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Abstract 

The offshore and side boundary conditions to a, time-dependent mild slope 

equation for random waves are improved to introduce given incident waves into 

and extract reflected waves from the computational domain with reduced compu- 

tational time and storage size. The resulting numerical model is applied to cal- 

culate the wave field, nearshore current, and bottom topography change around 

a detached breakwater. 

1     Introduction 

A time-dependent mild-slope equation for random waves was derived from the 

mild slope equation by approximating frequency-independent expressions to the 

frequency-dependent coefficients (Kubo et al, 1991; Kotake et al., 1992). In 

the numerical solution, however, the peripheral region for absorbing the outgoing 

wave energy becomes large in comparison with the calculation domain of interest. 

In addition, because the velocity potential due to the incident waves must be 

calculated at each point in the peripheral region, extensive computational time 

is required. 

The present study deals with the incident wave boundary condition and the 

open boundary condition in more detail and improves them, so that the defor- 

mation of multi-directional irregular waves may be calculated with much less 

computational time and storage size. The numerical model developed is applied 

to calculate the wave field, nearshore current, and bottom topography change 

around a detached breakwater on a uniform slope. 
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2     A time-dependent mild-slope equation for 

random waves 

A time-dependent mild-slope equation for random waves (Kubo el al, 1992) 

is given by 

V(aV??) + «V ^lf + k2a(l + ifD)fj + t7(l -f ifD)-^ = 0 (1) 

a = CCg (2) 

C \ 
fj = -f[_2(l-n) + ?-(2n-l){l - (2n - 1) cosh2kd}} (3) 

re 2ra 

7 = reCpn + — (2n - 1){I - (2rc - 1) cosh2fcd}] (4) 
2n 

n = (1/2)(1 + 2fcd/ sinh2re<i) (5) 

where (7 is the wave celerity, Cg the group velocity, k the wave number, d the water 

depth, t the time, V the horizontal gradient operator, i the unit of imaginary 

number, and fo an energy absorbing coefficient. The symbol denotes quantities 

at the representative frequency Co. The relation between fj and the temporal water 

surface variation // is : 

r, = Re[fje-iQt] (6) 

3     Improvement of boundary condition for in- 
cident waves 

3.1     Layer boundary method 

In the numerical solution of horizontal two-dimensional problems, we introduce 

the incident waves at the offshore and side boundaries. In addition, the outgoing 

waves should propagate out at the boundaries without reflection. 

Kubo et al. (1992) presented a method that satisfies the above conditions, 

whereby the incident waves are introduced through a layer boundary. This tech- 

nique is illustrated in Figure 1. The energy of the outgoing waves is absorbed in 

the energy absorbing layer of a sufficient width, and the incident irregular waves 

must be prescribed as an excitation force at all grid points in the layer by a su- 

perposition of component waves. Consequently, the method requires considerable 

computational time and large storage, and therefore the number of component 

waves is restricted to about 200.    Also, as seen from results of computations 
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performed by Kubo et al. (1992) and the authors for multi-directional irregular 

waves around a detached breakwater, the distribution of the wave height was 

asymmetrical due to the statistical variation. 
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Fig.l:  Method for introducing incident waves through a. layer boundary (Kubo 
et al, 1992) 

3.2     Line boundary method 

The incident wave boundary condition is improved in the present study by 

introducing the incident waves through a line boundary as shown in Figure 2. 

The incident wave potential is only specified along the line boundary, which 

significantly reduces computational time and storage. With the new method wave 

transformation can be calculated for irregular incident waves even with as many 

as 1,000 components, whereas the previous method has a practical limit of about 

200 components. As a result, the deformation of multi-directional irregular waves 

can be calculated with a much higher accuracy because the statistical variation 
is reduced. 

The method is summarized in the following. First we set up a line boundary 

where the incident waves are introduced. Inside the line boundary, incident and 

outgoing waves are to be dealt with, whereas only outgoing waves exist outside 

the line boundary as shown in Figure 2. For this purpose, we only have to adjust 

the incident wave component f\in in the finite difference equation for which the 

central grid point is located adjacent to the line boundary. The incident waves 

are introduced into the calculation domain through this operation. 
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Fig.2: Method for introducing incident through a line boundary 

To describe the method in more detail, we apply it to a horizontal two- 

dimensional problem. The ADI method is employed in the numerical calculations 

to solve the present equation. The calculations are carried out alternately in the 

x and y directions, implying that the application of the present method must be 

considered separately for each direction. Figure 3 shows the application in the x 

direction. For a horizontal two-dimensional model on a uniform slope, the finite 

difference equation of the time-dependent mild-slope equation for random waves 

in the x direction is written 

"i+l 

+     CCi 

2/S.x 
f.t+1 

'h+1,3        'h-\,3 

"2Ax 

V£lj - ^tT+vtth ^ %j-i - 2C + C-+i 
Ax2 + 

Ay' 

+   i- 

+   0i 

A+i - A-i / (filth ~ nth) ~ (nil,* - vlu) 
2Ax        { 2AxAt 

(vlth -ifiiy + vlih) - (fji-u - K3 + VJ+u) 

+ (fit 

Ax'At 
~t-\ 

j-i n,3 + fih+i) - (€,h - 2C + vlj+i) 
Ay2At 

+     k2Oi{l+ifD) 
vty+vh 

+ *7i(l+*/r>) 
m. • ih 0 (7) 

2 ' ""v" ' "JLJ'      At 

By rearranging the equation under the condition that Aa: = Ay = A/, the left- 

hand side contains only unknown values (time step t + l) and the right-hand side 
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Fig.3:   Illustration of the method of introducing incident waves through a line 

boundary for the case of calculation in the x direction 

only known values (time steps t and t — 1), and the above equation can be written 

AUffcl; + A2irj\? + ,43.^+1, 

=   BUfjUj + 52,-JjfJ, • + BditjUj + B4>€,-i + B^h+i 

+Cl^,?J-i + C2-C1 + C^C+i (8) 

where (i, j) is the grid number in the (x, y) coordinate system,  t the time, 
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/11,;~ A'i,, Bli~ Bbi and Cl,~ C3,: the coeflicients determined by a,-,fin7.; etc. 

Equation (8) includes grid points indicated with a double circle in Figure 3. There 

are three such points at time t + 1, five points at time t and three points at time 

t, — 1 around the central grid point (i, j).   These grid points are divided into 

two types according to their position relative to the line boundary.  In the first 

type incident and outgoing waves coexist, and these grid points are shown with 

solid circles. In the second type only outgoing waves exist, which is indicated by 

empty circles. As an illustration, let us consider region A. The point(i, j + 1) at 

times t and t — 1 are points including both incident and outgoing waves whereas 

the double circle points are points with outgoing waves only. Hence, we apply an 

operation which subtracts the incident wa.ve term ??' ,     •„, rfr1   •    from pointf?, 1 v/+nm     t..j+1,111 x 

j + 1) at times t and t — 1. For this particular case, the finite difference equation 

(8) applied to outgoing waves may be written 

Al^If,., + A2iijty + Ai,f^3 

=   Bhrjl^- + B2ri, + B34+h3 + B4,-^._1 + #5^<J+1 

+CMIA + c^C1 + C3^Cii 

In regions B to E, the incident waves are introduced along the line boundary 

using the same method. In the case of the y direction, the position of the double 

circles at i + 1 and t — 1 time step should be reversed. 

The computational time required by the present method was compared with the 

previous method for the case of a calculation region with 80x100 grid points, 100 

component waves, and 3000 time steps. Multi-directional irregular waves were 

expressed using the single summation method. In this case, the computational 

time required by the present method was one-third that of the previous method. 

4      Improvement of open boundary condition 

4.1      One-dimensional open boundary condition 

The boundary condition at the outer edge of the energy absorbing layer used in 

the numerical calculations presented by Kubo et al. (1992) is shown in Figure 1. 

The one-dimensional Sommerfeld radiation condition is employed at the onshore 

boundary with the celerity C approximated by the long wave celerity in the same 

way as Ohyama et al. (1990). This condition is motivated by the fact that 

the wave direction becomes perpendicular to the onshore boundary due to wave 

retraction.   The condition at the offshore and side boundary is that the water 
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surface elevation is equal to that of the incident waves. This condition is based 

on the assumption that the outgoing waves are absorbed perfectly in the energy 

absorbing layer. In the numerical calculation presented by Kubo et al. (1992), a 

wide energy absorbing layer was needed to achieve perfect absorption. 

In the present study, a new open boundary condition is derived from the 

Sommerield-type boundary condition by applying a Taylor expansion in terms 

of the angular frequency and wave direction. The aim is to reduce the energy 

absorbing layer. We present the result for the one-dimensional case first and then 

for the two-dimensional case. 

The new open boundary condition for the one-dimensional case may be written 

i](xb, t + At) = r)(xb - CAt, t) 

,/=!/-,      -\ A  rdri{xb —CAtA)       -   , 
+C(1 - n)At[   /v  Li _ ikri(Xb __ CAM)] (10) 

where rj(xb, t + At) is the water surface elevation at the outer edge of the energy 

absorbing layer, and C, n and k the wave celerity, shallowness factor and wave 

number at the representative frequency, respectively. 

Equation (10) consists of coefficients which are independent of the frequency of 

component waves as a result of applying the Taylor expansion to the wave celerity 

C, which is a coefficient in the Sommerfeld-type boundary condition. Equation 

(10) is, therefore, applicable to irregular waves. The physical meaning of equation 

(10) is illustrated in Figure 4. 

Open boundary 
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O     _. m,7> i 
Vn(x,,,t + At) = t]n{xb - CAt,i) 

+(c„ - c)A<~a''"^;CA''') 

••Vn(«H-CnAt,t) 

:I(n(l(-CAI,() 

,T)n(xb,t + At) •• 

tyt-Vn{Xb,i + At) •• 

-rin(x,t + At) = rjn(x-CnAt,t) 
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•Vn(x,t) 

Fig.4:  Physical interpretation of the improved Sommerfeld-type boundary con- 

dition for the one-dimensional case 

The first term on the right-hand side of equation (10) expresses that the water 
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surface elevation of the wave at time t and at a point which is CAt a.way from 

the outer edge of the energy absorbing layer is equal to that at the outer edge 

after At, because the wave moves to the outer edge. C is the wave celerity at the 

representative angular frequency, however, the wave celerity of irregular waves 

is different from C. This is because irregular waves consist of many component 

waves with various angular frequencies. The second term on the right-hand side 

is a correction for the phase of the water surface elevation at the outer edge of 

the absorbing layer clue to the difference in wave celerity. 

Equation(lO) is derived as follows. First we have 

v(xh, t + At) = r,n(xb - CAM) - (Cn - gj/^d^-CAM)        (u) 
ox 

Expanding Cn into a Taylor series of Aw„ and truncating the series at the first 

order gives 

Cn = C+ (~) Acon (12) 
dio 

where ij^j and Aui,a are written 

dC\       1 /        f 
d*J = k I1 " n) (13) 

^j) Afc„ = hCAkn (14) 

Next, we assume that r]n(x, t) in equation (11) is expressed as r}n{x, t) = anel^knX~"nt^ 

and differentiate r]n(x,t) with respect to x. Expanding kn in r]n(x,t) into a Taylor 

series and truncating it at the first order gives 

dVn(x -CAt, t) = .(- + AkMx _ gAt; t) (15) 

Substituting equations (12) to (15) into the second term of equation (11) and 

neglecting second-order terms of the resulting equation yield 

- (Cn - C)AtdVn(-X ~d^
At— = iC{l - n)AtAknVn{x - CAt, t) (16) 

Equation (15) is rewritten as 

dn (r — CAt t) 
iAknVn(x - CAM) =   Vn[   Qx      ' ' - ihn(x - CAM) (17) 

Substituting equation (17) into equation (16) gives 

.%,(*-CAi,i) -{Cn - C)At- 
d X 

=   C(l - n)At [ dr,n[x dx°At,t) ~ %~kvn{x - CAt,t)) (18) 
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Equation (18) consists only of coefficients that are independent of the frequency 

and hence determined only by the representative frequency. Superposition of 

equation (18) for an infinite number of component waves gives the second term 

on the right-hand side of equation (10). The present open boundary condition 

combines equation (10) and the energy absorbing layer where the energy absorb- 

ing coefficient fo is increased linearly towards the outer edge of the layer in the 
same way as Ohyama et al. (1990). 

In the present study, we determine the width of the energy absorbing layer 

and the coefficients C, n, and k in equation (10) as follows. The width is given 

as 0.6Li, where L\ is the longest wavelength in the irregular waves. This width 

is chosen because reflection clue to friction of the energy absorbing layer begins 

to increase rapidly at a width of 0.61/ for a regular wave with wavelength L as 

obtained from the numerical calculations. Moreover, the coefficients C, n, and 

k in equation (10) are determined from the component wave having the longest 
wavelength. The energy absorption in the layer is the lowest for this component 

wave, implying that the energy at the outer edge of the layer is the highest. The 

behavior of the open boundary condition is shown in Figure 5.    fomax is the 

K r   0.10 

fDmax/nu 
A-i 1.00 
A-A 0. 50 
o-o 0. 25. 
*-• 0. 10 

Fig.5:   Reflection coefficient for the improved open boundary condition in the 

one-dimensional case 

maximum value of the energy absorbing coefficient, given at the outer edge of 

the layer. Figure 5 displays the reflection coefficient for component waves in an 

irregular wave field at a water depth of 10m that has a representative period of 6s 

and a longest period of 12s. It is seen that if B/L is greater than 0.6 and a proper 

value of fomax is selected, the reflection coefficient becomes sufficiently small. The 
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previous method needed a width of 1L for a, regular wave of wavelength L. Thus, 

a significant improvement is achieved with the present method. 

4.2     Two-dimensional open boundary condition 

In the horizontal two-dimensional case, it is necessary to approximate both the 

wave angle and the angular frequency by expanding them in Taylor series. For 

the two-dimensional case, equation (10) is written 

=    ?/„(:(• - CAt cos 9n, y - CAt sin 9n, t) 

8r]n(x - CAt cos 0n, y - CAt sin 0n,t) 
+C(1 -n)Atcos0., 

+(7(1 -n)Atsin0, 

dx 
di]n(x — CAt cos 6n, y — CAt sin 0n,t) 

8y 
-iC{l - n)Atkr]n(x - CAtcos0n,y - CAt sin 6n,t) (19) 

The wave angle 9n is expressed as the sum of a representative angle 6 and a 

deviation A()n : 

0n = 9 + A9n (20) 

We then substitute equation (20) into equation (19) and apply the additional 

theorem. Neglecting second order terms gives 

At cos 0n = At cos 0 (21) 

Atsin0n = At sin 0 (22) 

Substituting equations (21) and (22) into equation (19) gives an equation in which 

the coefficients are independent of component angular frequencies and wave an- 

gles. Superimposing the equation gives an improved Sommerfeld-type boundary 

condition for the two-dimensional case. 

r](x,y,t + At) 

=   TJ(X - CAt cos 9, y - CAt sin 0, t) 

-r)i](x - CAt cos 9, y - CAt sin 0, t) 
+C(1 -ri) At cos 6 

+(7(1 -h)AtsinO 

dx 
di](x - CAt cos 0, y - CAt sin 0, t) 

dy 

iC{l ~ h)Atkrj(x - CAtcos0,y - CAtsm9,t) (23) 
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where the representative wa.ve angle 0 is determined from the gradient of the 

water surface elevation in the x and y directions at the outer edge of the energy- 

absorbing layer : 

S = tan- (8ghJb<m) (24) 
\dri(x,y,t)/dx) l    ; 

5     Calculation of wave field, nearshore current 

and bottom topography change 

With the boundary conditions developed above, we carried out the calculation 

of deformation of multi-directional irregular waves around a detached breakwater 

on a uniform slope. The waves consisted of 958 components and were given 

by the single summation method. Also, the nearshore current and the bottom 

topography change were calculated by using the results of the calculation of the 

wave field. These results were compared with calculations for regular waves. 
The method of calculating the nearshore current and the bottom topography 

change was similar to that of Kubo et al. (1992). Figure 6 shows the distribution 

of wave height for multi-directional irregular waves ((i71/3)0 = lm, T1/3 = 6s, 

($P)O =0 ° ) around the breakwater, and Figure 7 shows the distribution for reg- 

ular waves (H0 =0.706m, T=6s) which has the same wave energy as the irregular 

waves. In the results for regular waves, a node and antinode occur in front of 

the detached breakwater, but for the multi-directional irregular waves, the vari- 

ation in the wave height is small except just in front of the breakwater. This is 

because the multi-directional irregular waves consist of component waves with 
various wave direction and frequency, which affects the position of the node and 

antinode. Furthermore, the unreasonable value on the wave height due to the 

statistical variation that can be seen in the front of the breakwater in the results 

of Kubo et al. (1992) does not appear in the results of the present study. Figures 

8 and 9 show the calculation results for the nearshore current under the above 

wave field. Overall, the current shows almost the same tendency, but the current 

velocity due to the multi-directional irregular waves is smaller than that due to 

the regular waves. This is because the radiation stress gradients become smaller 

around the average break point due to the variability in the break-point location 

and the large width of the surf zone for multi-directional irregular waves. In 

addition, in front of the breakwater the variation in the wave height, and hence 

the radiation stress, is large, however, a current does not occur since the gradi- 

ents of the radiation stress and the mean water level are balanced here. Figure 

10 shows the result of the calculation of the bottom topography change after 24 

hours, computed by using the wave field in Figure 6 and the nearshore current 
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field in Figure 8 as a steady external force. Figure 11 shows the result of the 

calculation of the bottom topography change after 24 hours for regular waves. 

By comparing these two figures, it is seen that the bottom topography change 

due to multi-directional irregular waves is smaller than that caused by regular 

waves with equal energy. This is because the bottom wave velocity and nearshore 

current are smaller for the multi-directional irregular waves. 

6     Conclusion 

A new incident wave boundary condition which is more efficient than that pro- 

posed previously is presented. In addition, the width of the energy absorbing 

layer is reduced by improving the non-reflective boundary condition for irregular- 

waves. As a result, the accuracy in predicting the wave height distribution was 

considerably improved by reducing the statistical variation of the wave charac- 

teristics. The numerical model developed was applied to calculate the wave field, 

nearshore current and bottom topography change around a detached breakwa- 

ter on a uniform slope. The results from calculations with regular and irregular 

waves were compared. 
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