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FORCES ON VERTICAL WALLS DUE TO 
OBLIQUELY-INCIDENT WAVES 

Ching-Piao Tsai * and Dong-Sheng Jeng ** 

Abstract 

The force exerted on a vertical wall due to obliquely-incident waves has been 
analyzed in this paper from the calculation of short-crested waves system by a 
numerical scheme. The numerical model preserves the wave elevation in an implicit 
function form for the dynamic and kinematic boundary equations on water surface, 
the accuracy is then improved. It is found that the maximum loading in onshore 
direction may be caused by obliquely-incident waves as the water is greater than 
intermediate depth. However, the onshore loading does not necessarily be the greatest 
force for such instance. The greatest force could be produced by the offshore loading 
under steeper normal standing waves. While the wall is in the shallow water region, 
the greatest force is occurred in onshore loading at crest by normal standing waves. 
This research also shows good comparisons from some experimental results. 

1.  Introduction 

Wave forces exerted on vertical walls play a very important role in coastal 
engineering. The forces produced by standing waves, whose crest parallel to the 
wall, are usually considered as the maximum loads. However, some evidences have 
shown that the forces due to obliquely-incident waves, called short-crested waves, 
could exceed those from waves normal approach to the wall (Silvester 1974, Fenton 
1985). The surface of short-crested wave is defined as having a doubly-periodic 
diamond-shaped crest pattern. Two dimensional progressive and standing waves are 
physically two limiting cases of short-crested waves as the incident waves are 
traveling parallel and normal to the wall respectively. 

Short-crested waves have been investigated theoretically since Fuchs (1952). The 
systematic analysis by a third-order approximation in a non-dimensional form was 
proposed by Hsu et al (1979). While the detailed analysis for the force on vertical 
walls due to such wave system was first studied by Fenton (1985), with a third-order 
expansion in wave height. Fenton's solutions showed a number of unusual features 
which can further be found in this study. Nevertheless, it is found that the third-order 
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approximation could produce moderately residual pressures on free surface, which 
has an influence on the distribution of wave pressures, as the wave is in shallow 
water, or steeper in intermediate depth in which coastal structures are always located. 

To improve the accuracy, the force exerted on a vertical wall is obtained in the 
study from calculation short-crested waves by a numerical scheme. The numerical 
model using Fourier series approximation was proposed to calculate the highest 
periodic short-crested waves on deep water by Tsai et al (1990). Unlike Roberts and 
Schwartz (1983), the present numerical model preserves the wave elevation function 
in an implicit form, in analogy to the exact nonlinear nature for the dynamic and 
kinematic boundary conditions on water surface. Basic formulations are outlined in 
section 2, and the main procedures for numerical calculations given in section 3. 
Section 4 demonstrates the results of the force exerted on the wall. The experimental 
data of standing waves (Goda 1967), one of limiting cases of short-crested waves, 
are also quoted to compare with the calculation results. 

2.  Formulations 

A sketch diagram of the short-crested wave motion produced by full oblique 
reflection from a vertical wall is shown in Fig. 1. Assume the fluid to be inviscid, 

incompressible and of uniform finite depth. The velocity potential $ for irrotational 
motion gives rise to the Eulerian water particle velocity components as 

u=q>x, v=<pv w=<t (1) 

where the velocity potential <l>(x,y,z,t) satisfies Laplace equation 

2 
V (J> = (t>xx + <t>yy + <t>zz = 0 

The dynamic boundary condition at the free surface (DFSBC) is 

(2) 

Plan Elevation 

Fig. 1 Sketch diagram of short-crested waves 
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<f>t +gT|+i-(<l>x2 + Ct>y2 + <l>z2) = C,       at Z = T1 

and the kinematic boundary condition at the free surface (KFSBC) is 

tit - <l>z + <t>xT|x + <My =0' at z = T] (4) 

while the bottom and wall boundary conditions are 

(J)z = 0  at z = - d;   <j>y = 0  at y = 0 s$\ 

in which TJ = ll(x,y,t) js the water surface elevation, g is the acceleration due to 
gravity, and the subscripts (x,y,z ,t) designate differentiation with respect to the 
Cartesian co-ordinates (see Fig.l) and the time, and C is an arbitrary constant. 

Taking the material derivative, D/Dt, of (3) and subtracting g times (4) gives 

<ht + g<l>z + 2(<M>xt + <t>yc}>yt + ()>z<t>zt) + 2(<My])xy + WAz + ^z^yz) 

2 2 2 
+ (<M>x + <M>y + <M>z ) = 0 at z = r| (6) 

The unknown time derivative of ^t in (4) can thus be eliminated, in which ^  is a 
priori unknown itself yet to be determined. 

As shown in Fig.l, let L be the wavelength of the incident and reflected waves 
and Lx and Ly the distances between crests in the x and y directions respectively. The 
corresponding components of the wavenumber k in these two directions may be 
defined as 

kx = 2% I Lx = k sin9 = pk, ky = 2n / Ly = k cosG = qk r-j\ 

in which k = 2% / L . By using a reference length 1/k and reference time 1/Vgk , the 
following set of non-dimensional parameters may be introduced, 

x = pkx - ot, y = qky, z = kz 

A--^<|>, r|=kr|, a=-s— 
gk Vgk (8) 

in which   o is the angular frequency of the incident and reflected wave (i.e. 
a = 2n IT   where T is the wave period in seconds). 

The carets denoting dimensionless quantities will now be omitted for the sake 
simplicity, unless otherwise specified. The governing equations may now be 
transformed in terms of these dimensionless quantities. 

P2<i>xx + q2<i>yy + <J>zz = 0 (9) 
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-ccx{)x + ri +1< p2^2 + q2<t)y
2 + <>z

2 ) = Q,     at Z = TI 

afyxx + <t>z " 2C0( p2(j>x<|>xx + q2<M>xy + <M>xz ) 

+ 2( p2q2<|)x(t)y<t>xy + P2<t>x<t>z<t>xz + q^z^z ) 

+ (p4<M>x   + q4<M>y   + <M>z   ) = 0,        at  Z = T\ Q^ 

. = 0     at z = -d (12) 

<!>y = 0     at y = 0 (13) 

in which Q is a dimensionless constant. 

3. Numerical procedures 

A truncated double Fourier series which satisfies both Laplace equation (9) and 
the bottom and wall boundary conditions (12) and (13) can be given by 

A    V  V o    cosh oc• (z + d)   . 
4> = 2, L B«m        7•     .     sin mx cos ny 

m=ln=0 COSnOmnQ (14) 

in which ow2 = p2m2 + q2n2 . As (m+n) is odd, then Bmn is equal to zero for 
satisfying the symmetry condition required for the wave motion. The equation (14) 
yields the appropriate two-dimensional limiting cases of a progressive wave as p=l 
and q=0, and a normal standing wave when p=0 and q=l. Substituting (14) into 
DFSBC (10) and KFSBC (11), yields 

-cou + r| + ;kp2u2 + q2v2 + w2) = Q 
2 (15) 

and 

C02ux + w - 2co(p2uxu + q2uyv + uzw)+ 2( p2uuzw + p2q2uuyv + q2 vvzw) 

+ (p4uxu + q4vyv2 + wzw
2) = 0 (16) 

where 

M-l   2N M-l  2N 

U= X   X mBmnFmn(Tl) cos mx cos ny V= X   X -nBmnFmn('Tl) sin mx sin nY 
m=l n=0 , m=l n=0 

M-l   2N M-l   2N 

W= X  X amnBnrnGmn(r\) sin mx cos ny     ux= X  X -m2BmnFmnCn) sin mx COS ny 
m=l n=0 , m=l n=0 
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M-l  2N M-l   2N 

uy= X X -mnBmnFmnC1!) cos mx sin ny     Uz= ]£ ]T mOmnBmnGmnCTl) COS mx COS ny 
m=l n=0 , m=l n=0 

M-l  2N M-l  2N 
vy= X X -n2BmnFmn(Tl) sin mx cos ny      Vz= ]£ ^ -nOmnBmnGmnCn) sin mx sin ny 

m=l n=0 , m=l n=0 

M-l  2N 
Wz= X X amn2BmnFmn(Tl) sin mx cos ny 

m=l n=0 , 

cosh CXmnOl+d) ^_ sinh (Wl+d) 
mfflj       coshowd , UnmW~    COShC^d (17) 

It is noted that the water surface elevation ^(x.y) is preserved in an implicit 
form, instead of a straight double Fourier series by Roberts and Schwartz (1983). 
This approach is similar to that of Rienecker and Fenton (1981) in solving the 
problem of two-dimensional progressive waves. 

For the purpose of numerical computations, the discretized mesh points (xi>yj) 
are chosen by even symmetric properties given by 

Xi = iju/M, for i = 0,1,2, ,M 

yj=jjt/2N, for j =0,1,2, ,N (18) 

For all the mesh points required in (18), the DFSBC of (15) provides (M+1)(N+1) 
algebraic equations. While (16) is automatically satisfied at points (xM/2,yN)> (xo,yj)> 
and (xM»yj) for all j, and the value of (16) at points  (xM-i,yN) are equal to that of 
(
X

I>VN) (for i=l,2, ,M/2-l) from trigonometric symmetry. Then satisfied (16) at 
remaining points lead to (M-l)N+M/2-l equations. Furthermore, there are two 
additional equations should be specified, firstly, a wave height relationship ensures 
that, 

Tloo - r|M0 - H = 0 (19) 

where "Hij represents TKxi.Yj), H is the waveheight of the short-crested wave. 
Secondly, the mean water level can be chosen at the coordinate origin, using the 
simple trapezoidal rule then 

2   M-l N-l 

j^E X  Clij + ^+1 j + ^ j+1 + Tli-f-1 j+l) = 0 
i=0  j=0 (20) 

Consequently, there are 2MN+3M/2+2 nonlinear algebraic equations for the same 
number of unknowns B^, r]^ co, Q . The system equations can be solved by 
Newton's iteration scheme. It is noted that M should be taken to be an even integer. 
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4. Numerical results 

Through the numerical scheme stated above, the velocity potential V and wave 
elevation H of short-crested waves can be calculated completely as both the 
waveheight and water depth are given. The force exerted on the wall by short-crested 
waves, produced by obliquely-incident waves reflection from a vertical wall, then 
may be estimated by integrating the pressure over depth per unit of the wall. The 
pressure in the wave motion is given by Bernoulli's theorem in terms of 
dimensionless quantities as 

P = -z - coct)x -^( p24>x
2 + q2^2 + ())z

2 ) + Q 

where P = (k/pg)P is the departure of the wave pressure from that of the 
atmosphere, P being the water density. The force on the wall per unit length due to 
the wave then performed by 

-f F = |   P ( x, 0, z, t) dz 
(22) 

Considering the hydrostatic contribution of the undisturbed water back of the wall, 
the net force on the wall per unit length then given by 

[ F ]= j   P ( x, 0, z, t) dz -1 p g d2 

(23) 

In the following results, the term M=2N=8 is taken to calculate. Since the wave 
elevation is preserved in an implicit form in the numerical model, the accuracy can be 
improved. The accuracy could be measured from the order of residual pressures (the 
non-zero value of pressures) on the water surface. Although the solution by 
traditional perturbation method was also obtained from satisfying the conditions of 
zero-pressure and continuity at the water surface, the pressure computed with the 
final solution does not necessarily become null at the surface due to the influence of 
higher order terms neglected in the calculation (Goda 1967). The error is especially 
occurred in the case of steeper wave in shallow water. In the numerical calculation of 
present model, however, the error less than 10"12 can be under control. Fig. 2 and 
Fig. 3 show that comparisons of the residual surface pressure / waveheight, in 
dimensionless Pr / H, of the steeper wave in the shallow water depth. 

The variation of forces in each phase with different angle of incidence are shown 
in Fig. 4 and Fig. 5, the double peaks appear in small incident angle, such as 0° , 5°. 
But the phenomenon can not be found in the cases of shallow water and the small 
steepness in intermediate water depth, which are shown in Fig. 6 and Fig. 7 
respectively. From the results, the maximum onshore force does not at the crest but at 
the intermediate maximum as the wave is small angles of incidence in deep water or 
larger steepness in intermediate water. 
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Fig.2 Variations of residual surface pressures with phase of time 
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Fig.3 Variations of residual surface pressures with phase of time 
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Fig.4 Variation of forces in each phase, Force=[F] / pgd 

Fig. 5 Variation of forces in each phase, Force=[F] / pgd 
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Fig. 6 Variation of forces in each phase, Force=[F] / pgd 
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Fig.7 Variation of forces in each phase, Force=[F] / Pgd 
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Fig.9 Variation of forces with angle of incidence, Force=[F] / pgd2 
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Fig. 10 Variation of forces with angle of incidence, Force=[F] / pgd2 
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Fig. 11 Variation of forces with angle of incidence, Forces [F] / pgd2 
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Fig. 8 to Fig. 11 show the variation of forces per unit length with angle of 
incidence for each of the wave crest, the trough and the intermediate maximum. 
Analogous to Fenton (1985), the maximum force for onshore loading may be caused 
by obliquely-incident waves rather than standing waves. But this behavior is only 
found to be in water greater than intermediate depth, and opposite in shallow water. 
These figures also show the greatest net force exerted on vertical walls is occurred in 
offshore direction under the wave trough, as the water depth is greater than 
intermediate. And the maximum offshore loading is always produced by normal 
standing waves. Fig. 12 is the comparison from experimental data of the maximum 
onshore wave force of standing waves obtained by Goda (1967). The present 
research shows good agreement with experimental results even though the case of 
shallow water. 

5.   Conclusions 

Through the calculation of short-crested waves by a numerical model, the force 
exerted on a vertical wall due to obliquely-incident waves has been obtained. 
Analogous to Fenton (1985), a number of unfeatures are also found in this paper. 
Because the wave elevation is preserved in an implicit function form for the dynamic 
and kinematic boundary equations on water surface, the results in this research show 
better agreement with some experimental data. Some conclutions can be drawn as the 
following. As the wave is in the water greater than intermediate depth, the double 
peaks appear on the time histories of forces in the cases of small incident angle. It is 
shown that the maximum loading in onshore direction does not be at the crest. From 
the analysis, it is also investigated that the maximum onshore loading may be caused 
by obliquely-incident waves rather than those of normal standing waves. 
Nevertheless, the maximum onshore loading does not necessarily be the greatest 
force for such instance. The greatest force is always produced by the offshore loading 
under the wave trough for normal standing waves as waves are steeper. While for 
shallow water waves, the greatest force is found in onshore loading at crest for 
normal standing waves. 
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