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ABSTRACT 

This paper proposes an approximate calculation method for the second- 
order wave interactions with arrays of vertical cylinders of arbitrary cross sec- 
tion. In mathematical formulations, the first- and the second-order boundary 
value problems are derived by perturbation method, and Green's Identity For- 
mula is used to express the distribution of the velocity potentials on horizontal 
plane. Second-order water surface elevations near the cylinders and wave forces 
acting on the cylinders are computed, and the results are verified by compar- 
ing with wave tank experiments in the valid range of the Stokes second-order 
wave theory. 

1. INTRODUCTION 

Nonlinear wave interactions with structures are important under severe 
wave conditions, and the developments of a numerical method for calculating 
nonlinear wave forces and wave deformations are needed. A numerical cal- 
culation method of the second-order wave forces utilizing Hskind's reciprocal 
relationship has been proposed(e.g.,Molin,1979), and this method has been fur- 
ther applied to the case of plural vertical cylinders(e.g.,Masuda. et. al.,1986). 
Nonlinear wave field near the structures, however, can not be calculated by 
this method because the second-order velocity potential in a fluid region is 
not determined.  On the other hand, great efforts have been made to predict 
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the nonlinear wave field near the structure by solving the second-order bound- 
ary value problem. For examples, Yamaguchi and Tsuchiya(1974) derived a 
second-order solution of closed form for a vertical cylinder, Garrison(1979) 
proposed a numerical solution based on a source distribution method using 
Green's function. Recently, Kriebel(1987) proposed an analytical solution of 
the second-order diffraction problem for a single circular cylinder and Kim 
and Yue(1989) showed the complete second-order diffraction solution for an 
axisymmetric body. However, these methods are difficult to be applied to the 
case of plural cylinders of arbitrary cross section. 

The main purpose of this study is to develop an approximate calculation 
method for the second-order interaction between water waves and the arrays 
of vertical cylinders of arbitrary cross section. The validity of the method are 
confirmed through comparison with experiments and other numerical results. 
In mathematical formulations, perturbation method is used to derive the first- 
and second-order boundary value problems, and Green's Identity Formula is 
also used to express the distribution of the velocity potentials on a horizon- 
tal plane(Ijima et al.,1974). A particular solution for scattered waves of the 
second-order problem is approximately expressed on the assumption that it 
has the same form of an eigenfunction in the vertical direction as that of the 
second-order Stokes solution. 

2. FORMULATION OF THE BOUNDARY VALUE PROBLEM 

2.1 General formulation 

Fig.l shows a coordinate system, x and y being the horizontal axes and z 
the vertical axis taken upward from the undisturbed still water surface. Fixed 
vertical cylinders of arbitrary cross section in water of uniform depth h, are 
subject to the incident waves with first-order wave amplitude (o, and angular 
frequency a, propagating with an incident angle 6, measured from positive x 
direction. It is assumed that the fluid is both inviscid and incompressible, and 
its motion is irrotational. The velocity potential <!>(x,y,z,t) satisfy following 
Laplace equation in the whole fluid region. 

d2$      d2$     d2$ _ 

dx2 + dy2 + dz2 ~ { ' 

The kinematic boundary condition and the dynamic boundary condition 
on the free water surface, and bottom boundary conditions are written as: 

<£-& + <d^*r°   <*=«*.'.'))      (2) 
d$       ,     1 |7<9$\2     [d§\2     (d<& 
lH+«+2\{te     +UJ   +W   >=Q        <* = «*'".'»    <3> 
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V//////////////////////////////////A 
Fig.l Definition sketch. 

<9* o (z = -h) (4) 

where Q is a constant and g is a. gravity acceleration. 
In order to obtain the first- and the second-order boundary value prob- 

lems, perturbation method is employed. The velocity potential $(x,y,z,t), 
the water surface elevation ((x,y,t), and the constant value Q are expressed 
in power series by introducing a parameter e (e = k(0, where k is the incident 
wave number). 

®(z,y,z,t) = -—Re \t^)(x,y,z)exp{~iat) 

+ e2 {4°\x, y, z) + $\x, y, z) exp(--*2<rt)}] 

C{x,y,t) = J,Rt [^i1)(a',:?/)exp(-i(T/) 

+e2 {V
{

2°\x, y) + r,^(x, y) exp(-z2at)}} 

Q = 9-Re [eQ, + t2Q2] 

(5) 

The time independent component (j>2 in the second-order potential func- 
tion does not contributes to the second-order wave forces and water surface 
elevation. Since the main purpose of this study is to develop the numerical cal- 
culation method of the second-order wave forces and wave height, we consider 
the time dependent component (f>.2    only in the following formulations. 

By expanding both Eqs.(2) and (3) in Taylor series about z=0, and substi- 
tuting Eq.(5) into them, the first- and the second-order combined free surface 
boundary conditions are obtained. 
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2.2 First-order problem 

The first-order boundary value problem is given as follows: 

V2$\x,y,z) = 0 (6a) 

aft (!) ~2 a 
A(I) i1' =0 (* = 0) (6b) 

dz g 

— =0 {z = -h) (6c 
d 

The solution is obtained by separating the potential function ip\ ' into the 
incident plane waves and the scattered waves. A general solution of Eq.(6a), 
which satisfies free surface boundary condition and bottom boundary condition 
simultaneously, is given as(Ijima et al.,1974) 

,(i). ,       ,      .      . ,      ,, cosh. k{z -\- h) . . 
4>\   (x,y,z) = {<fU(x,y) + fis(x,y)} r~j-  (7) 

cosh kh 
In Eq.(7), fn and fis represent the potential of the first-order incident 

plane waves and the scattered waves respectively, and ifu is given as 

Vi/(a;;2/) = —iexp{—ik(xcos6 + ysia6)} (8) 

where i = \f—\ and k satisfies the following dispersion relationship. 

2 7 

— = kh tanh kh (9) 

pis must satisfy the following Helmholtz equation since <j>[ satisfies Laplace 
equation. 

VVis(*, y) + *Vis(s, y) = 0 (10) 

2.3 Second-order problem 

The second-order boundary value problem is given as follows: 

(11a) 

dx  J        \   dy 

d42) 

Ik   |  g    c)z dz 

0 {z = -h) 

dWYl 
dz)   l 

(Z- = 0)   (lib) 

(lie) 
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The second-order free surface boundary condition ,Eq.(Hb), is nonhomo- 
geneous because the quadratic forcing terms appear in the right hand side. 
The solution may be obtained by the separation of potential function <j>2    as 

<t>2\x,y,z) = hi{x,y,z) + hdx,y,z) + </>2F(x,y,z) (12) 

where <j62j represents the second-order incident plane waves expressed as 

cosh 2k(z + h) 

cosh zfcft 
^,(x .,) -     3»rcosh2fcfe      2k(xcose+,siue) 

(13) 

where V = a2h/g. 
In Eq.(12), (j>2i represents a phase-locked wave which satisfies the nonho- 

mogeneous free surface boundary condition and (J>2F represents a free wave 
which satisfies the homogeneous free surface boundary condition. The bound- 
ary value problems of </>2L, and <f>2p are obtained by a substitution of Eqs.(12) 
and (13) into Eqs.(lla),(llb) and (lie). 

Firstly, the boundary value problem for <jf>2L is given as follows: 

VV2L(Z,!/,*) = 0 (14a) 

4—<j>2L = r ) o Vi» (¥>is + 2^1/) + dz g k [       2 

0<*. (fyu + 2d^u\ + dp1fd^1 + 2d^L {z = Q)(i4b) 
dx   \ dx dx )       dy   \ dy dy 

d</>2L 

dz 
0     (z = -/i) (14c) 

By assuming that the <j)2L has the same form of an eigenfunction for z 
direction as the Stokes second-order solution has(Sabuncu et al.,1985), the 
particular solution of 4>2L is approximately expressed as follows: 

, ,      .cosh2k(z + h) , 
<hL(x,y,z) = iHx,y)-codi2kh (15) 

w here 7 and f(x,y) are given as follows: 

7      2k2 tanh 2kh - 2 tanh M ^ 
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3p2 _ p 

/(*> y) - —2—Vu (<Pu + 2ip1^ 

difls (dipu     2d<pu\     dfls (dipls    ^dtpu , 

dx   \ dx dx J       dy   \ dy dy 

Secondary, the boundary value problem for <j>2F is given as follows: 

V2<hF(x,y,z)=0 (18a) 

0) (18b) 

(18c) 

The solution of Eq.(18a), which satisfies the homogeneous free surface 
boundary condition and bottom boundary condition simultaneously, can be 
expressed in much the same way as the first-order problem as 

,     . . ,       . coshk^iz + h)      • .    . 
<hF(x,y,z) = <P2F(x,v)     cQshkm (19) 

d(j>2F ^\ 
dz -i — (j>2F = 0 

9 
(* 

d<j>2F = 0               (z = -h) 

where k*-2' satisfies the following dispersion relationship. 

k^ht&nhk^h (20) 
{2a)2h 

9 

(f2F must satisfy the following Helmholtz equation since <J>2F satisfies Laplace 
equation. 

VV2F(Z, y) + {k{2)) 2<P2F(X, y) = 0 (21) 

3. NUMERICAL CALCULATION METHOD 

As shown in Fig.l, the boundaries C\ and C2 are defined as the intersec- 
tion of still water surface and the vertical structures, and v as an unit vector 
normal to the boundary. X{ and Xj are the coordinates taken in the fluid 
region and on the boundary respectively. Since the potentials of the first-order 
scattered waves and the second-order free waves satisfy the Sommerfeld's radi- 
ation condition respectively, each potential at X,; can be expressed by means 
of Green's Identity Formula as follows (Ijima et a.1.,1974): 
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^1S(X,;) = af Lls{Xj)^-H^(krtJ) 

-l4L\krKI)^-Vls(X,)\ds (22) 'a V 

JC1+C2  { dv 

-H^(k^r>3)^2F(X3)\ds (23) 

where ?•;, represents a distance between Xi and X3 and H\ represent the 
first kind of Hankel function, and a= —i/2(Xi is on the boundary) and a— 
—i/4:(Xi is in the fluid region) 

For the first- and the second-order potential functions, no-flow conditions 
around the cylinders are written as follows: 

oV\ (1) 

d$. (2) 

(~h < z < 0) (24) 

0 {-h<z<0) (25) 
dv 

By substituting Eq.(7) into Eq.(24) and Eq.(12) into Eq.(25), and by inte- 
grating Eq.(24) and Eq.(25) over the water depth after multiplying by eigen- 
functions cosh k(z + h) and cosh2k(z + h) respectively, the boundary conditions 
of ipis and <p2F on Ci and C2 are derived as follows: 

d<fu _     dipu 

dv dv 
(26) 

9^F       i   1 1     (k^y     (d<p2I     df 
+ T^7 (27) dv ikT M0j{2k)2 ~(k^)2 \ dv        ' dv 

where M0 = (1 + 2k^h/ sinh2/fc(2>/i)/2 
In order to obtain the numerical solutions of the integral equations written 

as Eqs.(22) and (23), the boundaries C\ and C2 are discretized into elements 
ASj of Nx and iV2 numbers, and the coordinate X{ is set on them. On each 
element, the potential and its normal derivative are assumed to be constant. 
By applying Eqs.(26) and (27) to Eqs.(22) and (23) respectively, the linear 
matrix equations for <pi3 and ip2F are obtained as follows: 
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Wi+A'2   /  x Ni+N2 

3=1      V ' 3 = l 

(i = 1 ~ N, + N2) (28) 

N     ,  . N __ 

E [Gf - ki) V2F{X:i) = -0 E G\f {WI(X:I) + Tf(X,)} 

(i = 1 ~ M + iV2) (29) 

G.^ = 
JASj Z ./AS.,  W 

l J AS-, 2 JASj OV 

(30) 

where <j>u,   tp2i and / mean a normal derivative of <j>u,   tp2i and / on the 
boundaries. 

From Eq.(15),   f(X{) must satisfy the following Helmholtz equation. 

V2/ + {2k)2 f = 0 (31) 

By assuming that <j)2i satisfies the same radiation condition as y>ls and (p2p, 
f{Xi) can be also expressed by means of Green's Identity Formula as follows: 

f(Xi) = al lf{X1)^H^(2kr.n) - H^(2krii)-ff(Xj)\ ds     (32) 

From Eq.(32), f(Xj) can be computed without numerical differentiations 
of f(Xj) on the boundaries. 

The first-order potential function <f>\ ' expressed in Eq.(7) is obtained by 
solving the linear matrix equation. After solving the first-order equation, </>2L 

is determined from the first-order solution and thus <f>2p is obtained by solving 
the linear matrix equation given as Eq.(29). By applying these second-order 

solutions to Eq.(12), the second-order potential function (j>\    is determined. 

3. RESULTS OF CALCULATIONS 

To verify the numerical calculation method, we conducted the wave tank 
experiments for single and double vertical circular cylinders. The vertical 
circular cylinders of radius a = 18.5cm are placed in the center of the wave tank 
of 18?7» long and 10m wide, and the water depth is maintained at h = 4:0cm. 
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Table-1 Incident wave conditions for single and double circular cylinders 

Single Circular Cylinder Double Circular Cylinder 
kh T(sec) (o/h kh T(sec) Co/h 
1.0 1.46 0.081 0.8 1.74 0.178 
1.4 1.14 0.109 1.0 1.46 0.202 

1.4 1.14 0.179 
1.6 1.05 . 0.175 

3.0 

2.0 

pr 0.0 

-2.0 

- Linear Results kh=1.0 
- Second Order Results     a/h=0.463 
Expt Co/h=0.081 

90 135 
<X(deg.) 

180 

Fig.2 Wave runup and rundown around single circular cylinde 

Table-1 shows the incident wave conditions. The water surface elevations 
around the cylinders are measured by the wave gages. In the case of the double 
circular cylinders, the cylinders are placed in a row with spacing B = \m, 
normal to the incident wave direction. 

Fig.2 and Fig.3 show the wave runup and rundown around the single 
cylinder for kh =1.0 and kh = 1.4. The incident wave propagates from posi- 
tive x direction and a is measured counterclockwise from positive x direction. 
In the experimental results, the secondary effects are observed at front side 
and rear side of the vertical cylinder and the second-order results show good 
agreements with experimental ones. 
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3.0 

2.0 

• Linear Results kh= 1.4 
• Second Order Results 

•    Expt. 
a/h=0.463 

C0/h=0.109: 

90 135 
<X(deg.) 

180 

Fig.3 Wa,ve runup and rundown around single circular cylinder. 

Fig.4 and Fig.5 show the wave runup and rundown around the double 
cylinder for kh - 0.8 and 1.0. In the experiments, the waves become very 
steep between the cylinders and the wave patterns around the cylinders are 
more complicate than the case of single cylinder. The linear results are largely 
different from experimental ones especially at the front side(a - 0), rear 
side(a = 180) and inner side(a = 270) of the cylinders. On the other hand, 
the second-order results show good agreements with experimental ones. 

Fig.6 and Fig.7 show the computed maximum wave amplitude distribution 
around the double and the triple circular cylinders. The wave with kh = 1.0 
and (0/h = 0.1 propagates from positive y direction normal to the row of 
the cylinders(a//i =0.5, B/h =2; a is the cylinder radius and B is the space 
between cylinders) The second-order results show more complicated pattern 
than linear ones and secondary effects are clearly observed around the cylin- 
ders. The maximum differences of wave amplitude between linear results and 
second-order,ones around the cylinders are about 20%. 

Fig.8 shows the maximum wave forces acting on the single and double 
circular cylinders, and Fig.9 also shows the maximum wave forces acting on 
the center of the triple circular cylinders. The cylinders are placed in a row 
normal to the incident wave direction. The differences between linear results 
and second-order ones become small as the ka increase. 
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-2.0 
0 90 180 270 360 

a 
Fig.4 Wave runup and rundown around double circular cylinder. 
 Linear Results,        Second-Order Results,       • Expt. 

O 

-2.0 
90 180 

a 
270 360 

Fig.5 Wave runup and rundown around double circular cylinder. 
 Linear Results,        Second-Order Results,       •Expt. 
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Second Order Theory 
...... .\/. . 

Linear Theory 

-6.0      -4.0        -2.0        0.0       2.0        4.0        6.0 ' 

x/h 

Fig.6 Maximum wave amplitude distribution near double circular cylinders. 
[B/h = 2,a/h = 0.5,Co//« = 0.1,kh = 1.0] 

Fig.7 Maximum wave amplitude distribution near triple circular cylinders. 
[B/h = 2,a/h = 0.5,(o//i = 0.1,kh = 1.0] 
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7.5 

0.0 

a/h=0.5 B/h=2 
C /h=0.1 

single cylinder 

Linear Results 
Second Order Results 

0.0 05    ka     10 1.5 

Fig.8 Maximum wave forces acting on double circular cylinders 

7.5 

^   5.0 o 

Q. 

£    2.5 

0.0 

Linear Results a/h=0.5 B/h=2 
Second Order Results      V1^0-1 

single cylinder 

' triple cylinders(center) 

O 
0.0 0.5       , 1.0 

ka 
1.5 

Fig.9 Maximum wave forces acting on triple circular cylinders 
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On the other hand, the differences become large as the ka decrease for 
ka < 0.5. The divergence of the present method in small value of ka(ka < 0.3), 
small value of ka means large Ursell parameter in this case, is caused by the 
failure of the Stokes second-order theory(Isaacson,1978). In 0.6 <ka< 1.3, the 
wave forces acting on the single cylinder are always larger than those on the 
double cylinders and the center cylinder of the triple ones, but with increase 
of ka, the wave forces acting on those plural cylinders are converged to the 
value of single cylinder. 

5. CONCLUSIONS 

An approximate calculation method for the second-order wave interactions 
with array of vertical cylinders of arbitrary cross section is proposed by using 
both Green's Identity Formula and perturbation method in combination. The 
validity of the present method is confirmed by comparing the computed results 
with experimental ones. Though the present method includes approximation 
that the second-order potential function for phase-locked wave has the same 
form of an eigenfunction of the second-order Stokes solution, the nonlinear 
wave field and wave forces are estimated with good accuracy in the valid range 
of the Stokes second-order wave theory. 
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