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ABSTRACT 
The WISE group is a group of investigators who have agreed to jointly (i) study 

the physical processes affecting waves in shallow water, (ii) develop numerical codes to 
explicitly represent these processes in operational models and (iii) verify these wave 
models in real coastal conditions. The group meets once per year in Europe or North 
America to discuss progress and coordinate future plans. Since the first meeting in 1993, 
interesting results have been obtained in all of the three aspects, including operational 
third-generation spectral wave models for shallow water (one of which has been released 
in public domain). 

INTRODUCTION 
When in 1992 the highly successful third-generation wave model WAM for ocean 

applications (WAMDI group, 1988; Komen et al., 1994) was completed, several members 
of the WAM group turned their attention to coastal regions where of course they 
encountered coastal engineers with their large diversity of wave models notably the 
second-generation HISWA model (Holthuijsen et al., 1988). In the following year, these 
WAM members and members of the HISWA group and others met and decided to jointly 
approach the study of ffiaves In Shallow water Environments (WISE). In this first meeting 
the WISE group agreed to develop (operational) wave models for coastal regions in which 
all relevant physical processes would be represented explicitly. Three tasks were 
correspondingly defined: (i) to study the physical processes affecting waves in shallow 
water, (ii) to develop numerical codes to represent these processes in operational models 
and (iii) to verify these wave models in real coastal conditions. We wish to emphasize that 
the WISE group does not necessarily exhaust all the activities in the field. However, it 
includes a fairly large and comprehensive part of it. 
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THE WISE GROUP 
The WISE group is an informal group of some 50 active members (individuals) 

from some 15 countries, mostly from Europe and N. America but also from Australia, 
Japan, S. America and the Middle East. The home institutions of these members are both 
public and private with a wide range of interests from applied research to daily marine 
operations (e.g., ministries, harbour authorities, army & navy, universities, research 
institutions, consultants). The WISE group as a whole is coordinated by the present 
authors. The group meets once every year, alternating between Europe and N. America. 
Meetings were held in Thessaloniki (Greece, 1993), Ensenada (Mexico, 1995), Venice 
(Italy, 1996), San Francisco (USA, 1997) and Leuven ( Belgium, 1998). The next meeting 
shall convene in Annapolis (USA, 1999). The WISE group has three working groups 
corresponding to the above three tasks. Each group communicates and coordinates 
common interests (e.g., joint funding, exchange of visiting scientists and students, 
computer codes and observational data). During the meetings, scientific and operational 
progress in each group is reported in plenary meetings which are also used to discuss 
common interests such as large-scale joint efforts, funding opportunities and sharing of 
data and computer codes. The WISE meetings are organized in a very informal way, 
without any written report or proceedings, and with an open continuous discussion during 
and after the individual presentations. The latest findings are regularly shown at the 
meeting for constructive discussion about future steps. The WISE group as such is not 
funded by any agency but some (subgroups of) WISE members are funded contingent on 
their participation in the WISE group and their willingness to share results with other 
WISE members. 

SHALLOW-WATER WAVE MODELS 
Two families of numerical wave models can be used effectively in shallow-water. 

These are (a) phase-resolving models which are based on vertically integrated, time- 
dependent mass and momentum balance equations and (b) phase-averaged models, which 
are based on a spectral energy (or action) balance equation. The phase-resolving models 
require a spatial resolution that is a small fraction of the wave length. They are therefore 
limited to relatively small areas of the order of a dozen wave lengths (i.e. order of 1 km). 
The phase-averaged models do not require such fine resolution so that they can be used in 
much larger areas, the limitation being the size of the ocean basin (with the conventional 
resolution of 50 - 100 km for ocean applications). The reason for using both models is that 
some processes cannot be adequately handled in one or the other. For instance, diffraction 
and triad wave-wave interactions can at present not or only approximately be modeled in 
phase-averaged models whereas wind-generation cannot be modeled in phase-resolving 
models with any operational feasibility. Since the first WISE meeting in 1993, the role of 
these types of models in the group has evolved. The interest of most WISE members is 
aimed at the region between the deep ocean and the surf zone (it includes islands, shoals, 
tidal flats and estuaries; e.g., Fig. 1). This has resulted in a support-oriented role of the 
phase-resolving models (source of basic results) and an operationally-oriented role for the 
phase-averaged models (source of operational products). It must be emphasized that this 
evolution in the WISE group does not distract from the operational importance of the 
phase-resolving models in small-scale areas where they may well perform better than any 
phase-averaged model (in particular when diffraction is important). 
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Fig. 1 An example of the type of area of interest to the WISE group: the Norderneyer 
Seegat (Germany). Depth contour lines with 2 m interval. 

Phase-averaged energy balance models are often formulated in terms of the two- 
dimensional energy density varying in spectral space, geographic space and time, 
E( o, 8 ;r,y, t). The energy balance can then be written as (e.g. Hasselmann et al., 1973): 

5 IT 3 ., — E + — cE 
dt       dx   x dy y da 

•c„E — cRE = S 
89   9 (1) 

The first term in the left-hand side of this equation represents the local rate of change of 
energy density in time, the second and third term represent propagation of energy in 
geographical space (with propagation velocities cx and cy in x- and y-space, respectively). 
The fourth term represents shifting of the relative frequency due to (time) variations in 
depths (with propagation velocity c0 in a-space). The fifth term represents depth-induced 
refraction (with propagation velocity ce in 9-space). The expressions for these 
propagation speeds can be taken from linear wave theory (e.g., Mei, 1983; Dingemans, 
1997). Interactions with ambient currents are readily included by extending all of these 
propagation speeds consistent with linear wave theory and by replacing energy density in 
the balance equation by action density (defined as the energy density E divided by the 
relative frequency a). This formulation is for Cartesian coordinates. It is readily changed 
into a formulation in spherical coordinates for applications on oceanic scales. The term S 
(=5 (o, 9)) at the right hand side of the action balancs equation is the source term in terms 
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of energy density representing the effects of generation, dissipation and nonlinear wave- 
wave interactions. 

The most important phase-resolving models are Boussinesq models. These are 
essentially wave propagation models without source terms and they are commonly 
formulated in terms of the surface elevation and some depth-averaged velocity (the long- 
wave equations corrected for the vertical velocity distribution), e.g.: 

di\ + d {(h + r\)ux] + d{(h^j\)uy] 

dt dx dy 

?"*.,. i"i,„ ^=91 - u„ + u 
dt       * dx       y dy ox 

du„ du„ du 

«^ + Ecx (2) 

y 

dt       ' dx       y dy dy 

in which riis the sea surface elevation, h is mean water depth, w^and a are the depth 
averaged velocity components in x- and y-direction respectively, gis gravitational 
acceleration and ]T C is the sum of all correction terms to represent effects of the vertical 
velocity distribution. Some Boussinesq models include processes of dissipation by adding 
particular boundary conditions at the surface, notably a roller to represent depth-induced 
breaking (e.g. Schaffer et al., 1993). 

Recent developments which integrate the two approaches of the energy balance and 
the Boussinesq models are reported below. 

ACHIEVEMENTS 
Most of the progress in task (i) of WISE has come from the phase-resolving 

models, providing input for the development of the phase-averaged models. The most 
fundamental development here has been an explicit formulation for the evolution of wave 
phases in shallow water which can be used in energy balance models. It involves the 
introduction of the bispectrum. Representing the random surface elevation in the 
Boussinesq equations as the sum of a large number of harmonic components with complex 
amplitudes eventually leads to evolution equations for amplitudes and biphases (or the 
bispectrum). The bispectrum B(a1,o2) is defined as the Fourier transform of the third- 
order correlation function ^(T^TJ), analogous to the definition of the energy density 
spectrum£(a) which is defined as the Fourier transform of the second-order correlation 
function R(x): 

£(c)= f R(x)exp(-iaT:)dx 
-co    +« (3) 

B(al,a2) = J^(x1,T2)exp[-!(01T1 + a2T2)]dxldx2 

where T , xy and x2 are time lags. The essence of the bispectrum is that it represents the 
coupling between triads of wave components with phases tp;, <pmand ip;^. Madsen and 
Stfrensen (1993) thus obtained a discrete spectral version of the (phase-resolving) 
Boussinesq model which explicitly formulates the triad wave-wave interactions. In deep 
water these interactions can be ignored but in shallow water they often generate a 
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secondary, high-frequency peak in the wave spectrum. This spectral Boussinesq model is 
phase-resolving in the sense that the phases of the wave components are an integral part 
of the formulation (in contrast to the random-phase assumption in phase-averaged models). 
Because of its spectral nature, it allows a blending with phase-averaged models in a hybrid 
approach: the energy balance equation (partially dependent on the biphases) can be 
supplemented with a phase evolution equation (which in turn depends on the energy 
spectrum). The first step in implementing this explicit formulation of triad interactions in 
a phase-averaged model was taken by Eldeberky and Battjes (1995). They used an 
approach somewhat similar to the discrete interaction approximation (DIA) of the 
quadruplet wave-wave interactions of Hasselmann et al. (1985) for deep water. Eldeberky 
and Battjes consider only self-self triad interactions for uni-directional waves in their 
model (the lumped triad approximation, LTA, Eldeberky, 1996) and they avoided the use 
of an explicit phase-evolution equation by locally estimating the biphase 
<P/ + <Pm -ip,tmfrom the local wave steepness and local relative water depth (Ursell 
number). The next step, i.e. to fully blend the spectral energy balance model with a 
bispectral model has been taken by Herbers and Burton (1997). They explicitly compute 
the biphase and the energy density of short-crested waves on a plane beach in the absence 
of generation and dissipation. It should be relatively straightforward to expand this 
propagation model to arbitrary bathymetry. But adding source terms to represent the effect 
of generation and dissipation of wave energy on the biphase seems difficult. 

Another phase-resolving model, the mild-slope equation (Berkhoff, 1972) is the 
basis for attempts to include diffraction in phase-averaged models. The essence is that 
diffraction modifies the conventional dispersion relationship from the linear wave theory 
and consequently the refraction term in the phase-averaged models (the propagation 
velocity ce in 0-space, Booij etal., 1997; Rivera etal., 1997): 

c = fk Ji +     °e      db (4) 
6     k dm     2(1+5) dm 

where 6 = V-(ccVa )lk2ccga and in which k is the separation constant (e.g. Dingemans, 
1997), determined from linear wave theory with a2 = gk tank kd (normally referred to as 
the wave number 2v.IL where L is the wave length but not in this context where the 
difference is essential). The phase speed is c, the group velocity is cg and m is the 
direction normal to the wave direction. The first term in the right-hand side of Eq. (4) is 
the conventional refraction representation and the second term is obviously the diffraction 
addition in terms of the amplitude aof a harmonic wave. A spectral formulation of 
diffraction (i.e. in terms of energy or action density) is not available. Since the second- 
order derivatives in the expression for 6 are linear in amplitude, an ad-hoc approach 
would be to replace the amplitude by the square root of energy density jE = £(o,0)per 
spectral wave component b~V-(ccV<J~E)lk2ccg<fE. Preliminary attempts to compute 
diffraction in this way are being made (Booij et al., 1997; Rivera et al., 1997), but an 
adequate numerical formulation has not yet been developed. 

Progress with phase-averaged modelling in this task (i) as been mostly in depth- 
induced breaking. It has been observed in laboratory conditions (e.g., Battjes and Beji, 
1992; Vincent et al., 1994) that depth-induced wave breaking of waves with a unimodal 
spectrum hardly affects the shape of the spectrum (the changes in spectral shape are 
mostly due to triad wave-wave interactions). This has led to a simple spectral version 
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(Eldeberky and Battjes, 1995) of an earlier expression for the overall dissipation of waves 
breaking in shallow water that is based on a bore model (Battjes and Janssen, 1978; 
Thornton and Guza, 1983). Outside the WISE group Elgar et al. (1997) have shown with 
a detailed analysis of observations that the dissipation is often proportional with the square 
of the frequency. But the effect of this on the spectrum seems often to be masked by the 
simultaneous effects of triad wave-wave interactions (Chen and Guza, 1997). More 
observations in the surf zone will further contribute to the understanding of this 
phenomenon. 

In task (ii) the main progress has been achieved with new numerical codes of 
phase-averaged models and adaptations of the WAM code. A serious problem with the 
codes of phase-averaged ocean wave models such as the WAM model (but also similar 
third-generation models such as the WAVEWATCH model, Tolman, 1991) for 
applications in shallow water is that their numerical schemes are explicit. This implies that 
they are subject to the Courant criterion of numerical stability: the time step in the 
computations is limited by the spatial resolution of the model. In open ocean applications 
this is usually not a problem (the spatial resolution is of the order of 100 km and the 
propagation time step is of the order of 15 min). For coastal applications however this is 
a problem because the required spatial resolution is often of the order of 100 m or less and 
the corresponding time step would be about 10 s or less in water of 10 m depth. This is 
operationally unacceptable and new ways for integrating the energy balance have to be 
found. One successful optimization has been to use a larger time step for integrating the 
physical processes than for wave propagation (the WAVEWATCH model, Tolman, 1991; 
the WAM model, Luo et al., 1997). This permits reasonably efficient computations down 
to a spatial resolution of about 1 km (in particular on vector machines, as these models 
vectorize well). Another attempt is being made with a hybrid scheme: piecewise 
propagation along rays between grid points (in the TOMAWAC model of Benoit et al., 
1996). This numerical scheme is unconditionally stable but time steps larger than 
corresponding to the spatial resolution (i.e. At>\xlc ) ignore the variations in the 
physical processes at that spatial resolution since spatial variations in the processes are not 
considered within the time step At. This approach is therefore still subject to the Courant 
criterion (for reasons of spatial resolution of the physical processes rather than numerical 
stability). An implicit scheme that avoids the stability problem has been developed by 
Booij et al. (1996) in their SWAN model. It sweeps through the computational area in four 
90° quadrants with an upwind scheme that is unconditionally stable and does not suffer 
from the limitation of the hybrid approach. However, the present implementation is based 
on a first-order, upwind scheme which is rather diffusive. This seems acceptable for small- 
scale regions (25 km or less) but it needs to be replaced by a higher-order scheme for 
larger scales. It operates on arbitrarily small spatial resolution (varying from 1 km to 10 
m in field conditions to 0.1 m in laboratory conditions). A third-order upwind scheme is 
presently being developed in SWAN for Cartesian and spherical coordinates (which would 
allow long-distance propagation over the oceans). The TOMAWAC model and the SWAN 
model are extensions of the WAM model in the sense that they supplement the processes 
that are represented in the WAM model (Cycles 3 and 4 of that model) with the LTA of 
the triad wave-wave interactions, spectral depth-induced wave breaking and several 
options for bottom friction. Vectorization has not been considered in the design of SWAN 
as it is aimed at relatively small (nonvectorizing) computers. Like the WAM model, to all 
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intents and purposes the SWAN model is available in the public domain (home page, 
http:// swan@ct.tudelft.nl). 

To validate numerical wave models that are being developed, a standard test bank 
is under construction containing academic cases of wave propagation in deep and shallow 
water with and without ambient currents for which analytical solutions are available. Real 
field cases with detailed observations are also included. Some are fairly complex (e.g., 
tidal inlets), others are sufficiently simple that they can be generalized (e.g. idealized 
fetch-limited wave generation). 

The wave models often need coupling to other models, either to be driven by 
models such as atmospheric and circulation models or to drive other models such as 
circulation models (with wave induced radiation stresses) and morphodynamic or 
ecological models. Also, some wave models need to be nested into other wave models to 
achieve high-resolution results or to shift to other physical processes (e.g. to include 
diffraction). Work in these aspects is being carried out at several levels in the WISE 
group. From a scientific point of view the effect of wind variations in coastal regions is 
being investigated by coupling coastal atmospheric models with coastal wave models (in 
particular orographic and boundary-layer effects along mountainous coastlines and behind 
barrier islands). The effects of tidal currents on the coastal wave climate are similarly 
investigated by coupling coastal wave models with tide-driven coastal circulation models. 
To numerically accommodate such interactions with circulation models, the TOMAWAC 
model is formulated on a triangular grid and the SWAN model has recently been adapted 
to operate on a non-orthogonal curvi-linear grid. To carry out computations from large 
scale to small scale, the SWAN model can be nested into the WAM model (SWAN accepts 
output directly from the WAM model; Luo and Flather, 1997). To pre- and post-process 
the input and output of such sets of models (both numerically and graphically), dedicated 
tools are being developed based on ARCINFO (Kaiser, 1994), ARCVIEW and MATLAB. 

In task (iii) a number of fairly large field campaigns has been carried out with very 
useful results. A most interesting field campaign was carried out in nearly ideal shallow- 
water generation conditions in Lake George in Australia (e.g. Young and Verhagen, 
1996). The observations of this campaign provide much needed characteristics of the 
wind-induced growth of waves in limited water depth. It has already served (and will 
continue to do so) to verify or calibrate models of the WISE group. Several other large 
field campaigns have been executed off fairly open coasts along the east coasts of the USA 
and England and along the rather convoluted coast in the north of the Netherlands and 
Germany. It is expected that the wave models of WISE members will be verified against 
these observations. Such verification has already been carried out for the SWAN model 
(Figs. 2 and 3). The rms-error of the significant wave height and mean wave period 
computed with SWAN in these (and other, similar) conditions was typically about 10% 
of the incident values (note that locally the relative error can be much larger as the local 
waves may be much lower). 
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Fig. 2 Significant wave height and mean wave direction (unit vectors) computed with the 
SWAN model in the Nordemeyer Seegat (Germany, see Fig. 1; six buoy locations 
indicated). Significant wave height contour line interval 0.5 m. 
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Fig. 3 The significant wave height and mean wave period in the Nordemeyer Seegat 
(Germany, see Fig. 1) observed at the six buoy locations of Fig. 2 and computed 
with the SWAN model. 
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OUTLOOK 
Although considerable progress has been made in the WISE group over the last few 

years, several basic aspects are still unresolved and the verification of the existing 
computer codes has been rather limited. Moreover, the numerical quality of the present 
codes pose unnecessary constraints on their operational applicability. With the present and 
future R&D programs of WISE members, these aspects will improve. In addition, 
relatively new model technology such as real-time data assimilation based on buoy and 
satellite observations will be introduced in the forecasting of waves in coastal regions. The 
outlook for these developments is optimistic because both in Europe and in the USA, 
funding is available to continue research and development at an increased pace. With the 
release of the SWAN model in the public domain, next to the WAM model, these 
developments can be concentrated in two widely available, supplementary computer codes. 
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