, d „ is the thickness of n -th layer 
and - h „ the depth of lower edge, u „ are level-averaged horizontal velocities, and u b the 
horizontal velocity at the bottom. 

Velocities are assumed to be expressed by (1) and (2). Horizontal velocities vary 
quadratically over a level, and vertical velocities linearly. For individual layer, this is the 
same as the standard Boussinesq equations. 

»(z) = «„ +7W,2 -3(/i„ + z)2)V(V-u„) 
6 

+ -(d„ - 2(/i„ + z))[ £ V(d,V •«) + V/!„V  u„ + V(u, • V/i)] (1) 

>(z) = - 2X-V   u, - (h„ + z)V -u„ -ub -Vh (2) 

By substituting (1) into depth-integrated continuity equation (3), the continuity 
equation of multi-level model is obtained as (4). 

dt J~h (3) 

dn     N 1 N 

-zf- + SVW/u,) + V(7ju1)-V[-T7(d1+jj){£V(dlV-ul) + V(nt.Vfc)}] (4) 

4- 7~~~——  

- 

i         ' h ,  = d ! U  1 

h .-1 d .-, U «-i 

h , d„ U   „ 

h „ + i dn + 1 X. . + i 

h» dN u » 

//<> /X\ / yts 
z =-h 

Fig.l The conceptual diagram of the multi-level model for 
nonlinear dispersive water waves 
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Momentum equations are expressed by (6), which are obtained by substituting (1) 
and (2) to (5), and averaging over individul layer. Equation (5) is the Euler equation of 
motion modified by using the irrotational condition. 

^u       1 _, , 2S _ wf dw ,   , 
__+ -V(u,   us + w/)+ gVr) = -VJz -j-dz' (5) 

du „ 1   „ , 2 . 
+   TV(U*      Us   +   Ws    )+«Vl) 

dt 2 

V7r      V1'     j   vr <?U, 1    ,      2r7 °U .  . aU h       n  i  n =  V[77V   (/,V •-3-
L-+ —(»7   V •—T-4 + 7? —r-^-- VA] 

TTi df        2 <?? 5? 

(=i   ;=/ + ] C' i-i   z al 

+ ikv(^^)-l(vt.^.4r ,nVi2 5? ,~+1 dt 

+ lv(<Cv.-^)-lrf„v(v.-^) 
2 at o at 

+ ^rd„V(-^.Vh)-(Vhn_l)(^--Vh) (6) 
2 <?/ at 

In the momentum equations(6), u s and  VKj are the velocities at the free surface, 
which are expressed by (7) and (8). 

", = «, +^dn
2V(V .Ul)--U

2V(V -n.) 
o 2 

-(Trf> + 7?>[Z V(d<V •»,)+ V(ut -VA)] (7) 

w, = -£ «/,V .u,-»;V -ii, -u^-VA (8) 

U * the horizontal velocities at the bottom is determined by the relation(9), 
combined with  UJV   the JV-th layer-averaged velocity. 

u, =UN+^dN
2V(V-uN) + ±dN[V(ub.Vh) + (Vh)V-uN] (9) 

6 2 

Thus, fundamental system of multi-level model is obtained, which is composed of 
one continuity equation, layers number of momentum equations and bottom condition. For 
the momentum equations (6), the convenient form is given by (10), in which the 
contributions of u, to U „ in linear dispersion terms are shown explicitly. 
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—-a-+ — V(us-us + ws) + gV?7 
<9? 2 

1 = 1 

<3t <3t 

where .coefficients in linear dispersion terms are given as follows. 
0^,.=alw.+o2w.+o3w.+a4„. 

a\„, = 

0 
n-\ 

(/.SI) 

Vdmdj        (/i>l,i>n-l) 
m=l 

i-l 

^dmdi (n>l,('<n-l) 

0 (n < 1) 

(n>\,i >n-l) 

(n>i) 

dndt (n<i) 

(n * i) 

(» = 0 

a2„, IK 
(° 

«3„,, 

12 

f° a4„ i 
Jl„J = 

02„, = 

0 (nil) 

^V(dmdf)        (n>l,i>n-l) 
m = t 

i-l 

£ V(d„d,)        (/>> l,i < B-1) 
m = ! 

0 («<1) 
\diVdf (n>l,(>n-l) 

[0 (n > i) 
33,.,- =    1 

-d.Vrf, -d,VA„. 
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(13) 
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(16) 

(17) 

(18) 

(19) 
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[0 (n * i) 
/}4„,= i (20) 

"•'      rf,Vrf, --d.Vh, (n = i) 
{ •     •    2   '    ' 

r. = £'«*.,?* + -S-«*.v A (2i) 
rti 2 

«5. = £' V (dmV A) + i-d„V (V h) - VA...VA (22) 

A remarkable feature of multi-level model is applicability to quasi-3 dimensional 
problem with vertical and horizontal closed boundaries. Vertical closed boundaries can be 
simply treated by setting the corresponding horizontal velocities to be zero. Horizontal 
closed boundaries can be treated by following manner(Fig.2). Vertical velocities at thr 
horizontal closed boundaries are set to be zero by condition (23), where - h B is the depth 
of horizontal closed boundaries which corresponds to the lower edge of n B-th layer. In 
this case, the number of equations exceed the number of unknowns. To make the system 
closed ,a new unknown p B the pressure under the closed boundary should be introduced. 

w(.-h„)= -f, d,V •u,-ub-Vh = 0 (23) 
i = JiB 

By expressing the modified Euler equation (5) using ps, (24) is obtained for 
the region under the horizontal closed boundary. 

— +-V(us.us) + V(^-) = -VJ     —dz' (24) 
at     2 p Jz     at 

Equation(24) is expressed with dependent variables of multi-level model as (25). 
At the side edge of horizontal closed boundary, variable pu is connected to that of 
ordinary region. 

^ + iv(uJ-u8) + V(^) 
dt       2 •-»-"•   •- p 

n-\        N ph-t n-\      i n._ 

,-^ti2 dt        ,~, dt 

4vW.2V-^.)-Id.V(V.-^.)-i.rf.(V*;)V. * 
2        " dt 6   " dt        2   "       " dt 

+ p(^-Vi") + ^,V(^.V^)-(Vi1)(^-Vl1) (25) 
~[ at 2 dt at 
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In this manner, the multi-level model proposed in this study can be applied to 
quasi-3 dimensional problem. 

Properties of Model Equations 

In this section we will analyze the linear and nonlinear characteristics of the 
present model. The procedure employed here is fundamentary the same as previous works, 
for example Madsen et.al(1996). 

For simplicity, we treat the one dimensional version of the equations with constant 
depth, which are expressed by (26), the continuity equation and (27), the momentum 
equations with the velocities at the free surface expressed by (28) and (29). 

6 ax ax 

dun dus dws dr\ 
dt dx *   dx dx 

d r   ^, J  d
2u,      1    2a

2«,,    ^ ^ J J    <?\. 
dx     -frf   ' dtdx     2       dtdx       JT[ £fn '   ' dtdx2 

if', <?\.    i £, , , a3»,    i J + —>  d,   „     '   + — >  dd, '- + -d 
d*u„ 

dtdx2  '  2,frt,"""' dtdx2   '  3~" dtdx2 (27) 

,,1,2   1  2N<?2«,    . 1  ,     ,^i , d2U, ,„„, 
«,=«•+(-«*, --i, )-^-(-dl+r])^di-^ (28) 

^=-I-iTL-'»Tt-«.r (29) 
Tr;  OX ax dx 

We look for solutions of the form expressed by (30) and (31), where   e   is a small 
parameter. 

77 = £77(1) cos( kx - cot) + e 2T7(2) cos 2(kx - cot) (30) 

u„ =£un
mcos(kx-cot) + £2un

(2)cos2(kx-cot)) (31) 

Substituting them to (26) and (27) ,the equations for first order of   e   are given 
by (32) and (33). 

N 

CtirfV+k^d^ =0 (32) 

^:i)-^(,)+to[(ii^+^-f<.2)«1
<i,+kvi,]=o   03) 

1 = 1  j=i+l *•  i=l ^ 



582 COASTAL ENGINEERING 1998 

These are homogenious equations and non-trivial solutions require the determinant 
of the system to vanish to provide the dispersion relation. 

In Fig. 2, the dispersion relation of the present model is compared with that of the 
linear theory. In this case, thickness of n -th layers are set to be n -times of first layer so 
that deeper layer has larger thickness. With the increasing number of layers, linear 
dispersion relation of the multi-level model converges to that of linear theory. Four layers 
are enough for sufficiently accurate dispersion for kh up to 10. 

Distribution of { u n
m} for various values of kh can also be obtained from (32) and 

(33), which provide the vertical distribution of linear components of velocities according 
to (1) and (2). In Fig.3, vertical distribution of horizontal velocity u(z) of the present 
model is compared with that of the linear theory. Fig. 4 shows plots similar to Fig.3 for 
vertical velocity w(z). Although larger number of layers is required to reproduce the exact 
solution as kh increase, plots for N=6 and N=& show very accurate reproduction so that 
they are hard to distinguish, for the range of kh smaller than 20. 

Similary, the equations for second order of e are given by (34) and (35). 
From these equations, the second order surface elevation and velocities are obtained, 
which should be compared with that of Stokes second order wave theory. 

W77(2)+fcf d,u,m =h[(l-U2k2)Ul
w +Uk2ftdiu„wW» =0 (34) 

7=T 2 6 2        J=1 

(to + \kd?)um +*«(£ £ d,d, 42>>.<2) ~skrim 

3 i=l j=i+l ^ >=1 

= ijk[(l-id1
2ifc2)«I

(,)+IdIifc2fdi«.<,)]2 

-^(i^/v-^w'iw0 05) 
4        ;=i 2 ;=i 

The water-surface elevation including second order of e is expressed by 
equation(36), where H is wave height. On the other hand, according to Stokes second 
order theory, it also can be expressed by equation(37). 

H   ..     .   //y2> 
—cos(kx - cot) + 777- , 
2 4(T]mY 

rj = —cos(kx-cot)+^   {  2 cos2(kx - cot) (36) 

H      ,, .     H2 , coshkh(cosh2kh + 2) 
—cos(kx-cot)+ k r— 
2 16 (sinhkh3) 

T] = —cos(kx-cot)+-^k         >|3 cos2(kx-cot) (37) 

The amplitude of second term of equation (36) and (37) are compared in Fig.5, 
both are plotted being divided by wave number. In this case, wave height is 20% of still 
water depth. It is seen that the results of the present model converge to that of Stokes wave 
theory, with the increasing number of layers. Thus, it is confirmed that nonlinear 
interaction characteristic of the present model is accurate up to the second-order. 
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Numerical Approach 

The differential equations are discretized by using a time-centered implicit scheme 
with variables defined on a space-staggered rectangular grid. The resulting system of 
difference equations is reduced to a block tridiagonal system, which is solved by 
generalized Thomas algorithm. 

An example of 2-HD simulation with three layers is for oblique wave incidence to 
sloping beach of 1:20. Regular, unidirectional waves with the period of lOsec and the 
wave height of 3m are generated at the depth of 24m with the incident angle of 25 deg. In 
this example, a little simplified version of momentum equation is employed, which are 
expressed by (38). 

-^r+(»B-V)«„+— I    w—dz+gVn 
at an 

J-A      az 

= IIW(v.-J)+^v(v.A) 
i=i y=i+i al /=i z ol 

+ t ^XV(V-^) + I<2V(V-^) + £r(V.VK (38) 
;=H+i ^ at       5 at 

The third term in left hand side of (38) is expressed by (39) with dependent 
variables of multi-level model. 

T-CV^Z=^"2v"»v(v-"«)+7v(rf"v"» idw d„ J-*"       dl 3 2 ,.~ 

+ (i>,V«,.)(f>,.V(V.«,.)) (39) 

In this expression, bottom sloping, vertical acceleration over still water surface, 
and nonlinearity of vertical momentum equation are neglected. In equation(23), s T is the 
eddy viscosity according to breaking wave propagation model by Katayama and 
Sato(1993). 

Fig.6 depicts a perspective views of calculated wave fields. A vector plot of the 
layer-averaged velocity of first and third layer is shown in Fig.7. Co-existence of 
longshore current and undertow is well described by the present model. 

Next example is wave diffraction simulation by submerged horizontal plate. In this 
case, linear and 1-dimensional version of multi-level model with five layers is employed. 
Fig.8 shows the spatial profile of the propagating wave for different relative submerged 
depth of horizontal plate. The transmission coefficients KT agree with the result of 
simulation by boundary element method, which is shown in brackets. Thus, the 
applicability of present model to quasi-3 dimensional problem is confirmed. 
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Fig.6 Perspective view of the wave field for oblique wave incidence 
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Fig.7 Time-averaged velocity field for oblique wave incidence 
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Fig.8 Computation for linear wave diffraction by submerged horizontal plate. 
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Conclusions 

(1)A multi-level model is proposed for computing nonlinear dispersive waves. 
The accuracy of the model is first examined in terms of the convergence of linear 
dispersion relation along with quadratic transfer function. It is found that the model 
gives satisfactory results if the number of layers is properly chosen. 

(2)The model is secondly applied to 2-HD wave propagation on sloping beach, and 
coexisting property of longshore current and undertow can be predicted. 

(3)The applicability of the present model to quasi-3 dimensional problem is confirmed by 
reproducing the diffraction wave field with submerged horizontal plate. 
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