
CHAPTER 39 

GENERATION OF SECOND-ORDER LONG WAVES BY A WAVE GROUP IN 
A LABORATORY FLUME AND ITS CONTROL 

M. Mizuguchi and H. Toita 

ABSTRACT 
Generation of second-order long waves at a wave 

maker by non-periodic wave group is analyzed in time 
series by Mizuguchi(1995). The analysis, which include a 
way to control the long wave generation, is briefly 
described. Then confirmation by using a single wave 
packet is successfully undertaken both in numerical 
simulation by Boussinesq equation and in laboratory 
experiment. 

1. INTRODUCTION 

Long period waves (infra-gravity waves) are of 
typical time scale a few minutes. Recent studies on field 
waves in the nearshore zone reveals that these long waves 
are quite significant and cannot be neglected even for 
engineering purposes. 

Reproduction of a field phenomenon in laboratory 
experiments is a way to understand it if tried or a proof 
of understanding if successfully done. Here we deal with 
a method of correct reproduction of the long waves 
coexisting with grouping short-period waves. Ottesen 
Hansen et al.(1980) presented a theoretical analysis of 
the bound second-order long waves in the frequency space. 
The long waves are calculated as the second-order 
difference waves of the two primary waves with slightly 
different frequencies in Stokes-type nonlinear analysis. 
They also give discussions both on the production of 
spurious free long waves at a wave maker and on a method 
to suppress them. Kostense(1984) successfully applied the 
method to bichromatic waves. However this approach in 
frequency space cannot be applied to non-periodic wave 

Dept. Civil Eng., Chuo Univ., Kasuga 1-13-27, Bunkyo-ku, 
Tokyo JAPAN 

493 



494 COASTAL ENGINEERING 1996 

groups such as the initial growth stage of the wave 
generation and a single wave packet. 

On the other hand, Longuet-Higgins and Stewart(1962) 
show a way to describe these long waves by applying 
linear long wave equation with a forcing term given by 
second-order quantity ( radiation stress) of the short 
period waves. Mizuguchi(1995) follows their approach to 
study the behavior of the second-order long waves 
produced at the wave maker when grouping waves are 
generated in a laboratory flume. He also shows a way to 
control them in time domain. Here we report their 
experimental confirmation both numerically and 
physically. 

2. TIME SERIES ANALYSIS OF SECOND-ORDER LONG WAVE 
GENERATION 

Radiation stress approach employed by 
Mizuguchi(1995) is briefly described below. He assumes 
one dimensional case with a constant depth h. Then basic 
conservation equations are 

mass:      Tit+(hu)x=0 (1) 

momentum:   ut+gTix=-(Sxx/p)x/h (2) 

where r\ and u are surface elevation and onshore velocity 
for long waves. Sxx is a radiation stress component. 
Here the long waves are assumed to be of small amplitude. 
Eliminating u in Eqs.(l) and (2), we have the linear long 
wave equation with a forcing term. 

Tltt-g(hi1x)x=(Sxx/p)xx. (3) 

For a wave group, which propagates in a steady form 
on a constant depth, Longuet-Higgins and Stewart(1962) 
shows Eq.(3) has the following particular solution ( the 
bound long waves ) T)„, 

Ti„=-Sxx(x-cgt)/p(c
2-cg

2)  where c2=gh. (4) 

For the long waves under short wave groups in a 
laboratory flume, the general solution for x>0 ( wave 
maker at x=0) is written as 

Ti(x,t) = f(x-ct)+Ti.(x-cgt) (5) 

where f(x-ct) is a general solution of Eq.(3), which 
propagates in the positive direction. Uniqueness exclude 
other general solution, which propagates in the negative 
direction. Functional form of f should be determined by 
either initial conditions or boundary conditions. In 
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other words the general solution f(x-ct) is needed to 
satisfy conditions which reflect a real situation. 

When generating either grouping waves or irregular 
waves, we normally neglect the existence of the second- 
order long waves. Then this natural boundary condition at 
the wave maker is written as 

u=0  at x=0. (6) 

Surface elevation t] of Eq.(5) gives the following 
horizontal velocity u, 

u(x,t) = (c/h)f(x-ct) + (cg/h)Ti,(x-cgt) (7) 

For a boundary condition where u(0,t) is specified, 
Eq.(7) yields 

f—nr|.+ (h/c)u|,.0 (8) 

where n=cg/c. For the natural boundary condition described 
by Eq.(6), we have the following solution 

il(x,t)=Ti,(x-cgt)-nTi,[n(x-ct)] . (9) 

In addition to the bounded long waves T].(x-cgt), free long 
waves, whose magnitude is -n times of the bound one, are 
generated and propagate with the phase speed /gh. 

To control the free long waves, in particular, to 
suppress the free long waves, one put f=0 in Eq.(8) so 
that the following extra board motion is added to the 
motion for the group of primary waves. 

u|x.0=(c,/h)T|. (10) 

To introduce arbitrary free long waves f(x-ct) at the 
wave maker, one should further add 

u|x=0=(c/h)f. (11) 

Generation of free long waves for an initial value 
problem is also discussed in Mizuguchi(1995). 

3. NUMERICAL AND EXPERIMENTAL CONFIRMATION 

Numerical as well as physical experiments are 
conducted to confirm the theoretical analysis. 

For numerical simulation, Boussinesq equation is 
employed. Boussinesq equation can describe weakly 
nonlinear and weakly dispersive waves and is known to be 
able to simulate well the water waves in shallow water up 
to the second-order phenomena. We follow the normal 
procedure in the numerical coding, that is, the staggered 
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mesh in space and the leap-frog method in the time 
stepping. One advantage of the numerical simulation is 
that the boundary condition at the wave maker is exactly 
specified by the horizontal velocity as is done in the 
analysis. 

Laboratory experiment is conducted in a flume of 40m 
long, 30 cm wide with a piston-type wave maker. The 
displacement of the wave maker board is calculated by 
numerically integrating the corresponding velocity at 
x=0. The displacement of the wave maker board is assumed 
to be negligibly small. 

A group of waves are generated by introducing the 
velocity 

up=A(t)cos(2itt/T) (12) 

at x=0, where up is the vertically uniform horizontal 
velocity. A(t) is a slowly-varying amplitude function and 
is given by 

A(t) = (amax/2)[l-cos(2Tit/Tg)] 0<t<Tg otherwise A=0.  (13) 

Here T the period of the primary waves, Tg the duration 
of the wave group, and amax is the maximum amplitude of 
primary waves. In the experiments, T, Tg and amax are 
chosen to be 1.0 s, 8.0 s and 0.5 cm respectively. The 
small value of the amplitude amax assures the small 
amplitude assumption for the primary waves and also 
justify the way to convert the velocity to the motion of 
a wave maker. Water depth is 10 cm so that Boussinesq 
equation is applicable. 

First we generate the group of waves in a 
traditional way, or without any consideration on second- 
order phenomena. Figure 1 shows comparison of the surface 
profiles among measured, simulated and of analysis. 
Overall agreement is very good. The amplitudes measured 
in the physical experiment show a little decay while 
propagating. Linear modulation of the wave group, which 
is not long enough, might be responsible for the decay, 
although frictional loss may not be negligible. Figure 
2 shows long waves obtained by low-pass filtering the 
data in Fig. 1. All three envelopes agree very well, 
revealing the separation process of the free long wave, 
generated at the wave maker, from the bound long wave. 
Near the wave maker they almost cancel each other to give 
zero velocity at the wave maker. Some distance from the 
wave maker the free long wave, which is a positive hump 
in this case, starts to emerge as it leads the bound long 
waves with faster phase velocity. The free and bound long 
waves may be completely separated after travelling long 
distance, though nonlinear effects may come in to play 
non-negligible role there. 
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Next we generate a group of waves with the extra 
velocity of Eq.(lO) or the corresponding paddle motion, 
which is shown in Fig. 3. Figure 4 shows comparison of 
the three envelope profiles. As is in Fig. 1, they show 
good agreement. The measured maximum amplitude in the 
laboratory experiment is a little smaller than 0.5 cm 
even very near the wave maker. This may be caused by some 
mechanical loss and/or the displacement of the paddle to 
account for Eq.(10). It is noted that there is little 
difference between the data plotted in Fig. 1 and in Fig. 
4. 

Fig. 5 shows long waves obtained from the data in 
Fig. 3. Again three profiles are in good agreement, 
though they are quite different from those in Fig. 2. 
The analytical result in Fig. 5 is the Longuet-Higgins 
and Stewart solution ( hereafter abbreviated LHS 
solution) or Eq.(4). This shows that one can realize the 
LHS solution by introducing the velocity of bound waves 
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Fig. 1 Surface profiles of normally generated grouping 
waves 

Thick solid lines : laboratory experiment 
Thin lines : numerical simulation (Boussibesq equation) 
Broken lines : theory (a permanent wave group) 
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to the wave making. The long waves measured in the 
physical experiment decrease their magnitude while 
propagating, as the amplitude of the primary waves also 
decrease their amplitude. The long waves in Boussinesq 
model also show a slightly larager difference from the 
analytical one than those in Fig. 2. The difference may 
result from the fact that modulation of the wave group is 
more significant when the free long waves are suppressed. 
The total magnitude of long waves is larger than that 
with the free waves and resultant modulation stronger. 

It is worthwhile to be stated here that the LHS 
solution is correct as a solution of the problem and can 
be realized in an ideal situation. However free long 
waves, generated at the wave making process as shown in 
Fig. 2 and/or free long waves generated while wave groups 
shoals on a sloping bottom as discussed in Nagase and 
Mizuguchi(1996), contribute to canceling the LHS bound 
waves which tend to be infinitely large in the very 
shallow water. 

0.1 (cm) | 

X(m) 

0.5 

1 

5 

7 

10 

0 10 20 

t(s) 

Fig. 2 Long waves obtained by low-pass filtering the 
data in Fig. 1. Vertical scale is ten-times larger 
than that in Fig. 1. 
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Fig. 3 Displacement of the wave paddle 
Solid line ... traditional 
Broken line ... free long waves suppressed 
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Fig. 4 Surface profiles of grouping waves with no free 
long waves 
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4. CONCLUSIONS 

From the results stated above, we can conclude 

1) A time-domain analysis to understand the 
generation of second-order long waves in a laboratory 
flume is presented. 

2) Analytical results are successfully confirmed 
both numerically and experimentally, showing a way to 
control the generation of second-order long waves for 
non-periodic wave group. 

3) Even in very shallow water bounded long waves is 
described by the solution of Longuet-Higgins and 
Stewart(1962). However the observed long waves may not be 
so large as predicted by the LHS solution as accompanying 
free long waves nearly cancels it in reality. 
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Fig. 5 Bound long waves in the data shown in Fig. 4 
(Longuet-Higgins and Stewart solution) 
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