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Abstract: A horizontally two-dimensional, time dependent numerical model for 
obliquely incident shallow water waves with arbitrary incident angles is developed 
to predict the temporal and spatial variations of the free surface elevations and 
fluid velocities on inclined coastal structures. As a first attempt, use is made of 
periodic lateral boundary conditions, which limits the computations to regular 
waves on the slope of alongshore uniformity. The numerical method and the 
seaward and landward boundary algorithms are fairly general and expected to be 
applicable to irregular waves as well. The computed results for plunging waves on 
a rough 1:3.5 slope with the incident angles in the range of 0° — 80° are presented. 

Introduction 

The three-dimensional hydrodynamics processes on and around coastal structures 
are little known in comparison to the nearshore hydrodynamics on sandy beaches. 
As a result, no predictive model is available to predict breaking waves and induced 
currents on and around these inclined structures. 

The available data are still limited because the experiments in directional wave 
basins to examine the effects of incident wave angles and directionality on design 
variables such as wave runup (De Wall and Van der Meer 1992) and wave reflection 
(Isaacson et al. 1996) were conducted mostly for straight structures on horizontal 
bottom. In addition, since these experiments include more design parameters and are 
much more time-consuming than unidirectional wave flume experiments, measure- 
ments are normally limited to free surface oscillations at several locations and do not 
provide detailed understanding of oblique wave dynamics on steep rough slopes. 

Existing time-dependent models for waves on inclined coastal structures are limited 
mostly to normally-incident waves as reviewed by Kobayashi (1995). Liu et al. (1995) 
solved the finite-amplitude, shallow-water equations numerically to predict solitary 
wave runup around a circular island with a 1:4 side slope. Kobayashi and Karjadi 
(1996) and Kobayashi et al. (1997) developed numerical models for oblique irregular 
waves with small incident angles but these models can not be used to examine the 
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effects of incident wave angles on the important quantities for the design of coastal 
structures. 

In this paper, a two-dimensional, time-dependent numerical model for finite-ampli- 
tude, shallow-water waves with arbitrary incident angles is developed to examine the 
effects of incident wave angles on oscillatory and time-averaged wave characteristics 
on a steep rough slope. As a first attempt, use is made of periodic lateral boundary 
conditions. Consequently, computations are limited to regular waves on the slope of 
alongshore uniformity. Incident nonlinear waves at the toe of the slope are specified as 
input to the model. Reflected waves are predicted at the toe of the slope to examine 
the height, shape, angle and phase shift of reflected waves as a function of the incident 
wave angle. Computed waterline oscillations are analyzed to obtain wave runup, setup 
and run-down as a function of the incident wave angle. Furthermore, the computed 
spatial and temporal variations of the free surface elevation and horizontal velocities 
are analyzed to elucidate the detailed wave mechanics on the steep rough slope. 

Numerical Model 

The normalized depth-integrated continuity and horizontal momentum equations 
in shallow water may be expressed in the conservative vector form as 

dV     SE     3F     „     „ 

dt       dx      dy (1) 

with 

U = 
h hU hV 

hU •   E = hU2 + h2/2 ; F = hUV 
hV hUV hV2 + h2/2 

G = h^ + f(U2 + V2)l/2U 
h% + f{U2 + V2)V2V 

(2) 

where the symbol are depicted in Fig. 1 with the prime indicates the physical variables; 
x' = horizontal coordinate taken to be positive landward with x' = 0 at the toe of 
the slope; y' = horizontal coordinate parallel to the toe alignment and taken to be 
positive in the downwave direction; h' = water depth; U' = depth- averaged cross-shore 
velocity; V' = depth-averaged alongshore velocity; g = gravitational acceleration; 
77' = free surface elevation above the still water level (SWL). The vertical coordinate 
z' is taken to be positive upward with z' = 0 at SWL. The bottom elevation is located 
at z' — z'b with z'b = (»/ — h') and the spatial variation of zl is assumed to be known. 

The normalized variables without the primes in (1) and (2) are defined as 

*   "    V    '    X~aH'    '    V'aH' 

h   =    W " = F 

u = V = 

*h = H' f = ^n w 

(3) 

(4) 

where T' and H' = incident wave period and height, respectively; f'b = bottom friction 
factor which is allowed to vary spatially; and a = ratio of the horizontal and vertical 
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Figure 1: Definition sketch. 

length scales which is assumed to satisfy a2 S> 1 in shallow water {e.g., Kobayashi 
and Wurjanto 1992). 

Equation (1) is solved numerically to compute the temporal and spatial variations 
of h, U and V where E, F and G depend on U only for given zy, and /. The mean 
water depth h and the mean velocities U and V are then obtained by time-averaging 
the computed h, U and V where the overbar indicates time-averaging. 

To interpret the computed spatial variations of h, U, and V, the time-averaged 
continuity and momentum equations are derived from (1) 

pxm + ly{Hv) = o 
~(Sxx) + ^(Sxy) + h^ + rbx   =   0 

0 S -~dfj 

with 

&xx 

Tbx 

SXy  = hUV hU2 + _(r)_n)2 

f(u2 + v2y/2u • Tby = f(u2 + v2ynv 

hV2 + ~(r,-fj)2 

(5) 

(6) 

(7) 

(8) 

(9) 

where Sxx, Sxy and Svy = time-averaged momentum fluxes similar to radiation stresses 
(Longuet-Higgins 1970); and Tt,x and T\,V = time-averaged bottom shear stress in the 
x and y-directions. The accuracy of the time-dependent numerical model is checked 
using (5)-(7) with (8) and (9) because the computed h, U and V must satisfy the 
corresponding time-averaged equations. 

The derivation of the depth-integrated energy equation corresponding to (1) is 
similar to that of Kobayashi and Wurjanto (1992).   The time-averaging normalized 
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energy equation corresponding to (1) may be expressed as 

^(Fx) + ^(Fy) = -Df-DB (10) 

with 

1,„„    „•,,-,     „      ,„,      1, F* = hU[r, + ^{U* + V*)];   Fv = hV[V+-(U2 + Vi)];   Df = f(U* + V*)• (11) 

where Fx and Fy = time-averaged energy flux per unit width in the x and y-directions, 
respectively; and Dj and DB = time-averaged rate of energy dissipation per unit 
horizontal area due to bottom friction and wave breaking, respectively. The dissipation 
rate DB is related to the vertical variations of horizontal velocities and shear stresses 
outside the bottom boundary layer which are not predicted in this two-dimensional 
model. As a result, DB is computed using (10) with (11) for the computed h, U and 
V using (1). The computed Dg must be positive or zero. 

The computer program is developed using the MacCormack method (MacCor- 
mack 1969) which has been used successfully for the computation of two-dimensional 
transient open channel flow with bores (Chaudhry 1993). The finite difference grid of 
constant grid size Ax and Ay is used to solve (1). The values of Ax and Ay must be 
small enough to resolve the rapid.spatial variation of the wave motion on the slope. 
The initial time t = 0 is taken to be the time when the incident wave train arrives at 
the seaward boundary and there is no wave action in the computation domain. The 
waterline in the numerical model is defined as the location where the instantaneous 
water depth h equals a small value <5, which is taken as S = 10~3 in the subsequent 
computation. The time step size At varies for each time step and determined using 
an approximate numerical stability criterion proposed by Thompson (1990). 

It is very difficult to specify incoming waves through the lateral boundaries into 
the computation domain and allow outgoing waves to propagate out of the computa- 
tion domain without any numerical reflection from the lateral boundaries. As a first 
attempt, the periodic lateral boundary conditions are used here, although these con- 
ditions are appropriate only for regular waves on the slope of alongshore uniformity. 
For the periodic lateral boundaries, the nodes along the lateral boundaries are treated 
as the interior nodes. 

The seaward boundary of the numerical model is located at the toe of the slope 
along the y-axis as shown in Fig. 1. In the region x < 0, the bottom is assumed to 
be horizontal so that a regular wave theory on the horizontal bottom may be used to 
specify the normalized incident wave train rn(t,y) at x = 0 in the following form: 

Vi{t,y) = Fi(p)      at    x = 0 (12) 

with 
p = t-Xy   ;    ^ = ^J, sin6>i (13) 

where F; = periodic function with respect to the phase p such that Fi(p + 1) = Fi(p); 
V = dimensional incident wavelength; 0; = incident wave angle as shown in Fig. 1; 
and A = inverse of the normalized alongshore wavelength. The alongshore wavelength, 
VI sinSj, is constant on the slope of alongshore uniformity because of Snell's law (e.g., 
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Dean and Dalrymple 1984). The function F, depends on the wave theory used for a 
specific application. To satisfy the initial conditions of no wave action in the region 
x > 0, use is made of rfr = tFt for 0 < t < 1 and % = Fj for t > 1. To satisfy 
the periodic lateral boundary conditions, the computation domain width is taken as 
0<y < A"1. 

The seaward boundary algorithm for obliquely incident and reflected waves is not 
well established because no unique direction of propagation for characteristic variables 
exists for multidimensional hyperbolic equations including (1) (e.g., Thompson 1990). 
Several algorithms including that of Van Dongeren and Svendsen (1997) were tried to 
produce the periodic wave motion on the slope which satisfies the time-averaged equa- 
tions (5)-(7). In addition, the computed reflected wave train must become periodic 
and propagate along the y-axis in a manner similar to (12). The algorithm satisfying 
these requirements is developed using the method of cross-shore characteristics. 

A smoothing procedure is applied to damp numerical high-frequency oscillations 
which may appear at the rear of the steep front of a breaking wave. Use is made here 
of the relatively simple procedure described in Chaudhry (1993). The procedure of 
the numerical method and boundary conditions is described in detail in Kobayashi 
and Karjadi (1999). 

Computed Wave Motions on Steep Slope 

The developed two-dimensional model becomes practically the same as the one- 
dimensional model of Kobayashi et al. (1987) for normally-incident waves which was 
compared with the large-scale riprap tests reported by Ahrens (1975). Since there are 
no appropriate data available to verify this two-dimensional model, test 18 of Ahrens 
(1975) is used as an example in this paper. The computation results for test 12 with 
surging waves are presented in Kobayashi and Karjadi (1999). 

For test 18, the riprap slope was 1:3.5; the still water depth at the toe of the 
slope, d! = 4.57 m; the incident wave period V = 4.2 s; the incident wave height 
H' = 1.01 m; the median mass of the riprap, M50 = 34 kg; and the density of the riprap, 
pa — 2710 kg/m3. The nominal diameter of the riprap defined as i?nso = (A/50/pa)1^3 

was -D,J5O = 0.232 m. The test was limited to normally incident waves with #j = 0. 
Computation is also made for the incident wave angle 0i = 10°, 20°, 30°, 40°, 50°, 60°, 
70° and 80°. The ratio a of the horizontal and vertical length scales defined in (4) is 
a = 13, which satisfies the shallow water assumption of a2 2> 1. The surf similarity 
parameter given by £ = ataaO/V^n is £ = 1.5. The Ursell number Ur = 5.7 and the 
incident wave t]\(t\y') at the seaward boundary is computed using the Stokes second 
order theory (Kobayashi and Karjadi 1994). The bottom friction factor f'b is taken 
as f'b = 0.3 (Kobayashi et al. 1987). The damping coefficient re for smoothing high- 
frequency numerical oscillations is taken to be very small (re = 0.01) so as to minimize 
the numerical dissipation, although the numerical high-frequency oscillations become 
more visible as shown in Figs. 2 and 3 later. 

The computation domain is taken as 0 < x < 1.95 and 0 < y < A-1 except for 
9i = 0 because A = 0 for #; = 0. For #; = 0, use is made of the value of A corresponding 
to 6i = 10°. The number of nodes in the x and y-directions are taken as 162 and 161, 
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Figure 2: Spatial variations for free surface elevation r\ at time t  =  9,9.25,9.5,9.75 
and 10. 

respectively. The time step size At is on the order of 0.0003. The computation is 
made for 0 < t < 10 and the time-averaging is performed for the last wave period 
9 < t < 10. 

In the following, the computed results for 0, = 40° are presented as an example. 
Fig. 2 shows the spatial variations of the free surface elevation r\ at time t = 9, 9.25, 
9.5, 9.75 and 10 for $i = 40°. The computed spatial variations at t = 9 and 10 are 
identical because the periodicity is established before t = 9. In the region of no water 
with h = (r) — 2(,) = 0, use is made of r\ = zi, to depict the bottom elevation zi, of the 
slope. Fig. 2 indicates the oblique waves breaking and propagating along the slope. 

Fig. 3 shows the temporal variations of r), U and V at x = 0, 0.35, 0.71, 1.16 
and 1.40 along the cross-shore line at y — 1.35 where A-1 = 2.73 for 0; = 40°. The 
waterline at SWL is located at x = 1.20. The lower limit of the free surface elevation 
r\ at x = 1.16 and 1.40 corresponds to the bottom elevation z\, at those locations. 
The cross-shore velocity U at x = 1.16 and 1.40 indicates wave uprush (U > 0) of 
a short duration and wave down-rush (U < 0) of a longer duration. The longshore 
velocity V at x = 1.16 and 1.40 becomes more unidirectional (V > 0) because the large 
alongshore velocity occurs only during the short wave uprush. Fig. 3 also shows that 
the computed wave motion becomes periodic after a few waves unlike the longshore 
velocity V on a gentle smooth slope (Kobayashi and Karjadi 1994). 

Fig. 4 shows the cross-shore variations of the maximum, mean and minimum values 
of 77, U and V during the last wave period 9 < t < 10. The root-mean-square (rms) 
values of the oscillatory components (r) — rj), (U — U) and (V - V) are the standard 
deviations of 77,   U and V, which represent the oscillatory wave motion intensity. 
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Figure 6: Cross-shore variations of time-averaged energy quantities. 

The quantities shown in Fig. 4 are uniform alongshore. The 1:3.5 slope indicated by 
the solid straight line is added in the top panel to indicate the swash zone of wave 
uprush and down-rush on the slope. The rms wave intensity decreases landward in 
the swash zone. The largest U occurs near the still waterline while the largest 77 and 
V occur seaward of the still waterline. The mean cross-shore velocity U is negative 
and represents the cross-shore return current. The mean alongshore velocity V is the 
wave-induced longshore current which becomes as large as the standard deviation of 
V in the swash zone on the steep rough slope. The longshore current can become 
dominant on a gentle smooth slope {e.g., Kobayashi and Karjadi 1994). 

The computed alongshore volume flux hV is uniform alongshore. The time- 
averaged continuity equation (5) requires hU = 0 to satisfy the no flux condition 
into the impermeable slope. The computed cross-shore volume flux hU satisfies this 
requirement. 

The cross-shore variations of the momentum fluxes Sxx, Sxy and Syy are depicted 
in Fig. 5, which also shows the bottom shear stresses r^, r^ and the time-averaged 
momentum equations (6) and (7). Sxx increases landward and decreases in the swash 
zone, whereas Syy and Sxy is approximately constant seaward of the swash zone. The 
bottom shear stresses are important in the swash zone where the zone of r^ < 0 and 
ny > 0 corresponds approximately to the zone of U < 0 and V > 0 shown in Fig. 4. 
The computed time-averaged quantities are uniform alongshore. There is a small 
residual on the right hand side (RHS) of (6) and (7) due to the numerical dissipation, 
although the numerical damping coefficient K = 0.01 is very small. For surging waves, 
the residuals for (6) and (7) were practically zero (Kobayashi and Karjadi 1999). 

Fig. 6 shows the cross-shore variations of the time-averaged energy fluxes Fx and 
Fy and the time-averaged energy dissipation rates Df and DB due to bottom friction 
and wave breaking, respectively. The computed values of these quantities are uniform 
alongshore. Fig. 6 indicates that DB is maximum at the location where r\ and V are 
maximum as shown in Fig. 4. The cross-shore and alongshore energy flux Fx and Fv 

decreases in the swash zone. 
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The reflected wave profile r)r(t,y) along x = 0 is obtained as r\r = (r\ — r\i) with 
r\ being the computed free surface elevation at x = 0. All the computed time series 
r\i and r)r at the 161 nodes along x = 0 for 0 < t < 10 are plotted as a function 
of p = (i — Xy) in Fig. 7. The 161 time series of rn do not coincide for —1 < p < 1 
because of the adjustment of jjj to satisfy the initial conditions of no wave action in the 
computation domain. The reflected wave profile r?r becomes periodic with respect to 
p after a few waves. This implies that the alongshore wavelengths of the incident and 
reflected waves are the same where A for the incident waves is defined in (13). If the 
incident and reflected wavelengths are the same, sin0; = sin0r where 6r = reflected 
wave angle. This assumption is generally adopted to separate incident and reflected 
waves using linear wave theory (e.g., Isaacson et al. 1996). 

The reflection coefficient r and the phase shift 6r are estimated to examine their 
variations with respect to di — 0° — 80°. The estimation of r and 9r is based on the 
periodic portions of r\i and r\r shown in Fig. 7. The reflection coefficient r is defined 
here as the ratio of the standard deviation of ?jr to that of rn. The phase shift <f>r is 
obtained as the shift of the crests of the incident and reflected wave profiles plotted as 
a function of (t — Xy). For £>, = 40°, the incident and reflected waves are in phase as 
shown in Fig. 7, where the phase shift remains the same by adding an integer to 4>r. 

Fig. 8 shows the computed values of r and 4>T as a function of 0j. The computed 
values of r = 0.056 for di = 0° is compared with available empirical formulas. The 
formula of Seelig and Ahrens (1995) predicts r = 0.18 for the rough impermeable slope 
assumed in the present computation. On the other hand, the formula of Davidson et 
al. (1996) predicts r = 0.08. The computed reflection coefficient r in Fig. 8 increases 
from r = 0.056 for 0; = 0° to r = 0.32 for 0, = 80°. Most of the regular wave data 
by Isaacson et al. (1996) indicated the increase of r with di = 0° — 60°. As for the 
phase shift tpr, Sutherland and O'Donoghue (1998) proposed two empirical formulas 
for the range 0° < di < 60°. These formulas can be expressed as (pr = 2.5(cos0j)071 

and <f>r = 2.2(cos 0;)0-625 for this specific case and are plotted in Fig. 8. The computed 
phase shifts are almost within the empirical curves for 0° < di < 60°. 

The waterline elevation Z'r above SWL is defined as the free surface elevation 
measured by a hypothetical wire placed at a vertical distance of <5J. above the bottom 
and parallel to the slope in the cross-shore direction. Since the nominal stone diameter 
was 23.2 cm, use is made of S'r = 0.4, 2 and 4 cm which may represent the possible 
range of the roughness of the irregular bottom surface. All the computed time series of 
Zr along the 161 cross-shore lines for 0 < t < 10 are plotted as a function of p = (t—Xy) 
for S'r = 0.4, 2 and 4 cm. Fig. 9 shows that the computed waterline oscillations become 
periodic after a few waves. The normalized alongshore wavelength of the waterline 
oscillations on the slope is the same as the incident alongshore wavelength A"1 at 
i = 0. This indicates the validity of Snell's law for obliquely incident waves on the 
slope of alongshore uniformity. Fig. 9 also indicates that wave down-rush with a thin 
layer of water is sensitive to the wire height 6'r. 

The periodic portions of Zr are used to obtain the maximum, mean, minimum and 
standard deviation and values of Zr. The maximum Zr is the wave runup i?„, which is 
shown in Fig. 10, and the minimum ZT is the wave rundown. The wave runup Ru is not 
sensitive to 5'r = 0.4-4 cm. The computed value of R„ for 8t = 0° is 1.05 in comparison 
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Figure 9: Waterline elevations Zr for water depth S'r — 0.4, 2 and 4 cm as a function 
of shifted time (4 - Ay). 

to Ru = 1.06 observed visually in test 18 by Ahrens (1975). The empirical relationship 
shown in Fig. 10 is based on the runup reduction factor 7 = Ru(8i)/Ru(9i — 0°) 
proposed by De Wall and Van der Meer (1992). For unidirectional irregular waves, 

. 7 = 1 for 0° < 0j < 10°, 7 = cos(0j - 10°) for 10° < 0, < 63°, and 7 = 0.6 
for 63° < 0, < 80°. The decrease of the computed regular wave runup with the 
increase of 9i is consistent for small $i but larger for large B{. On the other hand, 
Fig. 11 shows the wave runup i?u, the mean waterline elevation Zr, the standard 
deviation ar, and the wave run-down R,i for S'r = 2 cm. The computed Ru, Zr and 
Rd decrease with the increase of 0;, whereas the standard deviation of ZT representing 
the intensity of the waterline oscillation about the mean Zr remains approximately 
constant. Correspondingly, the value of (Ru - Rd) remains approximately constant. 

Conclusions 

A two-dimensional, time-dependent numerical model for finite-amplitude, shallow- 
water waves with arbitrary incident angles is developed to provide an additional tool 
for the design of coastal structures. The utility of this numerical model is to obtain 
the detailed wave motions in the vicinity of the still waterline which are difficult to 
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Figure 11:  Wave runup Ru, setup ZT, standard deviation o>, and run-down Rd for 
S'r=2 cm as a function of 8i in degrees. 

measure in experiments. The use of periodic lateral boundary conditions has limited 
the present computations to regular waves on the slope of alongshore uniformity. The 
numerical method and the seaward and landward boundary algorithms presented here 
are general and expected to be applicable to irregular waves as well. 

The time-averaged continuity, momentum and energy equations are used to check 
the accuracy of the numerical model as well as to examine the spatial variations of the 
time-averaged quantities. For the computed plunging waves, the energy dissipation 
rate due to wave breaking is significant as shown in Fig. 6. This dissipation appears to 
have produced the residuals in (6) and (7) as shown in Fig. 5. The computed reflected 
waves and waterline oscillations are shown to have the same alongshore wavelength as 
the incident waves. 

The numerical model will need to be compared with new experiments that will 
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include the temporal and spatial variations of the free surface elevation and velocities. 
It is also essential to generalize the lateral boundary algorithm for irregular waves. 
An algorithm similar to the seaward boundary algorithm used here might be applied 
if the incident waves at the lateral boundaries could be specified as input. 
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