
CHAPTER 38 

NEW APPROACH FOR ESTIMATING THE SEVEREST SEA STATE 
FROM STATISTICAL DATA 

Michel K. Ochi 

Abstract 

This paper discusses a feature of the generalized gamma distri- 
bution which is particularly appropriate for statistical analysis of 
long-term significant wave height data. The agreement between the 
cumulative distributions of the data and the generalized gamma dis- 
tribution is shown to be satisfactory. Methods to estimate the pro- 
bable extreme sea state (significant wave height) expected in a spe- 
cified time period as well as the extreme sea state for design consi- 
deration of marine systems are presented. 

Introduction 

Probabilistic estimation of the extreme sea state expected in 50 
or 100 years provides information vital for the design of offshore and 
nearshore structures as well as for the stochastic analysis of various 
coastal processes such as wave-induced sediment transport. 

Sea severity as evaluated from wave height measurements depends 
to a great extent on the geographical location where the data are ob- 
tained, since the crucial factors for sea severity are the frequency 
of occurrence of storms, water depth and fetch length. In addition, 
sea severity depends on the growth and decay stage of a storm even 
though wind speed is the same. Thus, there is no scientific basis for 
selecting a specific probability distribution function to represent 
the statistical distribution of sea state (significant wave height). 
Because of this, various probability distribution functions have been 
proposed which appear to best fit particular sets of observed data. 
These include (a) log-normal distribution [Ochi 1978a], (b) modified 
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log-normal distribution [Fang and Hogben 1982], (c) three-parameter 
Weibull distribution [Burrows and Salih 1986] [Mathisen and Bitner- 
Gregersen 1990], (d) combined exponential and power of significant 
wave height [Ochi and Whalen 1980] and (e) modified exponential dis- 
tribution [Thompson and Harris 1972], etc. 

It is highly desirable that a more rational probability distri- 
bution be developed so that sea severity evaluated from data obtained 
anywhere in the world can be reasonably represented and analyzed by 
a specific distribution thereby permitting a direct comparison of 
data, including extreme values. To achieve this goal, this paper 
introduces a probability distribution called the generalized gamma 
distribution, and discusses a feature of the distribution which is 
particularly appropriate for analysis of long-term significant wave 
height data. 

Statistical Trend of Long-Term Significant Wave Height Data 

Prior to introducing a probability distribution to represent 
long-term significant wave height data, it may be well to examine the 
general trend of the statistical distribution. For this, significant 
wave height data obtained at various geographical locations as well 
as various water depths are analyzed in the present study. 

Figures 1(a) through 1(g) show the cumulative distribution func- 
tions of significant wave height plotted on log-normal probability 
paper. These data were obtained at locations: (a) Norwegian coast 
[Mathisen and Bitner-Gregersen 1990], (b) North Sea [Bouws 1978], (c) 
North Pacific off Japan [Tomita 1988], (d) North Pacific off Canada 
[National Data Buoy Center 1990], (e) Atlantic Ocean off Georgia [Na- 
tional Data Buoy Center 1990], (f) Florida East Coast (shallow water 
area) [Coastal Data Network 1990] and (g) Gulf of Mexico (shallow 
water area) [Work 1992], respectively. Included also in these figures 
is a straight line which represents the cumulative distribution func- 
tion by fitting the following log-normal probability distribution: 

f(x) =   1      exp(-l(to*-lM2},   0Sx<~ (D 

As can be seen in Figure 1, the cumulative distributions of all 
significant wave height data show a consistent trend irrespective of 
geographical location and water depth. That is, at least 90 to 95 
percent of each set of data is well represented by the log-normal pro- 
bability distribution; however, the data diverge from the log-normal 
distribution for large significant wave heights which are extremely 
critical for estimating extreme values. The divergence is always con- 
sistent in such a way that the cumulative distribution function of the 
data converges to unity faster than that of the log-normal distribu- 
tion. This implies that the log-normal distribution will overestimate 
the extreme significant wave height by a substantial amount. 
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SIGNIFICANT WAVE HEIGHT IN M. 

Figure 1(a): Long-term signifi- 
cant wave height data obtained 
off Norwegian coast plotted on 
log-normal probability paper 
(Data from Methisen & Bitner- 
Gregersen 1990) 
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Figure 1(c): Long-term signifi- 
cant wave height data obtained 
in the North Pacific Ocean off 
Japan plotted on log-normal pro- 
bability paper (Data from Tomita 
1988) 
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Figure 1(b): Long-term signifi- 
cant wave height data obtained 
in the North Sea plotted on 
log-normal probability paper 
(Data from Bouws 1978) 
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Figure 1(d):-Long-term signifi- 
cant wave height data obtained 
in the North pacific Ocean off 
Canada plotted on log-normal 
probability paper (data from 
Nat.Data Buoy Center 1990) 
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Figure 1(e): Long-term signifi- 
cant wave height data obtained 
in the Atlantic Ocean off 
Georgia plotted on log-normal 
probability paper (Data from 
Nat.Data Buoy Center 1990) 
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Figure 1(f): Long-term signifi- 
cant wave height data obtained 
off Florida East Coast plotted 
on log-normal probability paper 
(Data from Coastal Data Network 
1990) 
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Figure 1(g): Long-term signifi-  Figure 2: Comparison bewteen the 
cant wave height data obtained   standardized cumulative distribu- 
in the Gulf of Mexico plotted on  tions of (a)log-normal and (b) 
log-normal probability paper     generalized gamma distribution 
(Data from Work 1992) for G =0.20 and for various m- 

values 
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We may conclude from the results shown in Figure 1 that the sta- 
tistical characteristics of long-term significant wave height can best 
be represented by a probability distribution whose cumulative distri- 
bution is by and large close to that of the log-normal distribution 
but converges to unity much faster than the log-normal distribution 
at higher values, say over 0.95. 

Generalized Gamma Probability Distribution 

An extensive search was made to find an appropriate probability 
distribution which represents the cumulative distribution of signifi- 
cant wave height data. For this, various probability distribution 
functions were standardized so that a comparison of distributions 
could be made under the uniform condition of zero-mean and unit vari- 
ance. Here, standardization was achieved through a change of random 
variables by subtracting the mean and dividing by the standard devia- 
tion of the original random variable. Let us define the standardized 
random variable as Z and its probability density function f(z). The 
standardized log-normal distribution is given by 

f(z) = 
f^ 

2"° f^ exp 

1 z + 1 

Un jot Ua2-lz+llf 

2oz 

(2) 

where L/p7 1 s z < «>,   a =  exp p/2}. 

Note that the standardized log-normal distribution has only one para- 

meter a, and its lower bound is a function of a. 

It was found that the following generalized gamma distribution 

(in the standardized form) appears to satisfy the conditions required 

for analysis of significant wave height data discussed in the pre- 

vious section: 

f (z) = Y%fr  (v/5 z.+p)Cm  exp[-(v^[ z+p)°}, 

whe 

r<m) 

re  -P/V5 * z < ~,   p = r(m + -i) / r(ra), 

q=[r(m + !)r(m)-(r(m+i)}
2]/{r(m)} 

(3) 
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Figure 3: Comparison between 
the standardized cumulative 
distributions of(a)Norwegian 
data,(b)log-normal and (c) 
generalized gamma distribu- 
tion for a  =  0.528 and for 
various m-values 

In order to elaborate on the above statement, let us compare the 
two standardized probability distributions given in Eqs.(2) and (3) 
for an arbitrarily chosen value a = 0.20 of the log-normal distribu- 
tion and m - 1, 4 and 8 of the generalized gamma distribution. Since 
the lower bounds of these two probability density functions are equal, 
we have a functional relationship between Eqs.(2) and (3).  That is, 

>p}=r(m + 2)r<m, /{r(m+lj} (4) 

Hence, from Eq.(4), we can evaluate c = 5.70, 2.50 and 1.76 for each 
m-value with o = 0.20. A comparison of cumulative distribution func- 
tions of the log-normal and generalized gamma distributions (in stan- 
dardized form) is shown in Figure 2. As can be seen in the figure, 
cumulative distributions are nearly equal up to 0.90, but depending 
on the m and c-values in the generalized gamma distribution, the diff- 
erence can become substantially large for cumulative distribution is 
greater than 0.90. 

For further confirmation of this feature, another comparison is 
shown in Figure 3 for o = 0.528 of the log-normal distribution evalu- 
ated from data obtained off Norwegian coast shown in Figure 1(a), and 
m = 1, 2 and h of the generalized gamma distribution. Included in the 
figure is the cumulative distribution of the Norwegian data which is 
also standardized by using the mean and variance evaluated from the 
data. It can be seen in the figure that the values of significant 
wave height (standardized) for a specified cumulative distribution 
show little difference for the two probability distributions and they 
both agree well with data in the range of cumulative distribution up 
to 0.95. However, the difference becomes substantially large for 
cumulative distribution greater than 0.95. The cumulative distribu- 
tion of the data is very close to the generalized gamma distribution 
with m = 8 in this case. 
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This feature of the generalized gamma distribution shown in 
Figures 2 and 3 is considered to make its use advantageous in statis- 
tical analysis of significant wave height data. With this back- 
ground, let us compare the cumulative distribution functions of mea- 
sured data with the generalized gamma distribution (non-standardized) 
whose probability density function f(x) and cumulative distribution 
function F(x) are given as follows: 

f (x) = T^- A
cm x01""1 exp{-(Xx)c},   0 s x < -.        (5) 

F(x) = r|m,(^x)c} / r (m), (6) 

where the numerator is the incomplete gamma function. 

Figures 4(a) through 4(g) show comparisons of cumulative distri- 
butions of data with the generalized gamma distribution. Data in each 
figure correspond to those shown in Figures 1(a) and 1(g), respec- 
tively. Included also in each figure are the values of the three pa- 
rameters of the distribution evaluated from the data. Methods to 
estimate the parameter values will be discussed in the next section. 
As can be seen in Figure 4, the long-term significant wave height data 
can be well represented by the generalized gamma distribution. 

Estimation of Parameters of Generalized Gamma Distribution 

Methods to estimate the three parameters involved in the general- 
ized gamma distribution are discussed by Stacy and Mihram [Stacy and 
Mihram 1965]. They present a procedure based on two different ap- 
proaches; one being the maximum likelihood method, the other the mo- 
ment method. In both methods, the logarithm of the variables (sig- 
nificant wave height for the present problem) is used. In particular, 
the second method considers the following sample mean, variance and 
skewness: 

n 
u = — Y^ UJ,  where UJ = in  x^ 

n A  i 

?u -    (n-l)V2) is   t    <«!-«> 

11 /-IN TT>2 (7) 

n 
3 

u i-i 

By equating Eq.(7) to the theoretical mean, variance and skew- 
ness (in logarithmic form), respectively, we may estimate the three 



ESTIMATING SEA STATE 519 

2 4 6       8    10 

SIGNIFICANT WAVE HEIGHT IN M. 

Figure 4(a): Comparison of cumu- 
lative distribution functions of 
data and generalized gamma dis- 
tribution (Data from Mathisen 
and Bitner-Gregersen 1990) 
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Figure 4(b): Comparison of cumu- 
lative distribution functions of 
data and generalized gamma dis- 
tribution (Data from Bouws 
1978) 
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Figure 4(c): Comparison of cumu- 
lative distribution functions of 
data and generalized gamma dis- 
tribution (Data from Tomita 
1988) 
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Figure 4(d): Comparison of cumu- 
lative distribution functions of 
data and generalized gamma dis- 
tribution (Data from Nat. Data 
Buoy Center 1990) 
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Figure 4(e): Comparison of cumu- 
lative distribution functions of 
data and generalized gamma dis- 
tribution (Data from Nat. Data 
Buoy Center 1990) 
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Figure 4(e): Comparison of cumu- 
lative distribution functions of 
data and generalized gamma dis- 
tribution (Data from Coastal Data 
Network 1990) 
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Figure 4(g): Comparison of cumu- 
lative distribution functions of 
data and generalized gamma dis- 
tribution (Data from Work 1992) 

Figure 5: Probable extreme sig- 
nificant wave height and design 
extreme significant wave height 
with risk parameter a = 0.01 as 
a function of time (Data from 
Mathisen & Bitner-Gregersen 1990) 
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parameters.      For  example,   the parameter m  can be  estimated  from  the 
following equation: 

-S— tn T (m) 
dm3 

-la   I =  (8) |9u'       T~^2 \Tp2. 
— (n T (m) 

Although the Stacy and Mihram method is mathematically correct, 
some difficulty is often encountered in practice in solving Eq.(8) for 
certain set of data. It should be noted that in estimating the sta- 
tistical properties of long-term significant wave height, the sample 
size of data is usually extremely large, on the order of several thou- 
sand. If this is the case, we may simply estimate the parameter val- 
ues by equating the sample moments to theoretical moments. Here, the 
j-th moment of the generalized gamma distribution is given by 

E [xJ 1 r(m4) (9) 
xj  r<m) 

Since the generalized gamma distribution has three unknown para- 
meters m, c and A, we may consider a set of equations consisting of 
either the first three moments or the 2nd, 3rd and 4th moments; the 
latter places more emphasis on the higher order moments. It is found 
through statistical analysis of many data that the solution of a set 
of three moments consisting of the 2nd, 3rd and 4th moments yields the 
generalized gamma distribution which well represents the cumulative 
distribution of the observed data. The parameter values of the gener- 
alized gamma distributions given in each example in Figure 4 are all 
determined by this procedure. That is, from a set of three equations 
for j = 2, 3 and 4 of Eq.(9), we can derive the following two equa- 
tions by eliminating the parameter \. 

(rM)1/2r(„.j)   E[x3| 

{'(-I)}3"   W" 
r(m)r(m + -i\  „. 4l  \   c/ =  E[x*] 

{r(m + |)}
2  {E[x2]}

2 

The parameters m and c are determined from the above equations. 
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Estimation of Extreme Sea State 

Estimation of the extreme sea state (significance wave height) 
expected to occur in a specified time period (50 years, for exmaple) 
based on the generalized gamma distribution is discussed in this 
section. 

(a) Probable Extreme Sea State 

The probable extreme sea state refers to that most likely to 
occur in a specified time period which is the modal value of the pro- 
bability density function of extreme values. It is essentially the 
value of the significant wave height which satisfies the equation of 
return period being equal to the number of significant wave heights 
in a specified time. In order to avoid possible confusion, the ex- 
treme value in N-observations is denoted by Yn-value which satisfies 
the following equation: 

{l / fl-rjm, Uyn)
cJ / r(m)U = tn N (n> (n 

where  N - number of significant wave heights expected in a speci- 
fied time period. 

Another approach for evaluating the probable extreme sea state 
is through application of Cramer's asymptotic extreme value statis- 
tics . This method was used for evaluating the extreme value of the 
generalized gamma distribution and therefrom the following equation 
to estimate the probable extreme values was derived [Ochi 1978b]: 

(m)  " ur
x e~Un 

*{-£(-*)}• 
where   ^ = (Ayn)

c 

The left-side of Eq.(12) is the gamma probability distribution, 
and hence solution of the equation with respect to ^ can easily be 
obtained for a given m, c and X. The asymptotic probable extreme 
value yn can be evaluated from the extreme value of UJJ. It is noted 
that the asymptotic probable extreme value thus obtained is very close 
to the value obtained as the solution of Eq.(ll) when N is large. 

(b) Extreme Sea State for Design Consideration 

The probable extreme sea state discussed in the previous section 
is the modal value of the probability density function of yn. How- 
ever, the probability that the extreme value exceeds the probable 
extreme value is theoretically 1 - e = 0.632. Since this proba- 
bility is very large, the probable extreme value should not be used 
for design of marine systems.  For the design of marine systems, it 
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is necessary to consider an extreme value for which the probability 
of exceedance is a very small specified value, a, called the risk 
parameter. It can be evaluated from the cumulative distribution 
function given in Eq.(6) as 

r{m, Ux)c} ,„ (13) 
F(x) = —1 i- = (l-o) ' K   ' r(m)     (   ' 

Although Eq.(13) yields the exact solution numerically, we can 
derive the following equation for large N and small a: 

r{m qx)C)=i_(i_n)1/N _ (14) 

r (m) N 

Eq.(14) yields an equation in a form similar to that given in 
Eq.(ll); and hence, the design extreme value with risk parameter, a, 
can be obtained by finding the yn-value which satisfies the following 
equation: 

hi jl / [l-r|m, Uvn)
c} / r(m)H = tn(N/a), (15) 

where a - risk paramater; namely, the probability that the extreme 
value exceeds the design extreme value. 

The design extreme value can also be obtained as the solution of 
the following equation which has a form similar to that given in 
Eq.(12): 

m-1 
r(m) 5{>-i(-i)} 

As an example of the estimation of extreme sea states, Figure 5 
shows the probable and design severest sea states as a function of 
time using the Norwegian data shown in Figure 4(a). The estimations 
are made by Eqs. (12) and (16). As can be seen, the magnitude of the 
probable as well as that of the design extreme sea state with risk 
parameter a = 0.01 do not increase significantly with increase in 
time. However, the design extreme sea state with the risk parameter 
a — 0.01 is substantially larger (approximately 40 percent) than the 
probable extreme sea state in this example. The severest sea state 
observed in 7 years at this location agrees well with the estimated 
probable extreme sea state for this period. 
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Conclusions 

Results of statistical analysis of long-term significant wave 
height data obtained at various geographical locations and at various 
water depths show a consistent trend. That is, at least 90 to 95 
percent of the cumulative distribution of each set of data is well 
represented by the log-normal probability distribution; however, the 
data diverge from the log-normal distribution for large significant 
wave heights. The divergence is consistent in such a way that the 
cumulative distribution of the data converges to unity faster than 
that of the log-normal distribution. 

From comparisons of many probability distributions in standar- 
dized form, it is found that the generalized gamma distribution satis- 
fies the condition that its cumulative distribution is by and large 
close to that of the log-normal distribution but it converges to unity 
much faster than the log-normal distribution at higher cumulative dis- 
tribution values, say over 0.95. Comparisons of cumulative distribu- 
tion functions of data and the generalized gamma distribution show sa- 
tisfactory agreement. Methods for estimating the probable extreme sea 
state expected in a specified time as well as the extreme sea state 
for design consideration of marine systems are presented. 
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