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Abstract 

A shallow-water flow solver with non-hydrostatic pressure in a coordi- 
nates has been developed to include effects due to the moving grid, referred to as 
the ALES approach. The formulation is outlined for 2D vertical plane problems 
and tested against experimental data for wave flows over plane beds, bars and 
trenches. Agreement with experiment is generally good and the importance of 
non-hydrostatic pressure and moving-grid terms is demonstrated. 

Introduction 

Conventional shallow-water flow models based on hydrostatic pressure 
can provide accurate results for many engineering problems. However, the 
model will not be accurate for problems in which there is significant gradient 
of either bed topography or free surface. A recent study by Stansby and Zhou 
(1998) has shown that the influence of non-hydrostatic pressure on current flow 
over a trench with bottom slope greater than 1:5 can be significant. The solver 
developed for non-hydrostatic pressure applies also to wave flows. Accurate 
predictions of wave flows including viscous/turbulence effects are of importance 
in coastal and ocean engineering projects such as harbors, channel dredging, 
pipeline trenching and storm-surge barriers. In this paper, we present a shallow- 
water flow solver to predict waves over a plane bed, a trapezoidal trench and a 
bar and compare with experimental data. The model is based on the unsteady 
Reynolds-averaged Navier-Stokes equations in ALE (Hirt, 1970) description 
which is able to account for the moving mesh with non-hydrostatic pressure. 
The equations are solved in the a coordinate system and the eddy viscosity is 
calculated using the standard k — e model. The method is referred to as ALES. 
The computations are also compared with the model with hydrostatic pressure 
alone. 

Flow Model 

The unsteady Reynolds-averaged Navier-Stokes equations for incom- 
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pressible flow in a 2-D vertical plane can be written with the ALE description 
for incompressible flow, with the Boussinesq assumption for the time-averaged 
Reynolds stress in a coordinates as 
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where x is the horizontal coordinate and a the vertical dimensionless coordinate 
defined below; r\ is the water surface elevation above horizontal datum; h is 
water depth; u and w are the velocity components in the horizontal and vertical 
directions; w = hda/dt (defined below); wg is the grid velocity in the vertical 
direction; g is the gravitational acceleration; p is the non-hydrostatic pressure; 
p is the fluid density; ve is the eddy viscosity; where 

z -1) (  dh     d-q\      (  dh     d-q 

w = 0 when a = — 1 or a = 0, corresponding to the bed and the free surface. 
The continuity equation (1) is not transformed into a coordinates because the 
non-hydrostatic pressure is calculated in real space. 

The eddy viscosity ve is defined by the standard k — e equations (Rodi, 
1993), which can be written in a coordinates as 
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Solution of the Equations 

Spatial discretization is in finite-volume form on a staggered mesh fol- 
lowing Stansby (1997). For a cell i, k the equations (2)-(4) can be discretized 
in time from time level n to n + 1 with time step St, as 
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The equations (7)-(9) are solved for r) efficiently by the conjugate gra- 
dient method. Similarly, Eqs. (5) and (6) are discretized and solved. 

The continuity equation (1) can be used to derive an equation for non- 
hydrostatic pressure in real space as 

aPp'p = aBp'E + awp'w + avp'v + aDp'D 

+ O-EUPEU + O-EVPED + awuPwu 

+   awoPwD + fto (10) 

in which p' is the correction of the no-hydrostatic pressure.   The coefficients 
such as ap and the details are described by Stansby and Zhou (1998). 
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The a mesh is refined near the bed and surface as in Stansby (1997). 

Results 

1. Wave over a plane bed 

A wave over a plane bed is simulated. A mesh of 600x20 cells is used 
with 8x = 0.1 m, 8t = 0.05 s, and h0 = 1.0 m. The period T is 4 s. The 
amplitude of uniform sinusoidal velocity at inflow is U0 = 0.2 m/s. Fig. 1 
shows velocity vectors at t = 100 s. Clearly, regular waves are propagating 
along the channel. 

-   0.4 m/s 

o.ao-pt 

Figure 1: Wave over a plane bed 

2. Wave over a bar with small side slope 

The progressive wave considered here is the same as that studied ex- 
perimentally by Beji et al. (1992). The wave flume is sketched in Fig. 2. The 
wave height is 2.0 cm and the period T is 2.0 s.   A mesh of 320x21 cells is 
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Figure 2: Sketch of the wave flume 

used with 5x = 0.1 m and 6t = 0.005 s. For the inflow boundary conditions, 
Uo = 0.09 m/s which generates a wave of 2.01 cm height and ho = 0.4 m. 
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Results after 17.5 s axe shown in Figs. 3-5 with experimental data, showing 
good agreement. Results from the a model without incorporating the moving 
grid are also plotted in Fig. 5. It is clear that the ALES model is superior to 
the a model. 
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Figure 3:  Comparison between model and experiment of the wave profile at 
station 1 
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o        Experimental Data 

1.5- 

Figure 4:  Comparison between model and experiment of the wave profile at 
station 3 

3. Wave over a bar with steep side slope 

Here a progressive wave over a bar with steep slope is considered. The 
flume is the same as that in the experiment by Ohyama et al. (1995) and is 
sketched in Fig. 6. The wave height is 5.0 cm and the period T is 2.01 s. A 
mesh of 600x21 cells is used with fa = 0.1 m and St = 0.005 s. Uo = 0.2 m/s 
generates a wave of 5.006 cm height and h0 = 0.5 m. Results are presented 
after 33 5. 
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Standard cr Model 
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Figure 5:  Comparison between model and experiment of the wave profile at 
station 5 
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Figure 6: Sketch of experimental arrangement for wave over a bar with steep 
side slope 

A comparison between experimental data and computations for station 
3 is depicted in Fig. 7. The figure shows that the agreement is good. The 
results from the standard a model are also plotted in the figure for comparison. 
Again, this shows that the ALES model is superior due to the incorporation of 
grid velocity 

4. Comparison with hydrostatic model 

In order to show the difference between the results predicted with and 
without non-hydrostatic pressure, a wave over a trench with the same geometry 
as described by Alfrink and van Rijn (1983) is simulated. A mesh of 170x20 
cells is used in the numerical computation with 5x = 0.1 m, St = 0.01 s, 
U0 = 0.2 m/s and ho = 0.2 m. The period T is 3 s. Comparison of the surface 
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Figure 7:  Comparison between model and experiment of the wave profile at 
station 3 
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Figure 8: Comparison of surface profiles at t = 20 s with and without non- 
hydrostatic pressure: dashed line denotes the surface from hydrostatic pressure 
model 

profiles is shown in Fig. 8. 

5. A wave flow over a trench 

A current over a trench has been investigated numerically and experi- 
mentally (Alfrink and van Rijn, 1983; Basara and Younis, 1995; Stansby and 
Zhou, 1998). No experimental studies of wave flow over a trench have been 
reported in the literature to our knowledge. However, this is an important 
problem in coastal engineering and is investigated numerically here. The trench 
used is the same as that investigated experimentally for a current (Alfrink and 
van Rijn, 1983) and is sketched in Fig. 9. A mesh of 170x30 cells is used in 
the numerical computation with Sx = 0.1 m, St = 0.01 s, UQ = 0.08 m/s 
and h0 = 0.2 m. The wave height is hw « 0.2h0 and the period T is 1 s. 
The streamlines are shown at t = 20 s in Fig. 10. The reflection coefficient 
is Kr « 0.38 and the transmission coefficient is Kt f» 0.44, estimated after 4 
wave crests have passed the trench. As comparison, a current over the trench 
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is shown in Fig. 11 (Stansby and Zhou, 1998). 

6. A wave/current flow over a trench 

Waves often occur in combination with a current. Here a wave/current 
flow over the same trench is simulated. To retain the same wave height, UQ = 
0.2 m/s and inflow boundary condition for velocity u is specified as 

Um = — locie. I ^  1 + U0sin{2nt/T) (11) 

where u„ = 0.033 m/s, K = 0.4, ks = 0.002 m and z0 = 0.00067 m. This gives 
wave height H = 0.038 m and mean current velocity u « 0.387 m/s. 

Fig. 12 shows the streamlines at t = 8.4 s. At this moment, there is 
clearly separation in the trench. There is also flow separation in the trench 
when t = 8.7 s as shown in Fig. 13. However, separation appears to disappear 
when t = 8.9 s as shown in Fig. 14. This highly unsteady separation is in 
contrast to the stable separation in a steady current (see Fig. 11) and attached 
flow in a wave alone. 

Conclusions 

In this paper, we present the application of the ALES model to wave 
flows. The results have shown that the ALES model is more accurate than 
the conventional shallow-water flow model in a coordinate. When there is 
significant variation in either free surface or bed topography, the effect of the 
non-hydrostatic pressure on flows should not be ignored. 
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Figure 9:   Sketch of the trench used in experiments (Alfrink and van Rijin, 
1983) 

Figure 10: Streamlines for the wave over the trench t = 20 s 

Figure 11: Streamlines for current flow over the trench (from Stansby and Zhou, 



COASTAL ENGINEERING 1998 431 

Figure 12: Streamlines for the wave/current flow over the trench: t = 8.4 s 
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Figure 13: Streamlines for the wave/current flow over the trench: t = 8.7 s 
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Figure 14: Streamlines for the wave/current flow over the trench: t = 8.9 s 
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