CHAPTER 38

NUMERICAL SIMULATION AND VALIDATION OF
PLUNGING BREAKERS USING A 2D NAVIER-STOKES MODEL

H.A.H. Petit", P. Tonjes®, M.R.A. van Gent>, P. van den Bosch?

ABSTRACT

The numerical model SKYLLA, developed for simulation of breaking waves on
coastal structures is described. The model is based on the Volume Of Fluid method
and solves the two-dimensional (2DV) Navier-Stokes equations. Weakly reflecting
boundary conditions allow waves to enter and leave the computational domain.
Impermeable boundaries can be introduced to simulate a structure. A two-model
approach can be used to simulate overtopping over a low crested structure. Results
obtained with the model are compared with those obtained with physical model tests
for waves on a 1:20 slope of a submerged structure.

INTRODUCTION

Traditionally, wave motion on coastal structures was studied by means of physical
small-scale model tests. Some phenomena can be studied quite well on a small scale
whereas others, like those which involve effects of viscosity, cannot.

Numerical models do not have the disadvantage of scaling however, they have the
disadvantage that the equations they solve represent a simplification of reality.

Most models used to simulate wave motion on structures either solve the shallow
water equations or potential flow formulations. For examples of the first we refer
to Kobayashi et al.(1987) and Van Gent (1994). For examples of methods based on
potential flow we refer to Klopman (1987) for the two dimensional case and to
Broeze (1993) for asolver for three-dimensional flow. The shallow water equation
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solvers cannot directly simulate wave breaking but need to add extra dissipation to
simulate the wave height reduction caused by breaking. The potential flow solvers
can solve the flow very accurately up to the moment where the flow domain becomes
multiply connected as a result of the breaking process. After that moment these
methods become unstable and the calculation breaks down. Solvers based on the
MAC (Marker And Cell) or the VOF (Volume Of Fluid) method can solve the
Navier-Stokes equation for breaking waves.

THE 2D-NAVIER-STOKES MODEL

The Volume Of Fluid method (Hirt and Nichols, 1981) has been made applicable

for simulation of wave and flow phenomena on coastal structures (Petit & Van den
Bosch, 1992 and Van der Meer et al., 1992). The model solves the two-dimensional
incompressible Navier-Stokes equations with a free surface.
For the treatment of the free surface a redistribution of water contained in the cells
of the computational grid has to take place once the velocity is known. The method
called FLAIR (Ashgriz and Poo, 1991) has been adopted for this purpose. Arbitrary
free-slip boundaries can be introduced in the model to simulate breaking waves on
impermeable coastal structures. The numerical simulation of the breaking process is
not limited to the moment where the fluid domain becomes multiply connected.

IMPROVEMENTS

Recent improvements of the model involve the use of weakly reflecting boundary
conditions that allow nonlinear waves based on a Rienecker and Fenton (1981)
(R&F) formulation to enter the domain. Further improvements allow the simulation
of overtopping at a dike, not only with respect to the volume of water, but also a
detailed simulation of water running down the rear of the dike (Petit et al. 1994).
Furthermore, the simulation of flow through permeable structures has been made
possible for the model (Van Gent et al. 1993) which, however, is beyond the
framework of this paper.

WEAKLY REFLECTING BOUNDARY CONDITIONS

In Figure 1 we show a situation where weakly reflective boundary conditions are
needed at both sides of the model.
The waves are assumed to enter the domain at the left. They are given by the free
surface elevation n,,(x,?) , and the velocity components u,,(x,,y,f) and w, (x,,y,0) in
x- and y direction respectively. At the right boundary the incoming waves are set to
zero, although the model allows waves to be sent in from both sides. The equations
which prescribe the weakly reflecting boundary conditions at the left boundary are:

F) F) =
E(n n,,) Ca(n n,)=-r(n-n) ¢))
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Here, it is assumed that at the boundary the free surface elevations and the velocity
components can be decomposed as the sum of a wave travelling to the right and a
wave travelling to the left. For the surface elevation at the left boundary this
becomes:

N (x,8) =1, (x+Cf) + 1, (x-Cr)

In the case where r=0 this signal
satisfies the weakly reflecting
boundary condition (1) perfectly.
If, again for the case of r=0, n is
replaced by n+d where d is a /
constant, equation (1) will still be
satisfied. This means that a change
in the time averaged water level <
caused by inaccuracies in the code IMPERMEABLE SLOPE
will not be corrected by the
boundary conditions. The same
problem occurs for the weakly Figure 1 Model application with two weakly
reflective boundary condition for reflective boundary conditions

the x- velocity component (2). We

have experienced that in using free slip boundary conditions at the bottom unrealistic
average velocities can develop during lengthy computations. By choosing r equal to
a small positive constant a time averaged value for the free surface elevation n and
for the velocity in x direction u can be prescribed. Although the amplitude of
the incoming signals will be reduced for positive values of r, small values like
r =w/5 which theoretically reduce the amplitude by a factor of 0.995 prove to work
quite well.

In order to test the quality of the weakly reflecting boundary conditions with
incoming nonlinear waves, the velocities and the free surface elevation from the
R&F solutions were used. At the left boundary of a numerical wave flume with a
constant water depth, these waves were generated using a weakly reflecting boundary
condition. At the right boundary again a weakly reflecting boundary condition was
used to allow the waves to leave the domain undisturbed. At both boundaries of the
Navier-Stokes model the velocities and the surface elevation were calculated and
compared with the incoming signal. For a flume with the length of one wave length
(wave height 0.2 m, period 3.0 s) the time series of the free surface elevation at the
right and the left boundary are shown in Figure 2. Here we can see that, once the

WEAKLY REFLECTIVE BOUNDARY CONOITIONS

FREE SURFACE
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initial disturbances have left the domain, incoming and outgoing signals match
nicely.
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Figure 2 Time series of free surface elevation in a numerical wave flume in order
to test the weakly reflecting boundary conditions at both sides

IMPERMEABLE BOUNDARIES

The velocity components used in the VOF method are defined at the centres of
the cell faces. In order to discretize the spacial derivatives in the Navier-Stokes
equations, velocity components at several locations are used. They are indicated by
the arrow in Figure 3 for the case of the momentum equations in the horizontal
direction.

In order to model an impermeable boundary as indicated by the line, one could
choose to change the stencil of velocity components such that none of the velocity
components needed in the discretization is beneath the impermeable boundary. The
disadvantage of this approach is that on a vector computer the vectorization of the
computational process would be frustrated by the different treatment of the equations
inside the fluid and at the boundaries. We wanted to avoid this problem and decided
to define virtual velocities at those positions beneath the impermeable boundary.
They are indicated by the dotted vectors in Figure 3. In Figure 4 an example of a
submerged structure is shown where only the virtual velocities are given.

The virtual velocities which are to be defined beneath the surface of the structure are
determined by the boundary conditions at the surface.
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to discretize the horizontal beneath the surface of the
momentum equations structure

In the program only the free slip boundary condition was implemented. Both
conditions at the impermeable surface now become:

ou, “0 @
an -
u =0 &)

where u, is the velocity component in normal direction to the impermeable surface,
n the coordinate in this direction and u_ the velocity component along the surface.

The 14 cell categories which are identified in

g . 7
the program are shown in Figure 5. As can be %/ ,'/
seen here the impermeable boundary is to be /Z g/////% / %2;

1 2 3 4

modelled as a straight line inside each cell. For
the case of category 4 we will examine how

. " N %\
the virtual velocities can be determined. The %\
velocity components shown in this figure are
those which are used to discretize the imper- /%’/5\ //{///

meability and free slip condition.
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By using the components of the normal unit vector at the part of the slope in this
cell, n, and n,, the equations (4) and (5) can be rewritten as:

o dy

20w _20u ou ow
Ry P _nyg_ Tty

nu +nyv=0

The velocity component shown in
Figure 6 can be used to find a first
order accurate approximation of the
derivatives in the free slip condition
at the collocation point indicated by
the small circle in Figure 6. At his
same position the impermeability of
the slope can be approximated second
order accurately by using linear
interpolation. In this way two linear
equations are found from which the
virtual velocities can be determined.
For each cell category the two virtual
velocities involved are chosen such

©

)

Figure 6 Virtual velocity components for a
cell of category 4

that all velocities needed for the discretization of the Navier-Stokes equation are
available. Furthermore, the virtual velocities determined for one cell do not coincide
with the virtual velocities of another cell.
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Figure 7 Test for impermeable free-slip boundaries
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In Figure 7 we show the result of a computation with a falling slope. The compo-
nents of the velocity vectors shown here were determined as the averaged values of
the velocity components at the boundaries of each cell. The velocities beneath the
impermeable boundary are partially determined by the virtual velocities. As can be
seen in this figure, the resulting flow near the structure is well aligned with the
surface of the structure.

OVERTOPPING BOUNDARY CONDITIONS

Computations with the VOF method are very costly. Especially if the cell sizes
are small the explicit time solver will need very small time steps to keep the
computations stable. In each time step a Poisson pressure equation needs to be solved
to ensure the incompressibility of the fluid. This leads to a set of equations to be
solved for the pressure in each cell. The computational effort to solve the pressure
equations is roughly proportional to (N*M)?-3 where N is the number of cells in
horizontal direction and M the number in vertical direction. In cases where a low-
crested structure is to be modelled the computation can be carried out applying two
separate computational domains, provided that the flow at the top of the crest has
supercritical velocity.
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Figure 8 Registration and black hole column at different locations used in the two
model approach

The first part of the computation takes place in model 1 as indicated in Figure 8. At
the right boundary indicated by ’black hole column’ we use the boundary conditions
u, = 0 and w, = 0. Furthermore, we set the F value equal to zero in this column
each time step. The F values and velocity components are registered during the
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computation in the "registration column’ each time step. The registered quantities are
used during the second computation which involves the flow in model 2 as indicated
in Figure 9.

In a strict sense the incompressibility condition can only be satisfied in a simply
connected domain by solving the pressure Poisson equation. We expect, however,
that in the case where free slip boundary conditions are used and the layer of water
at the crest of the structure flows with a supercritical velocity, the errors introduced
by using this method will be small.

VALIDATION OF WAVES ON A 1:20 BAR

In order to gain insight in the performance of the numerical model, physical
model tests were performed with waves on a submerged bar with a front slope of
1:20. Here we did not use the two-model approach as the velocities at the top of the
structure would not be supercritical. Incident regular waves broke on this bar as
weakly plunging breakers. Figure 9 shows the experimental set-up used. The
numerical set-up used in the verification runs was simpler because at the time the
verification took place the falling slope option had not been implemented. Figure 10
shows the left part of the slope used in the experiment.
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Figure 9 Bottom topography used in wave flume

Velocity profiles at a large number of locations were measured with Laser-Doppler
Velocity meters. Those positions are indicated by the blocks in Figure 10. The wave
profile was recorded using a video camera. The position of the free surface was
determined electronically from the video registration, which resulted in two or more
lines in regions with much air entrainment. As the position of the free surface is
not a variable in the VOF method the free surface had to be defined using the
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F-function. This quantity is the volume fraction of the cell which is filled with fluid
(which explains the name Volume Of Fluid). We chose the value F=1/2 to define
the location of the free surface. To send in waves into the numerical model we used
solutions obtained by the R&F (1981) method. The parameters used to get this
solution were obtained by comparing the free surface as prescribed by R&F with the
measured free surface of the incoming waves assuming the reflected waves to be
negligibly small.

SKYLLA: VERIFICATION VELOCITEES
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Figure 10 Schematized bottom used in numerical simulation
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The following wave parameters were found:

Wave height : 029 m
Wave period : 1.80s
Still water level : 0.80 m

For the R&F solution we used 16 Fourier components. The mean Eulerian velocity
was set to zero m/s. The resulting wave length of the incoming waves was 4.41 m.

Comparison of the velocity profiles of the R&F solutions and the measured velocities
showed that the crest velocities were somewhat too large wheras the trough velocities
were underestimated in an absolute sense. We expect this to be caused by the fact
that the undertow is assumed to be uniformly distributed over the vertical in the
potential model solved by R&F. In practice, however, smaller velocities occur near
the bottom and higher velocities more upward in the vertical.

For the computation 480 cells were used in horizontal direction and 50 in the
vertical. The kinematic viscosity was set to 0.001 m?/s.
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After the numerical solutions had become periodic we started the comparison.
Figure 11 shows the first of the comparisons. Here we see that once the waves start
climbing the slope the wave length of the numerical waves become smaller than the
measured value.

4 SKYLLA: VERIFICATION SURFACE ELEVATIONS
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Figure 11

Here we can also see that, the breaking process in the numerical model takes place
at the right position. Figures 12 and 13 show the comparison at time intervals of
0.48 s.

The effect of shoaling which is clearly visible in Figure 12 for the measured spilling
wave at 8.5 m is not represented well in the numerical simulation. Furthermore, it
can be seen in Figure 13 that the breaking process itself develops faster in the
numerical model as the decrease in wave height is faster. The transmitted waves at
the right boundary, however, were found to be rather accurate.

In Figure 14 we show the measured and computed horizontal and vertical velocities
at the left boundary of the model. The problems which arise when in using R&F
solutions regarding undertow which were mentioned earlier, reduce the absolute
velocity at the trough of the waves. In Figures 15 and 16 we show the comparison
of these velocities at 5 and 9 m from the left boundary of the computational domain.
All velocities shown here were measured at about 0.5 m from the zero level of the
wave flume.
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4 SKYLLA: VERIFICATION SURFACE ELEVATIONS
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5 SKYLLA: VERIFICATION VELOCITIES
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Figure 14 Comparison of measured and calculated velocities; u denotes horizontal
velocities, w denotes vertical velocities

6 SKYLLA: VERIFICATION VELQCITIES
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Figure 15 Comparison of measured and calculated velocities; u denotes horizontal
velocities, w denotes vertical velocities
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8 SKYLLA: VERIFICATION VELOCITIES
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Figure 16 Comparison of measured and calculated velocities; u denotes horizontal
velocities, w denotes vertical velocities.

CONCLUSIONS

The VOF method has been made applicable for the computation of breaking
waves on coastal structures. Verification with measurements has shown that the
program can fairly well simulate waves on a structure. The differences with
measurements found in the comparison can partly be explained by the way the
boundary conditions were used to define the incoming waves.
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