
CHAPTER 77 

Nonsteady computations of undular and breaking bores 

A.F.Teles da Silva 1 and D.H.Peregrine 2 

1. Introduction 
A bore occurs when water with local depth /t1? say, moves over 

shallower water with depth hi, necessarily moving at a lower speed, 
in a scale in which horizontal distances are a few times bigger than 
either h\ or hi- The bore is the region of transition between the 
two uniform depths and speeds. If the slopes are initially gentle, 
the bore gets gradually steeper and develops into one of three types 
depending on the ratio A = hl^hi • For small enough values of A, 
A <~ 0.3, the bore front develops into a smooth succession of long 
waves. The difference between the upstream and downstream levels 
is fitted with undulations which are long at the front and short at 
the back. These are called undular bores. For big enough values of 
A, A >~ 0.7, bore fronts break and the whole bore takes the aspect 
of a turbulent breaking zone extending over some depths and ad- 
vancing at a constant speed (over a flat bed); outside this turbulent 
zone the water is flat. For intermediate values of A breaking and 
turbulence at the front precede a train of smooth undulations. Here 
the difference in level between upstream and downstream is fitted 
partially with breaking and turbulence in the front and partially 
with undulations, these bores are called undular breaking bores. 

The classical bore theory, Lamb (1932) article 187, supposes 
a well developed bore advancing at constant speed and calculates 
the fluxes of mass, momentum and energy accross the bore in a 
frame of reference moving with the bore speed. It is shown that 
if mass and momentum are preserved, energy must be necessarily 
lost. Benjamin and Lighthill (1954), applied this approach, within 
the approximation of Kortweg & De Vries' equation, to the first 
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undulation of an undular bore; they show that, if mass momentum 
and energy are preserved, the wave is necessarily a solitary wave, 
if energy is lost the wave is a cnoidal wave. A limitation to the 
applicability of the classical approach to the whole of an undular 
bore is that, at any time, the flow at its back is unsteady; because 
new undulations are continualy forming and growing, turning the 
bore into an intrinsicaly unsteady phenomenon even if waves in the 
front assume a nearly steady aspect. Hence, in order to understand 
the bore as a whole, with its upstream and downstream regions, 
the evolution must be followed from an initial state. The simplest 
unsteady model is provided by shallow water equations; although, 
these are unable to predict undulations because vertical compo- 
nents of velocity are neglected. A higher order unsteady modelling 
is obtained by either Boussinesq's or Kortweg &: De Vries' equa- 
tions. Peregrine (1966), using a smooth transition as initial state, 
integrates Boussinesq's equations, numerically, in order to follow 
the evolution of gentle undular bores. The characteristic formation 
of smooth undulations is compared with the continuous steepening 
predicted by shallow water theory. Using K. <k De V.'s equation, 
Gurevich <fc Pitaevskii(1973), calculate analytically, an asymptotic 
solution valid for large values of time, the evolution of a step like 
initial condition. It is found that the separation between successive 
crests increases logaritmicaly and the height of the solitons at the 
head of the bore is 2 A for an initial step of magnitude A. 

In the present work we model the unsteady evolution of an 
initially gentle transition using a completely nonlinear mathemat- 
ical formulation. The only approximations are the ones inherent 
to perfect fluid modelling. The flow is described by a potential of 
velocities cj) which at any time obeys to: 

V2<j> = 0 (1) 

lim   Y = hi — h-2 
X —> — oo 

lim   V<f> = (Uu0) 
X • — OO ^: —T i _x_j 

(1) is to be valid inside the fluid region; equations (2) are to be 
satisfied on the free surface which is described parametrically by 
R = (X, Y) to allow for overturning, g is the acceleration of grav- 
ity; equation (3) is valid on the fiat bed placed at y = — /t2; the four 

(2) 

(3) 
lim Y = 0 

x —s-oo 

lim V0 = (£/2,O) (4) 
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equations (4) are valid on the extremeties, x = ±00 and h1,fi2,Ui 
and U2 are given constants. Moreover we re scale distances by the 
downstream depth hi and accelerations by the acceleration of grav- 
ity g. The evolution of the free surface is calculated by a numerical 
method which is a modification of Dold k. Peregrine's (1986) bound- 
ary integral scheme from the initial free surface profile 

Y = ^[1 - tanh(aX)] (5) 

For most of the computations the value of a has been set to 
a = 0.25. 

2. Numerical Results 
Figure la shows the evolution of a strong bore, for A = 0.8, 

for times 0, 2, 4, 6, 8, 10, 12 and 14, (from top to bottom in that 
order). Figure lb shows the bore overturning at time 14.95. Figure 
2a shows the evolution of an undular breaking bore, for A = 0.35, 
for times 0, 10, 20, 30, 40, 60 and 70, with a vertical magnification 
of 10. This bore breaks at time 71.9; the breaking crest is shown in 
Figure 2b. 

In order to assess the influence of A on the bore evolution we 
follow the growth of the first wave. Figure 3 shows graphs of height 
of the first crest, (x axis), against time, (y axis), for several values 
of A: 0.1, 0.2, 0.25, 0.28, 0.3, 0.3125, 0.325, 0.35, 0.4, 0.5, 0.6, 0.7, 
0.8, 0.9, 1.0, 1.2 and 1.5 (from bottom to top). Waves have been 
followed until time 140, for cases in which breaking did not occur, 
and until the moment when a slope of 90° first appear. Waves can, 
approximately, be grouped into three types: 
i) the crest grows towards an asymptotic value; 
ii) the crest first behaves as if in i) and then steeppens and rapidly 
breaks; 
Hi) the crest grows at an accelerated rate until breaking. 
These types correspond to the three bore types: undular, breaking 
and undular breaking. More details of the computations are given in 
Table 1. Table 1, below, gives the nondimensional time of breaking, 

T2 tb, which is the time when a slope of 90° first appear, in y — units; 

the height of breaking yb] the horizontal distance travelled before 
breaking, Xb, in /t2 units. The front of the stronger bores break at 
a height that is slightly bigger than the original (= A); also shown 
in Table 1 are Hi and Hi which are the distances from the first and 
second crests to the bed, respectively, divided by 1 + A, (upstream 
level); for A greater than 0.7, H-2 is nearly 1. meaning that sec- 
ondary undulations almost cease to exist. As A grows beyond 1.5, 
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Hi approaches 1.0; for higher values of A the bore breaks before a 
single wave forms; these facts also appear in the values of 81,62, 83 
and 84 which are respectively the maximum slopes, in degrees, of 
the front and back faces of the first and second waves. Note that 
after breaking the values of Hi will be reduced. 

A h Xb Vb Hi H2 0i 82 03 04 

0.325 131.7 164.4 0.87 1.42 1.28 81.5° 26.4° 11.9° 11.1° 
0.35 71.9 88.7 0.89 1.40 1.19 88.5° 25.3° 4.3° 3.0° 
0.4 45.3 56.2 0.93 1.40 1.12 84.9° 23.0° 1.2° 0.5° 
0.5 28.3 36.3 1.02 1.35 1.05 83.5° 21.9° 0.0° 0.0° 
0.6 21.1 28.0 1.10 1.31 1.03 85.7° 20.2° 0.0° 0.0° 
0.7 17.1 23.5 1.18 1.28 1.00 84.8° 18.6° 0.0° 0.0° 
0.8 14.4 20.5 1.26 1.25 1.00 86.2° 17.0° 0.0° 0.0° 
1.0 11.1 17.0 1.41 1.20 1.00 84.2° 14.1° 0.0° 0.0° 
1.2 9.2 15.0 1.55 1.16 1.00 89.5° 11.5° 0.0° 0.0° 
1.5 7.4 13.1 1.77 1.11 1.00 85.5° 7.6° 0.0° 0.0° 
2.0 -.- -.- -.- 1.05 1.00 87.2° 3.3° 0.0° 0.0° 
3.0 -.- -.- -.- 1.03 1.00 91.8° O 0.0° 0.0° 

Table 1 

According to Benjamin and Lighthill (1954) the first wave of 
a well developed bore is a solitary wave. We expect the computed 
bores either to break or to develop into solitary waves. For this rea- 
son we compare properties of first waves in the bore with properties 
of solitary waves. Figure 4 shows graphs of mass of the first wave 
against wave-height for values of A equal to 0.1, 0.2, 0.25, 0.28, 
0.3, 0.3125, 0.325, 0.35, 0.4, 0.5 and 0.6 (from bottom to top); also 
shown is the same relationship for the same range of solitary waves 
for comparison (the longer curve starting at the origin). Some re- 
markble facts can be observed: waves which are not going to break 
tend to assume the mass of a solitary wave even if wave-lengths 
at this stage, t < 140., are all less than 4.5 depths; this fact have 
equally been observed for phase speed and maximum slope; waves 
which break have more mass than the maximum possible for soli- 
tary waves. Nonbreaking waves in Figure 4 tend to approach the 
solitary wave curve in a way that enables a rough estimate of asymp- 
totic heights of undulations of nonbreaking bores. On this basis we 
conjecture that A ~ 0.3 is the highest limit for undular bores. 

Another result about the evolution of bores is shown in Figure 5 
where curves of wave-length of the first undulation is plotted against 
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time; the wave-length of the first wave has been calculated as twice 
the horizontal distance from the crest to the trough just behind. 
A feature of Figure 5 that is important in the comparison with 
experiments is that bores undulations stretch faster for the gentler 
bores. 

4. Comparison with weakly nonlinear results 
In order to assess ranges of effectiveness of weakly nonlinear 

modelling we calculate the evolution of the initial free surface con- 
dition (5) using both shallow water and Boussinesq's equations and 
compare the results with the ones obtained by means of fully non- 
linear calculations. Shallow water equations provide a good approx- 
imation for the initial stages of steepening of initially gentle bore 
fronts; for large values of A, where secondary undulations are not 
present, shallow water equations remain accurate for slopes up to 
~ 20°. Boussinesq's equations are more suitable to model the initial 
stages of evolution of very small undulating bores. Figure 6 shows 
the comparison with shallow water equations for the initial condi- 
tion (5) with a = 0.125 and A = 2.0; times shown are 4.0, 6.0, and 
8.0 (from top to bottom). 

There is a good agreement until time 6.0 when slopes are ~ 
20°; after this point shallow water equations predict a too quick 
steepening and breaking. 

Figure 7 shows a comparison between results from Boussinesq's 
equations ( dashed lines) and full nonlinear computations ( full lines) 
for a = 0.25, time = 50 and A = 0.1, 0.2 and 0.3 ( from top 
to bottom). Boussinesq's equations overpredict undulation growth, 
bore speed and number of undulations in a way that errors increase 
with A and time for a fixed value of a. 

5. Comparison with experiments 
Favre (1935) conducts experiments in a canal 75.58m long and 

0.41m wide; from Favre's experiments we are specialy interested in 
his first and third sets in which depth of water is ~ 0.2050m and 
~ 0.1075m, respectively. Results for 0.2050m of depth compares 
well with our computational experiments. In this set A varies from 
0.062 to 0.278 depths. It is found that, at the end of the tank, af- 
ter travelling for about 300 depths, the first waves acquire a nearly 
steady aspect; final wave-lengths range from A = 10.8 depths to 
A = 8.6 depths. Of special interest for comparisons are the bores 
with A = 0.202 and A = 0.278 depths which produce waves that 
at the end of the canal are respectively 0.395 and 0.570 depths of 
height. According to results in Figure 3 we can expect our calculated 
bores with A = 0.2 and A = 0.28 depths to produce solitary waves 
which are ~ 0.41 and ~ 0.62 depths high respectively. These figures 
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are respectively 3.8% and 8.8% higher than Favre's; the small dif- 
ferences can still be accounted for viscous dissipation of long waves 
travelling over long distances. 

For depth 0.1075m, Favre's third set, viscous effects are more 
conspicuous and results do not match as well with our calculations. 
In this set A ranges from 0.080 to 0.500 depths. One mismatch 
appears in the measured wave-lengths. In the previous set, undu- 
lations at the bore front for A = 0.238 have a wave-length of 9.024 
after travelling for about 300 depths; in depth 0.1075m, with a bore 
with A = 0.230, a wave-length of 8.47 depths is found at the end 
of the canal which is about 600 depths long. In a completely in- 
viscid situation we should expect this later bore to attain greater 
wave-lengths for two reasons: gentler bores should stretch faster 
and bores continualy stretch as they travel further; (see Figure 5). 
The results of Figure 5 are confirmed by Favre's experiments of the 
same set. Another important difference between our inviscid results 
and Favre's third set is the breaking, spilling, of the bore front for 
A = 0.281, at a distance of about 350 depths from the start of the 
canal; in his first set the bore with A = 0.278 produces waves which 
are 0.570 depths high; one could expect smaller waves for A = 0.281 
because of a stronger viscous dissipation in shallower waters; this 
wave must break at a height smaller than 0.6 depths which is too 
small when compared with results for m, in Table 1. 

6. Bores on water of constant vorticity 
Favre's results for depth 0.1075m are certainly more affected 

by viscosity than these for depth 0.2050m. One of the effects of 
viscosity is dissipation of energy; but the sole dissipation of energy 
cannot be accounted for differences found in the comparison be- 
tween inviscid results and Favre's experiments. Another important 
manifestation of viscosity, for long waves, is the shedding of vorticity 
generated at the boundary layer on the bed. Negative vorticity pro- 
duced at the bed is difused into the fluid and its distribution varies 
with time and location which makes mathematical modelling a dif- 
ficult task. For mathematical convenience we adopt a simple model 
in.which vorticity is a constant. A perturbation in a 2D flow with 
constant vorticity can be represented by a potential flow. Hence, in 
order to introduce constant vorticity into the flow, we modify the 
boundary value problem for the potential </> given in equations (1) 
to (4) adding to the first and second equations (2), the terms: 

—u(Y(j)x - 'tp) 

to the left hand side of the first of equations (2), where u> is the 
value for the constant vorticity and </> is a complex conjugate of cj) 
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and 
-uYi 

to the right hand side of the second of equations (2). 
Despite the simplicity of constant vorticity modelling, features 

of the third set of, depth = 0.1075m, of Favre's experiments are 
present in our computations. Figure 8 shows the evolution of wave- 
length with time for irrotational and rotational bores: the full line 
curves are irrotational bores for A = 0.25, upper curve, and A = 
0.28, lower curve; the dashed lines are rotational bores: for A = 0.28 
and to = —0.125, upper curve, and for A = 0.25 and to = —0.25, 
lower curve. The two irrotational bores show the usual pattern in 
which the lower one is longer at any given time. Negative vor- 
ticity affects wave-lengths: the rotational bores are shorter than 
the corresponding irrotational ones, moreover the lower rotational 
bore, A = 0.25 is made shorter by the use of stronger negative 
vorticity, to = —0.25 compared with to = —0.125. Another feature 
reproduced by constant negative vorticity modelling is breaking at 
smaller wave-heights; Figure 9 shows breaking of two bores with 
A = 0.8, the dashed line bore is irrotational and the full line one 
moves in water of vorticity to = —0.25; the legend to the graph be- 
longs to the rotational bore and the profile shown is for time 12. 
Results in Table 1 show that the corresponding irrotational bore 
breaks (with an angle of 90°) at time 14.4 and its crest is, at the 
moment of breaking, at x = 20.5, hence negative vorticity causes 
premature breaking. About the profile of the bore A = 0.281, Favre 
comments that it has the shape of a cycloid; such a comment cannot 
apply to irrotational waves. Figure 10 compares the profiles of the 
first two undulations of two bores, both with A = 0.25; the one in 
dotted lines is an irrotational bore and the one in full lines repre- 
sents the profile of a bore with vorticity to = —0.25. We notice that 
not only wave-lengths are shorter but crests are more peaked and 
troughs are flatter. 

Positive vorticity has an opposite effect: Undulations tend to 
get longer, acquire a round sinusoidal shape and break at bigger 
heights when compared with irrotational ones. Bores which move 
up estuaries, probably, travel on water in which vorticity is mainly 
positive, generated by the boundary layer of the downstream river 
current. These bores should look rounder and move faster than 
bores running over still water. 

7. Conclusions 
Comparisons between Favre's first and third sets of experiments 

show that depth of water and width of the channel play an important 
role on results. Sandover and Zienckievicz (1957), conducted experi- 
ments on bores for channel depths of 2", 3", 4" and 6". They present 
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results for nondimensional discharge of water against wave-height 
at the end of the canal. These results show that for the same dis- 
charge wave-heights consistently increase with channel depth. They 
also show results for a channel in which the bed is rough and crests 
at the end of the canal are consistently lower when compared with 
results for the same discharge and depth on smooth beds. 

Favre's and Sandover and Zienckievicz's results show that in- 
teraction with the boundary layer at the bed may be important in 
the analysis of results of experiments with bores. The presence of 
a boundary layer has two important effects: dissipation of energy 
and generation of vorticity. Dissipation of energy contributes to 
lower wave heihts and the presence of vorticity will have an effect 
on breaking, on wave-lengths, on wave shape and on the limit on 
maximum A for undular bores. 

Results in Figure 4 and Table 1 lead to the conclusion that max- 
imum height of bores divided by upstream depth, H\, grows with A 
for A <~ 0.3 and then decay for breaking bores, (A >~ 0.3). The 
limiting figures 0.3 and 0.7 have been found through an irrotational 
modelling; how this figures will change in real situations may de- 
pend on average values of vorticity. In situations in which vorticity 
is negative, as it happens in bores running over still water, the only 
vorticity is produced at the bed by the undulations, these figures 
will be smaller. In situations in which the bore moves upstream a 
current, the average vorticity can be positive and the limiting waves 
higher. 
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