
CHAPTER 13 

SIMULATION OF PROPAGATING NONLINEAR WAVE GROUPS 

Paul de Haas *' 2 , Maarten Dingemans1 and Gert Klopman1 

Abstract 

Propagating nonlinear waves can be computed with a time-domain numerical 
method based on a boundary element method. For the simulation of propagating 
wave groups a domain decomposition method is used to increase the efficiency of 
the model and to enable simulation over many wave periods. In the computations 
described in this paper several nonlinear formulations for an initial wave group 
signal are used to investigate their ability to describe a wave group of fixed form. 
A difficulty consists of the imposition of the boundary conditions at the unknown 
free-surface elevation. The nonlinear contributions to the first-order signal are 
related to the generation of free waves as computed by the model. 

1    Introduction 

Long-wave motion is usually split up between a bound part which is due to 
nonlinear difference interactions between short sea and swell waves and a free part 
which are waves that move with their own celerity according to an appropriate 
dispersion relation. It is known that when waves travel over an uneven bottom, 
energy in the bound component of the long waves is transformed to the free 
components. 

In this paper we present a two-dimensional (2DV) time-domain numerical 
method, based on a boundary element method, which computes the propagation 
of waves with the exact nonlinear boundary conditions over an arbitrary bottom 
geometry. It is therefore able to simulate the generation of free long waves due 
to an uneven bottom. A model problem used by Dingemans et al. [3], is used 
as reference for the computations presented here. Different formulations of the 
nonlinear wavegroup signal are tested for their suitability to describe a wave 
group of fixed form over a horizontal bottom.   Such a signal can then be used 
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as an initial signal for problems with a bottom topography in order to study the 
generation of free long-wave components. 

Because the study of such problems requires large computational effort, the 
use of efficient numerical techniques is imperative. Here we will present a domain 
decomposition method which reduces the computational costs of the boundary 
element method considerably. 

This paper is organized as follows. First the numerical method is described 
in Section 2. In Section 3 the domain decomposition method is described and its 
efficiency is discussed. In Section 4 some nonlinear formulations of a wave group 
signal are discussed and used as initial signal for the computations. Finally some 
conclusions will be stated in Section 5. 

2    Numerical method 

In the mathematical model for nonlinear water waves considered here, the motion 
of the water is described by the usual potential-flow equations for inviscid irrota- 
tional fluid motion with a free surface on water of varying depth. It is described 
by the field equation for the velocity potential <j> (Laplace's equation) 

A<^ = 0, (1) 

and the boundary conditions on the free surface 8Q,FS 

Dt   ' n ~  dn > 

and on the bottom dfls 

d4- = 0, x G dflB. (3) 
on 

Appropriate in- and outflow boundary conditions are formulated on the lateral 
boundaries. 

The numerical method consists of a time marching scheme for the evolution 
of the free surface and its boundary conditions. At every time-step, Laplace's 
equation for the velocity potential has to be solved. This is done with a boundary 
element method (BEM). In the BEM, Laplace's equation is solved by writing it as 
a set of integral equations over the boundary (one equation for every node). These 
integral equations are first discretized. Then, by using the boundary conditions 
a system of linear equations is built and subsequently solved. Insertion into 
equations (2) of the solution obtained in this way, provides the time derivatives 
which are needed for the time marching scheme. 

Boundary element methods are very suitable for solving Laplace's equation 
on such domains because they only require a discretization of the boundary of 
the domain. Compared with field discretization methods, the advantages of a 
BEM are a much smaller amount of grid points and a natural description of 
the evolution of the free surface. See [1] for a description of a three-dimensional 
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method. The computations described here were performed with a code developed 
for two-dimensional simulations based on the work of these authors. 

For the computation of large-scale wave problems the solution algorithm for 
Laplace's equation is the bottleneck. It involves both the discretization of the 
boundary integral equations and the solution of the resulting system of linear 
equations. The time marching scheme requires a minor part of the total CPU- 
time. Furthermore, memory requirements for solving Laplace's equation depend 
quadratically on the number of grid points. These problems can be reduced 
considerably by the use of a domain decomposition method. 

3    Domain decomposition 

3.1    Description 

The domain decomposition method described here consists of a division of the 
computational domain into subdomains (see Figure 1) and an iterative procedure 
which generates a sequence of solutions on the subdomains that converges towards 
the solution on the original domain. 
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Figure 1: Decomposed domain 

Every step of the iterative procedure consists of first solving Laplace's equa- 
tion for the potential <f> on the separate subdomains simultaneously and secondly 
formulating new boundary conditions on the subdomain interfaces. In the latter 
part the subdomain problems are coupled. 

There are many possibilities in the way information can be exchanged between 
the subdomains. We have chosen here to use the so-called DD/NN-scheme. Ev- 
ery odd step of the iterative procedure Dirichlet conditions are imposed on all 
interfaces. Neumann conditions are imposed at all even steps. These steps are 
illustrated in Figure 2 for the first two steps of a two-subdomain problem. 

This scheme is also known as a Neumann-Neumann preconditioner in the 
context of domain decomposition methods for field discretization techniques. See 
e.g. [4]. In the field of time-domain BEM's a similar technique was used by Wang 
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Figure 2: Schematic representation of the DD/NN-scheme 

et al. [8]. In their work interfaces are used to formulate a block-structured matrix 
which is then solved iteratively. For a general impression of work being done in 
the field of domain decomposition the reader can consult [7]. 

3.2 Convergence characteristics 

The performance of the domain decomposition method is determined here by 
the convergence of the iterative process. The convergence of the process can be 
judged by considering the jump across the interface between the solutions on both 
sides of each interface. The convergence on different interfaces depends on the 
geometrical form of the subdomains. This aspect has been subject of previous 
investigations [2] and the main conclusions given there are: 

• The convergence of the iterative procedure deteriorates as the length-to- 
height ratio of the subdomains decreases and if there is more asymmetry 
near the interfaces due to a disturbed free surface or an uneven bottom. 

• Therefore, given a fixed length of the computational domain, the conver- 
gence of the iterative procedure deteriorates as the number of subdomains 
N increases. 

• Given a fixed length-to-height ratio of the subdomains, the convergence 
rate does not change as the number of subdomains increases, in the case 
of rectangular subdomains of equal size. In applications with a disturbed 
free surface we have seen that convergence is determined by the interface 
with the worst convergence. The number of iterations has an upper bound 
which is independent of N. 

3.3 Efficiency 

The efficiency of the domain decomposition technique is of course related to the 
convergence of the iterative method. It can be considered for the two cases 
mentioned above. 
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• If for a computational domain with a fixed length the number of subdo- 
mains is increased, on the one hand the number of required iterations will 
increase. On the other hand, the CPU-time to solve Laplace's equation 
per subdomain decreases, since the subdomains becomes smaller. It ap- 
pears that there is a certain optimal number of subdomains (with respect 
to CPU-time) to solve a given water-wave problem. See [2]. 

• If subdomains are used with a fixed length-to-height ratio, the number of 
iterations and therefore the computational costs per subdomain, have an 
upper bound independent of the number of subdomains. This implies that 
the computational cost per time step depend at most linearly on the size of 
the computational domain. 

In the application of the domain decomposition technique to the time-domain 
numerical method described here, it is possible to subdivide the domain differently 
every time step, adjusted to the presence of a wave signal. We have chosen to 
use a fixed initial subdivision of the computational domain with subdomains of 
equal size so that no reorganization of data over the subdomains is necessary and 
the number of grid points in all subdomains is the same. 

4    Simulation of some nonlinear wave group signals 

4.1    Introduction 

In Liu and Dingemans [5] and Dingemans et al. [3] a mathematical model is de- 
scribed for the wave envelope A of a carrier wave signal. In this model third-order 
equations are derived with a multiple-scales technique for a first-order carrier wave 
signal given in complex notation by 

^(rM) - i(Aeix° + *) (4) 

and 

2 \        wcosh(k0h) I 

with \o = kox — wo*, being the phase function of the carrier wave. The *-symbol 
denotes the complex conjugate of the preceding term. 

From solvability conditions of the third order equations, evolution equations 
are derived for the envelope A. For a horizontal bottom these equations simplify 
to a nonlinear Schrodinger (NLS) equation. See also Mei [6]. This equation 
admits several steady solutions for A which can be used to create an initial signal 
for a simulation. 

In our computations we have chosen a soliton-solution described by the enve- 
lope function A as: 

A(x,t) = a sech U^^" • (x ~ C9t)\ exp {-^*} (6) 
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in which a and Cg are the amplitude and the group velocity of the carrier wave. 
v-i is a long expression in terms of characteristic quantities of the carrier wave 
and is given in Dingemans et al. [3], p. 364. The parameters have been evaluated 
for a = 1 m, u>o = 27r/6 rad/s and h — 12 m. The corresponding wave length LQ 

and group velocity Cg according to linear theory are equal to 50.73 m and 5.52 
m/s respectively. Based on an elevation 1 • 10~3 times the maximum elevation, 
the wave group has a length of approximately 1850 m. 

In the computations a known elevation r)(x,t) is required as the initial distur- 
bance of the free surface. The panel method furthermore requires an initial value 
of the potential <f> on the free surface which imposes the initial velocity field on 
the free surface. In the third-order model it is, just as rj, given in terms of the 
third-order perturbation serie. Because of the large and complex expressions as- 
sociated with the series, we have tried a number of alternatives and have studied 
the degree in which they describe a signal that propagates undisturbed over a 
horizontal bottom. These alternatives will be described next. 

4.2    Formulations for free-surface elevation and potential 

A difficulty of simulating nonlinear wave signals consists of the imposition of 
the boundary conditions at the unknown free-surface elevation. In perturbations 
techniques, one usually expands free-surface elevation and potential around the 
still-water level z = 0 and the potential is evaluated at the still-water level. In 
the numerical approach, the grid points are located at z = rj so that evaluations 
there deviate from those of the perturbation approach. A Taylor expansion for </> 
can be used to account for the location of the free surface at z = rj: 

<f>(x,z,t)\z=n = <f>(-x,0,t) + r)(x,t)-j£(x,0,t) + 0(r)2). (7) 

Besides the first order expressions given in equations (4) and (5) we have used a 
Stokes' second-order contribution given by 

and 

and a bound long-wave contribution based on the linearized depth-integrated 
mean-flow equations. See [3]. The free-surface elevation ( and potential <f>u of 
this wave are given by 

^^-^^f^^-i^)) <10) 



PROPAGATING NONLINEAR WAVE GROUPS 171 

and 

'<*•*> = L^'=Lu(k'=L —oo   fl 

2cg/c cs9 
£ (\A\> - <|A|'» <t>. 

(11) 

2(c2
g — gh)   h   i-oo 

(|A|2) denotes the mean value of \A\2 over a time interval much longer than the 
wave group period. For the soliton solution (6), {\A\2) = 0. 

4.3   Results 

For our computations we have selected a number of formulations which are tab- 
ulated in Table 1.   These initial signals were used in simulations over 60 wave 

T< ible 1: Initial signal for the various computations 

0                     using formula (7) 
run 1 
run 2 
run 3 
run 4 
run 5 
run 6 

m 
m 

Vl + *?2 

rn + C 
Vl + V2 + C 

0i 
0! 
01 

01 + 02 
01 + 4>bl 

01 + 02 + 4>bl 

no, 0 evaluated at z = r\ 
no, 0 evaluated at z = 0 

yes 
no, 0 evaluated at z — 0 
no, 0 evaluated at 2 = 0 
no, 0 evaluated at z = 0 

periods in a computational domain with length 5000 m. Free-surface collocation 
points were distributed over z = r/(x) with equal horizontal distances. The reso- 
lution of the computational configuration was taken the same for all simulations 
and is given by Ax = 2.5 m « io/20 m on the free surface and At — To/20 s. 

The results are illustrated best by showing the free-surface elevation at t = 
45T for the different computations. Run 1 has been shown separately in a larger 
plot in order to show the details better. The result of run 3 is similar to that of 
run 1, because the vertical profile of fa is almost linear in the range —ij < z < rj 
and differences between the evaluation of fa at z — i] (run 1) and the use of 
equation (7) (run 3) are hardly discernible. Therefore results of run 3 are not 
shown here. 

A typical feature common to all computations is the generation of small left- 
going signals. In Figure 3 wave groups with carrier waves with a wave period 
of approximately 6.0 s (around x = 200 m) and 3.8 s-(around x — 700 m) can 
be seen. Their group velocities are equal to 4.4 and 3.1 m/s respectively. Not 
visible in Figures 3 and 4 is a small left-going long wave (c = 11.1 m/s) which at 
this point of the computation has already left the computational domain. The 
left-going signal is the smallest in runs 2 and 5. 

There is also a right-going free-long wave (around x — 4400 m) in all compu- 
tations. The computed phase velocity of this wave equals 11.1 m/s where as \fg~R 
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Figure 3: Surface elevation at t = 45T for run 1 

equals 10.85 m/s here. The computations with a contribution of ( and cf>u show 
a reduction of the amplitude of this wave from 6.0 to 2.5 cm. 

At the back of the wave group a smaller wave group evolves consisting of 
carrier waves with wave period approximately 4.2 s. Its amplitude is smallest in 
run 4 and 6 which contain the second-order contribution 772 and <f>2- 

In summary it can be said that the differences between the computations 
presented here can be explained satisfactory by relating them to the contributions 
to the initial wave signal. However, the second-order contributions in runs 4, 
5 and 6 do not prevent the generation of free waves nor do they prevent the 
generation of a left-going wave signal. At this point it is not clear whether this 
is due to the imposition of the boundary, condition at the actual free surface 
or to the restriction to only second-order contributions. The use of formula (7) 
on the second-order part of the wave signal and the use of more higher-order 
contributions may improve the stationary character of the signal. Nevertheless it 
is possible to investigate the influence of bottom topography on the generation of 
free-long waves, but one has to take into account the generation of the spurious 
waves shown in these computations. 

A closer study should also include the effect of the dispersive and dissipative 
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Figure 4: Surface elevation at t = 45T for: run 2 (upper left), run 4 (upper right), 
run 5 (down left) and run 6 (down right) 

character of the numerical scheme. Although very small for the resolution used, 
they may become relatively important when smaller contributions to the wave 
signal are considered. 

The simulations over 60 wave periods took about 1.5 hours on a Cray C98 
computer at a computational speed of about 125 Mflop/s. The required memory 
was approximately 56 MByte. The use of a single domain for this simulation 
would have exceeded the capacity of the Cray computer. Moreover it is question- 
able whether the system of linear equations in this case is numerically solvable 
within the required accuracy. 

With an eye to larger problems involving a bottom topography it is remarked 
again that the computational costs per time step depend at most linearly with 
the size of the computational domain. For comparison with the results of Dinge- 
mans et al. [3] on a domain with a length of 15 km, this implies three times as 
much computational costs per time step. However, a longer simulation time is 
required for this domain. The computational costs per simulation will then be 
an additional factor larger than those presented in this paper. Studies including 
bottom topography will be continued in due time. 
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5    Conclusions 

By using a domain decomposition method in a numerical method for nonlinear 
waves, it is possible to simulate the propagation of wave groups over large sim- 
ulation times. For the formulation of a stationary propagating wave group it is 
important to include higher-order contributions. The release of free waves from 
the wave group can be explained from second-order contributions to the first- 
order signal. The question remains however, how to impose an initial signal to 
obtain a propagating wave group of fixed form over a horizontal bottom. 
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