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Grain-sorting over ripples 
induced by sea waves 

Enrico Foti1, Paolo Blondeaux2 

Abstract 

A predictive theory for the formation of ripples under sea waves is presented 
for a sandy bottom characterized by a large grain-size distribution. The theory is 
based on a linear stability analysis. The conditions for the amplification or decay 
of bottom perturbations are determined and the experimentally observed sorting 
effect due to the presence of the bedforms is modelled. A comparison between 
the experimental data available in literature and the present results is attempted. 

Introduction 

In the past, the dynamics of sediment in nearshore regions was extensively 
studied in terms of a uniform material. However, coastal sediment typically has 
a wide range of grain sizes and the presence of mixtures has a large influence 
on coastal morphodynamics. Indeed, the grain sorting process which is typical 
of the transport of mixtures may inhibit or enhance sediment transport in areas 
characterized by low shear stress. For this reason, the last decade saw a major 
change in thinking, and important problems involving mixtures were at least 
formulated correctly and a fair number of them were solved as well, at least for 
sediment in transport in rivers, (Parker, 1991). 

In accordance with this viewpoint, a predictive theory is presented in the 
present paper for ripple formation under sea waves in the case of a cohesionless 
bottom made up of a mixture. Following Blondeaux (1990), the theory is based 
on a linear stability analysis of a flat bottom subject to. a viscous oscillatory flow. 
The aim of the work is twofold: first, to determine the conditions for the decay or 
the amplification of a bottom perturbation and second to study the grain-sorting 
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process which leads the coarser fraction to accumulate along the crests of the 
perturbation while the finer fraction tends to move towards the troughs (Mei, 
1989). 

The procedure used in the rest of the paper is the following: in the next 
section, the problem is formulated by focusing our attention on the equation 
forcing the sediment mass balance and the relationship between sediment 
transport rate and fluid flow. Indeed, the above equations need particular care 
when written for a mixture. As discussed more deeply in the following, the 
continuity equation is written introducing: i) an active layer, scaled on the largest 
grain sizes and characterized by a vertical uniform size density (Hirano, 1971), 
which corresponds to the reservoir of material directly available for transport, ii) a 
bottom layer underneath the active layer, the sediment of which can be entrained 
by the flow only because of bottom erosion. In the bottom layer, the size density 
may have a vertical structure. The sediment transport rate is evaluated by means 
of a formula valid for a uniform sediment times the size density evaluated in the 
active layer. The sheltering effects exerted by the large grains on small ones are 
taken into account by introducing a "hiding" factor in the sediment transport 
rate formula (Parker, 1991). 

In §3 an approximate analytical solution for the bed evolution is obtained 
taking into account that the time scale of the bed time development is much 
longer than the period of fluid oscillations, i.e. the period of sea waves. Finally 
in §4 the quantitative results are presented along with a qualitative comparison 
with the experimental data available in literature. 

Formulation of the problem 

As pointed out in the introduction, a significant feature of coastal areas is 
the wide range of sediment sizes found there. Let us then consider an initially 
cohesionless sea bottom formed by a sand mixture uniformly distributed in space. 
To deal with the statistics of the mixture, the logarithmic sedimentological scale 
<j> is used, defined by 

d*/r = T* (i) 
where the grain size d* is made dimensionless by means of a characteristic length 
scale of the problem /* which will be defined in the following. Hence, the 
characteristics of the sand mixture are specified in terms of the size distribution 
Pf(<j>) or the size density p(<j>). The function pj(^>) is defined such that fraction 
Pj{<j>) of a sample is finer than size <j> while p(<ft) is its derivative, i.e. p((f>) = 
dpf{4>)/d(j). 

There are other statistical parameters that summarize the characteristics of 
the mixture: the geometric mean size d*m and the geometric standard deviation 
crg given by 
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d'Jl* = 2-*-      a3 = 2" (2) 

where 

4>v{<t>)d<j>    °2=       (<t>-K)2p(<t>)d<{> (3) 
-oo J-~oo 

A Cartesian orthogonal coordinate system (x*, y*, z") is then defined with the 
x* and z* axis lying on the sea bottom and the y* axis directed upward. Because 
of the presence of a two-dimensional surface gravity wave, let us assume that the 
fluid close to the bottom but outside the viscous boundary layer oscillates in time 
with velocity 

(u*,v',w*) = {-\wot
i"'t' +c.c.,0,0) (4) 

where t* is time, to* = 27r/T* the angular frequency of the sea wave, UQ the 
amplitude of the irrotational velocity oscillations evaluated close to the bottom, 
c.c. denotes the complex conjugate of a complex number and (u*,v*,w*) are the 
velocity components according to the Cartesian coordinate system (x*,y*,z*). If 
the bottom is flat and all the grain sizes in the sand mixture are much smaller 
than the characteristic thickness of the bottom boundary layer 8", the fluid motion 
is described by the well known Stokes' solution and the sediment moves to and 

fro. The thickness 6*, which can be defined as \J2v/u>* (u being the kinematic 
viscosity of sea water), can then be assumed as the length scale of the problem, 
i.e. I* = 6*. 

The study of the time development of a two-dimensional bottom perturbation 
in the form 

y' = «/*(*•,**) = eCx(t)e
ia'x* + c.c. (5) 

is posed by the vorticity equation, the flow and sediment continuity equations 
plus a relationship between sediment flow rate q* and flow properties, along with 
boundary conditions which force the matching of the flow with the irrotational 
motion outside the bottom boundary layer and the no-slip condition at y* = rf. 
Because of the presence of the sand mixture, the sediment continuity equation 
needs to be discussed in detail. Assuming all grains to have the same density, the 
statement of mass balance for each grain size can be reduced to a similar one for 
volume balance 

d{q*Ps)      (,       x d    p'       , . 
--^ = {1-n)d?Lpdy (6) 

where it is assumed that the volume transport of bedload per unit time per 
unit width of grain in the size range (<j>, <j> + d(f) is provided by the relationship 
describing the sediment transport rate for a uniform material (</*(</>)) time the 



2074 COASTAL ENGINEERING 1992 

size density ps{4>) at the surface. As discussed in Parker (1991), to simplify the 
problem it is assumed that near the surface there is an active layer characterized 
by a thickness L* which corresponds to the reservoir of material directly available 
for transport and where the grains are well mixed. It follows that the size density 
ps within it has no vertical structure even though it can have a streamwise and 
time structure. Below the active layer lies the substratum material with size 
density p&. This may vary arbitrarily in x* and y* but cannot change directly in 
time because it is not directly subject to movement. Material can be exchanged 
between the substratum and the active layer through the intermediary of bed 
aggradation or erosion as outlined below. 

By applying Leibnitz's rule, the following result is obtained from (6) 

The value of pt can be specified in the case of a degrading bed as p&, since 
substratum is incorporated into the surface layer as the bed elevation drops. In 
the case of an aggrading bed p; can be assumed equal to ps since the surface 
material is transferred directly to the substratum. 

Ps     if   d(r,*-L*a)/dt>o ,. 
Pb     if   d(v*-L:)/dt<o w 

Finally, it should be pointed out that L*a can be assumed to scale with some 
large size, e.g. rfg0. 

Let us then define the following dimensionless variables 

(x,y) = (x*,y*)/6*      t = fu*      t = 6*/6*      a = a*6*      La = L*J6* 

r, = t,'/S'      <(> = r/U;8*      q= q' 
[(p. - p)gd*,]W 

where g is the gravity, t/>* is the stream function such that u* = dtf>*/dy*, 
v* = —dxf)*/dx* and d*mo the mean size of the initial uniform mixture characterized 
by a size density p0 (</>). 

The governing differential problem then reads: 

-f--^-\elt + c.c.       7^-0    for y-» oo (10) 
ay 2 ax 

| = o     2 = 0   *.,_, (U, 
where the flow Reynolds number R$ is defined as follows: 
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its —  
v 

As pointed out previously, in order to close the above formulation, we need 
a relationship between sediment flow rate q* and flow properties. Presently, a 
modified version of the Grass-Ayoub (1982) formula is used. The differences 
consist in the introduction of the effect of gravity related to the bed elevation 
and in the introduction of the "hiding" factor (j£-)r. This formula, even though 
simple and possibly rough, appears to contain the main physical ingredients 
controlling the process of transport: 

({d*   '   *     2F3 dx> (    ' amo *rdo ux 

where a = 1.23; b = 4.28; /3 = 0.15 and vt is the fluid velocity evaluated at 
y* = d* /2 parallel to the bed profile. It can be seen that values of r close to one 
as discussed by Parker (1991) correspond to the condition for equal-mobility. 

The particle Reynolds number Rd0 and the particle Froude number Fdo 

are defined in terms of the geometric mean size d*mo to the initial grain size 
distribution: 

Hd°~    v    '      d°~l(s-i)gd*moY^   s~ P ' 

Since the bottom waviness is assumed to be of a small amplitude the quantity 
e can be assumed much smaller than one and the solution to the problem can be 
expanded in power series of e in the form: 

V- = V>o(zM) + cC^O^y,*)^'" + c-c- + °(£2) (13) 

q = qMS) + eC1(t)q1(^t)eia' + c.c. + 0(e2) (14) 

p = p0(<l>) + eCiMPifa, tVax + c.c. + 0(e2) (15) 

By substituting (13) -j- (15) into (9) -=- (12) and equating similar powers 
of e, at order one a problem is found which can easily be solved. As pointed 
out previously, the flow is described by the well-known Stokes' solution and the 
sediment moves to and fro. Because the moving material is still considered as 
belonging to the bottom, the size density p0 does not change with time. Moreover, 
po does not depend on x because of the supposed uniformity of the problem. 
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At order e the problem reads: 

= Rs
[W-2aW + a^ (16) 

dy 

d(j>i    _       d2tp0 

dy    ~       dy2 ' 

0, ^-»0,      y-»oo (17) 

& = 0,    »/ = 0 (18) 

^(l-„)^)=,a9l(0C1(0, (19) 

*   =   ^^^ ^mo v#     ^mo 

• {[-di + C{t)e   v'Ht' ~^Fic{t)e {dz)} (20) 

It should be pointed out that at order e, the term proportional to the time 
derivative of Ci(t) in the vorticity equation has been ignored. From a physical 
point of view, this corresponds to ignoring the influence of the variation of bottom 
elevation on fluid motion. From a mathematical point of view, this assumption 
is justified by the small value usually attained by the dimensionless parameter 

Q = 0.615((s - iys)F^A5(Rdo/Rs)*-•/(l - n) ~ ^M/Cl(t). (21) 

Solution 

Because of the assumption dC\jdt <C C\(t\ flow development has been 
decoupled from the sediment motion. Equations (16) -i- (20) and boundary 
conditions (17) -f- (18) can then be solved with the same procedure used in 
Blondeaux (1990) to which the reader should refer for details. Once the stream 
function is known, the bottom time development can be obtained from the 
sediment continuity equation and the sediment flow rate formula, which at order 
e provides 

- 2fSr^)[wi+B,ftlCl (22) 
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By integrating (22) over the whole range of </> and forcing that 

/+O°po(#^=l       /+°V(^i)cty = 0 (23) 
J— oo •/—oo 

an equation for G\{£) is obtained which allows the time development of the ripple 
amplitude to be determined once the function pi(<t>,t) is known, 

dC\ iaRd 

~n) [J-I{qoPl + Po<hH Cl (M) 
dt 2Fd0(l 

The perturbation of the grain size distribution px(<f>,t), can be obtained by 
substituting (22) for (24): 

dpi iaRdo        ,, , 
-m    =   -2Fdo(l-n)L0

{[qoIh+Po(h]- 
/+0O 

{qoPi +Poqi)d<j>} (25) 
-oo 

The solution to the problem posed by equations (24) and (25) cannot be found 
in closed form. However, an asymptotic solution can be determined by taking 
advantage of the small values usually attained by the quantity Q. Indeed, it turns 
out that: 

dd 
dt 

= -iaQ   j      (q0pi + p0qx)dcj>\ Cx (26) 

/+oo -I 
(%Pi + Poqi)d<j> (27) 

-oo J 

dpi iaQ 

where the quantities q0, qx (defined below) along with p0, px, L0 are expected to 
be quantities of order one: 

The functions C\{i) and (j>i(4>,t) can then be expanded in power series of Q: 

Cx{t)   =   Cw + QCn(t) + 0(Q2); (29) 

Pi(4>,t)   =   Pio{<t>) + Qpn(4>,t) + 0(Q2) (30) 

The functions Cxo and p10 turn out to be time independent. The constant C\Q 

can be fixed equal to one without loss of generality while the function pio depends 
on the initial conditions. By substituting (29) and (30) for (26) and (27) it can 
be seen that 
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dCn .   rr+oo. • 
—    =    -la    /       ?oPio+po9i«'P 

eft /(*) 

-7jj-   =   -^-{9oJ5io+Po9i- (31) 

/+oo 

(9oPio+Po«i)<W (32) 
•oo 

The right hand side of (31) is a periodic complex function of time denoted 
f{t). The growth or decay of the perturbation amplitude, i.e. ripple formation, 
is thus controlled by the sign of the real part of the time average of fit). The 
time average of the imaginary part is related to ripple migration and turns out 
to vanish because of the symmetry of the problem. The oscillating parts of 
f{t) with vanishing time average describe the time variation of the perturbation 
profile during a wave cycle. More precisely the real part describes oscillations of 
the amplitude of the bottom perturbation while the imaginary part controls the 
small longitudinal oscillations of the ripple profile around its average position. 
The value of the time average of the real part of /(<) is negative or positive 
depending on the values attained by the flow and sediment parameters a, R$, 

K'doi   "dot Po' 

Discussion of the results 

As in Blondeaux (1990), two contributions to / — •— f^ fit)dt can be 
identified. The former is associated with the steady component of the fluid 
velocity and is usually destabilizing since the steady drift close to the bed tends 
to carry sediments from the troughs towards the crests of the perturbation, thus 
causing its growth. The latter contribution is due to the component of the gravity 
along the bed profile which has a stabilizing effect. In fact, gravity opposes the 
tendency of the flow to carry sediments from the troughs towards the crests of 
the perturbation, thus causing the decay of the latter. Assuming that p0i<t>) is 
a normal distribution, so that the standard deviation cr0 identifies the grain size 
distribution once Rdo is fixed, the behaviour of the perturbation is controlled by 
a balance between the two effects described above which depends on the values 
of a, Rs, Rdo, Fdo and <rD. 

In figure 1 the value of fr is plotted versus the wave number of the disturbance 
a for fixed values of R$, Rdo and cr0 and for different values of Fdo. It appears 
that a critical value Fdc of Fdo exists such that: for Fdo less than F^c the bottom 
perturbations characterized by any value of the wave number a decay; for Fdo 

larger than Fdc disturbances characterized by values of a falling within a restricted 
range experience an average amplification during a cycle. 

The qualitative behaviour of the results does not change when different values 
of a0 are considered. However, in figure 2 it can be seen that the critical value 
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of Fio increases when increasing values of <r0 are considered: a bottom made up 
of a mixture is more stable than one composed of well sorted material. Similar 
results are obtained for different values of R^. 

In figure 3 the critical wave number of the bottom perturbation ac is plotted 
versus Rg for fixed values of R^0 and er0. 

A comparison between the present theoretical findings and experimental 
data by Blondeaux et al. (1988) is shown in figure 4 where the ratio between 
the amplitude of fluid displacement a* and the critical ripple wavelength V" is 
plotted versus R$. The theoretical predictions are shown considering sediments 
characterized by a specific weight p,/p = 2.65; Rd0 = 10; cr0 = 0.05. The 
experimental data refer to a well sorted silt characterized by a mean diameter 
equal to 0.124 millimeters, a standard deviation equal to 0.02 millimeters and a 
specific weight equal to 2.65t/m3. The experimental conditions are such that Rs 

ranges between 20 and 85 and the Reynolds number of the sediments falls within 
the range (5,15). The agreement seems satisfactory even though the lack of 
experimental data in literature concerning mixtures characterized by large values 
of the standard deviation a* does not make a good test for the present theory 
possible. 

The tendency of the process to pile up larger sediments towards the crests 
is described by means of the integration of equation (32). Also in this case the 
right hand side of (32) turns out to be a periodic function and the process is 
thus controlled by the time average of J^L. If initial perturbations are absent 
in the grain size distribution, i.e. pio(<A) = 0, the time average of -^- shows 
that smaller grains are shifted towards the troughs and larger grains towards the 
crests, as experimentally observed (Mei, 1989). Indeed, figure 5 shows that the 
time average of pn is real and positive for small values of <f> and negative for large 
values of <f>. It is worthwhile pointing out that values of r close to one have been 
used in obtaining the results shown in figure 5. These values of r are suggested by 
experimental measurements by Parker (1990) and correspond to equal mobility 
of all grains, i.e. the bias toward fine material in the bedload relation is almost 
counteracted by the mean of the hiding function (-^-)l. 

Figure 6 where the time average of p\\ is plotted for the same values of the 
parameters as in figure 5 but for r = 0 shows that the hiding effects exerted by 
large grains on small ones is essential in describing the sorting process. In fact, 
when hiding effects are ignored, small grains tend to pile up near the crests and 
large grains towards the troughs. 

The authors would like to thank Professor Parker for his interesting discussions 
on various issues arising from the work. 

This work is part of E.P.'s Ph.D thesis. 



2080 COASTAL ENGINEERING 1992 

References 

Armanini, A., Di Silvio, G. (1988). "A one dimensional model for the transport 
of a sediment mixture in a non equilibrium condition". J. Hydr. Res., 21(3), pp. 
275-292. 
Blondeaux, P. (1990). "Sand ripples under sea waves. Part 1. Ripple formation". 
J. Fluid Mech. 218, pp. 1-17. 
Blondeaux, P. Sleath, J.F.A., Vittori, G. (1988).   "Experimental data on sand 
ripples in an oscillatory flow".   Rep.   01/88.   Inst.   Hydraulics, University of 
Genoa. 
Grass, J.A., Ayoub, N.M. (1982).   "Bedload transport of fine sand by laminar 
and turbulent flow". Proc. 18'A Coastal Engineering Conf., 2, pp. 1589-1599. 
Mei, C.C. (1989).    "The applied dynamics of ocean surface waves".    World 
Scientific. 
Parker, G. (1990). "Surface-based beload transport relation for gravel rivers". J. 
Hydraulic Res., 21(4), pp. 417-435. 
Parker, G. (1991). "Some random notes on grain sorting". Grain sorting seminar. 
Ascona, Switzerland, October 21-26. 
Ranga-Raju, K.G. (1985).   "Transport of sediment mixtures".   Ippen Lecture 
delivered at the XXIIAHR Congress, Melbourne, Australia. 
Sleath, J.F.A. (1984). "Sea bed mechanics". J. Wiley. 



GRAIN-SORTING OVER RIPPLES 2081 

(x10?) 1_ 

Figure 1.  Time averaged amplification factor fr versus a for different values of 
Fdo- {Rdo = 10, a0 = l,R$ = 50). 
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Figure 2.   Critical value of the sediment Froude number versus Rs for different 
values of a0. (Rdo = 10). 
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Figure 3. Critical wave number of the bottom perturbation versus Rs for different 
values of a0. {Rd0 = 10). 
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Figure 4. Comparison between experimental and theoretical dimensionless ripple 
wavelengths. 
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Figure 5. Perturbed density distribution function (averaged over a cycle) versus 
the <^-scale considering the "hiding" factor. (Fd0 = 2.3, Rdo = 10, Rs = 50, aa = 
0.5). 
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Figure 6. Perturbed density distribution function (averaged over a cycle) versus 
the ^-scale without the "hiding" factor. (Fdo = 2.3, Rab = 10, Rs = 50, a0 = 0.5). 




