
CHAPTER 67 

On the Methodology of Selecting Design Wave Height 

Yoshimi Goda*, M. ASCE 

ABSTRACT 

A statistically-rational method of extreme wave data 
analysis is presented. A combination of the Fisher-Tippett 
type I and the four Weibull distributions is proposed as the 
candidates of distribution functions. The least square 
method is used for data fitting. The best plotting posi- 
tion formula for each function is determined by the Monte 
Carlo method with 10,000 simulations per sample size. 

Confidence intervals of estimated extreme wave heights 
for given return periods are evaluated by simulations and 
expressed in the form of empirical formulas, for both the 
cases when the true distribution is known and unknown. An 
example of extreme wave data analysis is given. 

1. INTRODUCTION 

Design waves must be decided upon by the responsible en- 
gineer in charge of a maritime project. He looks for vari- 
ous data source on storm waves and asks statisticians to 
make extreme wave analysis. Based on the statistical esti- 
mate of wave height for a certain return period, he makes a 
final decision. The statistical procedure for this purpose 
is rather confused at present, however, with several dif- 
ferent methods being employed in various occasions. Some 
procedure is not recommendable from the statistical point of 
view, and some other is quite complicated to use. There is 
a need for a clear and sound statistical method for extreme 
wave data analysis. 

Another problem in extreme data analysis is the lack of 
information on the statistical uncertainty or confidence 
interval of estimated extreme value for a given return 
period (hereinafter called "return value" for the sake of 
simplicity). For the Fisher-Tippett type I distribution 
(abbreviated as FT-I), a formula is given in Gumbel's book 
(1958, Sec. 6.2.3).  Lawless (1974) also gave integral form- 
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ulas for the FT-I distribution for the case when the para- 
meters are estimated by the maximum likelihood method. Both 
formulas are applicable for the annual maximum series data 
but inapplicable for the partial-duration series data. For 
the Weibull distribution, there is practically no formula 
available for the confidence interval of return values. The 
problem of confidence interval when the true distribution is 
unknown has only been mentioned by Petruaskas and Aagaard 
(1970), but they did not give any formula for its estimation. 

The present paper tries to give a clear view of the 
practical procedure of extreme wave data analysis, which is 
statistically sound and easily applicable. The confidence 
interval of return values will also be estimated for several 
distribution functions used in the analysis. Detailed des- 
criptions can be found in Goda (1988) in Japanese. 

2.  CLASSIFICATION OF EXTREME WAVE STATISTICS 

Total  Sample Method versus Peak Value Method 

Two different methods are currently employed to prepare 
extreme statistics of storm waves. The first one may be 
called the total sample method which employs the all wave 
data recorded at a regular interval of a few hours. The 
second one may be called the peak value method which picks 
up the peak wave heights of individual storms and thus 
composes a set of extreme wave data. 

The total sample method was proposed by Draper (1966), 
when wave observation projects at various countries were at 
their initial stages and the accumulation of wave data was 
short in terms of the time span of observation. This method 
is applicable even when the observation is a few years long 
and it is easy to use. However, the method violates the 
condition of statistical independence between individual 
data, because the regularly recorded wave heights are mutu- 
ally correlated; the correlation coefficient remains over 
0.3 to 0.5 with the time lag of 24 hours (see a review by 
Goda 1979). Therefore, use of the total sample method 
should be refrained in the present days when longer wave 
data by observations and/or hindcasting are available. 

The total sample method also has an ambiguity in the se- 
lection of unit time in assessing return wave heights. One 
may take the recording interval of a few hours, but he may 
use one day as the unit time instead. Depending on the unit 
time, the return wave heights vary. Medina and Aguilar 
(1986) have proposed to employ the mean period between 
successive storms in their attempt to compromise the total 
sample method with the statistical condition of independent 
data. 

Annual Maximum Series versus Partial-Duration Series 

The data set for the peak value method can be either the 
annual maximum series or the partial-duration series. The 
latter refers to the series of peak storm wave heights in 
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the order of appearance. The annual maximum series data is 
clear in definition and easy to deal with. Most of wave data, 
however, cover rather short time spans, say less than 40 
years by hindcasting and 10 years by instrumental observ- 
ations. Therefore, the partial-duration series is the usual 
data source for extreme wave analysis. 

In the analysis of partial-duration series data, the 
mean number of storm waves per year is an important parame- 
ter. It is called here as the mean rate and denoted with X . 
The annual maximum series data can be treated as the case 
with X    =   1,  although the meaning  is slightly different. 
In practice of extreme wave analysis, the data above a cer- 
tain threshold height are usually adopted to constitute the 
data set. Such data is called the censored data in contrast 
with the uncensored data which is composed of all storm wave 
data. The ratio of the number of adopted data N to the 
whole number of storm data NT is hereby called the censoring 
parameter and denoted by v  :     i.e., v    =  N/NT.  Burcharth 
(1988) calls the method utilizing the censored partial dura- 
tion series data as the Peak-over-threshold method. 

Methods of Data Fitting to Distribution Functions 

There are four methods for fitting a set of extreme wave 
data to some distribution function. They are the graphical 
method, the method of moments, the least square method, and 
the maximum likelihood method. The graphical method is sus- 
ceptible to subjective judgment and not recommended except 
for initial analysis. The moment method requires fewer cal- 
culation than the least square method, but cannot deal with 
the censored data. The maximum likelihood method is theo- 
retically rigorous and favored by many statisticians, but 
the calculation is cumbersome even though the present com- 
puters can handle it with ease. 

The least square method is a sophistication of the gra- 
phical method, but it has been neglected by most of statis- 
ticians except for a few such as Blom (1963) by reasons 
unknown. It is simple and clear in the calculation process, 
and therefore it is adopted in the present paper for extreme 
wave data analysis. 

3.  DISTRIBUTION FUNCTIONS AND PLOTTING POSITION FORMULAS 

Candidates of Distribution Functions 

In the extreme data analysis of various environmental 
phenomena such as rainfall, flood discharge, strong wind, 
and storm waves, selection of distribution functions to be 
fitted to the data is always a problem. No theoretical jus- 
tification is provided for the selection except that the 
FT-I should be applicable if the basic population to define 
the maximum of a group of data belongs to the exponential 
distribution. In some occasion, a particular distribution 
such as the FT-I or the log-normal is assumed as applicable 
to the data set even without any theoretical support. In 
many occasions, however, several candidate functions are 
tested and the best fitting distribution is adopted. 
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Petruaskas and Aagaard (1970) have proposed to choose 
among a set of the FT-I and the seven Weibull distributions 
with the shape parameter fixed at certain values. As will 
be seen later, the capability of the extreme data analysis 
to recognize the parent distribution among several candi- 
dates is rather low when the sample size is less than 100 
or so. Therefore, it is better to restrict the number of 
candidate distributions. The present paper proposes the 
following set of five functions: 

FT-I distribution: 

F(x) = exp{-exp[-(x-B)/A]} (1) 

Weibull distribution: 

F(x) = 1 - exp{-[(x-B)/A]k) (2) 

: k = 0. 75, 1. 0, 1. 4, and 2. 0 

The distribution function F(x) represents the probability of 
nonexceedance of the variate x, and A, B, and k are called 
the location, scale, and shape parameters, respectively. 
It is often useful in the extreme statistics to introduce 
the reduced variate y which is defined by 

y = (x-B)/A (3) 

The log-normal distribution is not adopted here, because 
its characteristics are quite similar with those of the 
Weibull distribution with k = 2.0 and it requires the calcu- 
lation of the error function, which is not easy to make with 
a pocket calculator. 

Selection of Plotting Position Formulas 

A drawback of the least square method for extreme data 
analysis is the necessity of choosing a right plotting posi- 
tion formula for each distribution function. Figure 1 is 
an example of the histograms of the ordered extreme data and 
its nonexceedance probability. The parent distribution is 
the FT-I (A = 1.0 and B = 0), and 100 samples with 10 data 
each are randomly drawn from the population. In each sample, 
the largest data x( i> are sorted out and its histogram is 
shown in the right. The nonexceedance probability Fi cor- 
responding to x(i) is shown in the top as a histogram. 

The probability to be assigned to each ordered extreme 
data, which depends upon the ordered number and the total 
data number only, is called the plotting position. Cunnane 
(1978) has made a critical review of this problem and de- 
nounced the recommendation by Gumbel (1958) of the Weibull 
formula, which is expressed as 

Fm = 1- m/(N + 1) (4) 

where m is the descending ordered number from the largest. 

A plotting position formula should be  so selected to 
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yield no bias on the mean and the least root-mean-square 
error of the return values. The first choice would be the 
use of the probability corresponding to the expected value 
of the ordered variate, or F{E[x<ra)]}. Gringorten (1961) 
has derived the following formula for the FT-I distribution: 

FT-I:  F„ = 1 -  (m - 0.44)/(NT + 0.12) (5) 

: m = 1, 2, . . , N 

in which NT is the number of whole extreme data including 
those below a threshold value.  Use of NT  instead of N 
(number of adopted data) is to enhance the possibility of 
recognizing the parent distribution for the case of censored 
data, after the suggestion by Muir and El-Shaarawi (1986). 
For the Weibull distribution, Petruaskas and Aagaard (1970) 
have presented the following formula: 

Weibull:   Fm = 1 - (m - a  ) / (NT + P  ) (6) 

where 
a    = 0.30 + 0. 18/k,   J3 = 0.21 + 0.32/k    (7) 

Figure 2 shows the bias of return values caused by use 
of various plotting position formulas for the case of FT-I 
distribution. The sample size is varied from 10 to 300, and 
10,000 uncensored samples are simulated by the Monte Carlo 
method at each sample size. The bias is defined here as 
100X (xH/XK - 1), where xB and xR refer to the estimated 
and true return values, respectively. The return values are 
evaluated at the return period being ION. 

It is  clear in Fig. 2 that the Weibull  formula yields 
conspicuous positive bias, indicating a tendency of over- 
estimation. The formula by Barnett (1975) though not pre- 
sented here gives practically no bias just as same as Grin- 
gorten' s formula. The formula denoted as  "New" has the ex- 
pression same as Eq. 6 but with the constants a    =0.51 and 
/3 = 0. 18.  This formula  has been derived as to yield the 
best fitting to F{E(xm)]}, but it yields  slightly negative 
bias. Figure 2  clearly indicates the Gringorten formula to 
be used for the FT-I distribution. Poor performance of the 
Weibull formula has also been reported  by Carter and Chal- 
lenor (1983) with a small scale Monte Carlo simulation, in 
in which they compared the effectiveness of various methods 
of extreme data analysis. 

Figure 3 shows a similar comparison of plotting position 
formulas for the Weibull distribution with k = 1.0. The Wei- 
bull formula again exhibits large positive bias. The formula 
by Petruaskas and Aagaard (denoted as "P & A") shows a ten- 
dency to yield slightly negative bias. A modification is 
made here by changing the constants as 

a    =   0.20 + 0.27/•/"£,  P    = 0.20 + 0. 23/i/Tt   (8) 

The new formula is denoted as "New P & A" in Fig. 3. This 
plotting formula is used in this paper hereinafter. 
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For the log-normal distribution, the appropriate plot- 
ting position formula is that by Blom (1958) in the form of 
Eq. 6 with a = 3/8 and /3 =1/4. Use of the Weibull formula 
yields positive bias as demonstrated in a simulation study 
by Earle and Baer (1982). The amount of bias reported by 
them has been confirmed in the author's simulation (Goda, 
1988); use of the Blom formula for the same condition has 
yielded no bias. 

4.  DATA FITTING AND CALCULATION OF RETURN VALUES 

For a given set of extreme wave data, the first step of 
data processing is to rearrange the data in the descending 
order from the largest to the smallest. Then the nonexceed- 
ance probability F m is assigned to each data by Eqs. 5, 6, 
and 8 by assuming the FT-I and the four Weibull distribu- 
tions as the candidate functions. For each F"m, the follow- 
ing reduced variate y<m> is then calculated: 

FT-I:     y,m, = - ln[-ln Fm] (9) 

Weibull:   y,m, = [-ln(l -Fm)]
1/k (10) 

Because there should exist a linear relation between the 
ordered variate x(m> and its reduced variate y(„> , the 
following equation is assumed and solved by the least square 
method to yield the estimates A and B of the scale and loca- 
tion parameters: 

x(m) = A y,„, + B (11) 

Table 1 is an example of the above procedures applied 
for an extreme data of typhoon waves measured at the depth 
of 50 m at a location facing the Pacific. The measurement 
has been continued for more than 15 years, and the portion 
of successful recording covering K = 10.74 years is used 
in the analysis. There were 53 typhoon waves during this 
effective observation period of 10.74 years, and thus N 
= 53 and X = 4.93 per year. The wave heights exceeding 
4.0 m have been chosen for the analysis, and there were 21 
such data; i.e., N = 21 and v    = 0.396. 

/*. 
The nonexceedance probabilities Fra listed in Table 1 are 

all above 0.61, because the total number of typhoon waves 
NT = 53 is used in evaluating Fm by Eqs. 5 and 6. Even if 
the threshold height is changed to 4. 5 m and the number of 
data is reduced to N = 18, the probability Fm remains at the 
same value so long as NT is the same. 

The return value or the expected extreme wave height for 
a given return period R is then calculated by^the following- 
equation with the estimated parameters A and B: 

xH = A y„ + B (12) 

where 
yR   =  -   ln{-ln[l   -   1/UR)]} :   FT-I 

y„   =   [ln(X R)]1/k :   Weibull 
(13) 
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Table 1.  Example of Extreme Wave Data Fitting to Several 
Distribution Functions   [units in meters] 

- N =• 21, NT •= 53, K = 10.7 years'- 

m Xm 

FT- 

F„ 
I Weibull(0. 75) 

F„   y. 
Weibull(1.0) 

F„   y„ 
Weibull(1. 4) 

F,„    y„ 

Weibull(2. 0) 

F„   y„ 

1 8.36 0.9895 4. 55 0.9909 7. 86 0.9901 4. 61 0.9893 2. 95 0.9886 2. 12 
2 7.02 0. 9706 3.51 0.9722 5.48 0. 9714 3. 55 0.8706 2. 46 0.9699 1. 87 
3 6.94 0. 9518 3. 01 0.9535 4. 46 0.9527 3. 05 0.9518 2. 21 0. 9511 1. 74 
4 6. 85 0. 9330 2. 67 0.9348 3. 82 0.9339 2. 72 0.9331 2. 04 0. 9324 1. 64 
5 6.74 0. 9142 2. 41 0.9161 3. 35 0.9152 2. 47 0.9144 1. 90 0.9136 1. 57 
6 6.20 0.8953 2. 20 0.8974 3. 00 0.8965 2.27 0.8957 1. 79 0.8945 1. 50 
7 5.92 0.8765 2.03 0. 8787 2. 71 0.8778 2. 10 0.8769 1. 70 0.8762 1.45 
8 S.68 0. 8577 1. 87 0.8599 2. 46 0. 8591 1. 96 0.8582 1. 61 0.8574 1.40 
9 5.57 0. 8389 1.74 0. 8412 2. 26 0.8404 1. 84 0.8395 1. 54 0.8387 1. 35 

10 5.42 0. 8200 1. 62 0.8225 2. 08 0.8216 1. 72 0.8207 1. 47 0.8199 1. 31 
11 5.34 0.8012 1.51 0.8038 1. 92 0.8029 1. 62 0.8020 1. 41 0.8012 1.27 
12 5. 10 0. 7824 1.41 0.7851 1.78 0.7842 1. 53 0.7833 1. 35 0. 7825 1. 24 
13 5. 09 0.7636 1.31 0.7664 1. 65 0.7655 1.45 0.7646 1. 30 0.7637 1.20 
14 4. 95 0.7447 1.22 0.7477 1. 53 0.7468 1. 37 0.7458 1. 25 0. 7450 1. 17 
15 4. 81 0.7259 1. 14 0.7290 1. 43 0.7281 1. 30 0.7271 1. 21 0.7262 1. 14 
16 4.77 0.7071 1. 06 0.7103 1. 33 0.7093 1.24 0.7084 1. 16 0.7075 1. 11 
17 4. 63 0.6883 0. 99 0.6916 1. 24 0. 6906 1. 17 0.6896 1. 12 0.6888 1.08 
18 4. 61 0. 6694 0. 91 0.6729 1. 16 0.6719 1. 11 0.6709 1. 08 0.8700 1. 05 
19 4.41 0.6506 0.84 0.6542 1. 08 0. 6532 1. 06 0.6522 1. 04 0.6513 1. 03 
20 4. 34 0.6318 0.78 0.6355 1. 01 0.6345 1. 01 0.6335 1. 00 0.6325 1. 00 
21 4. 11 0. 6130 0.71 0. 6168 0. 95 0.6158 0. 96 0.6147 0. 97 0. 6138 0. 98 

X =5. 565 A = 1 091 A = 0 614 A = 1 147 A = 2 084 A = 3 560 

o K -1.101 B - 3 617 B = 4 029 B - 3 374 B = 2 334 B - 0 786 
r = 0 9842 r =• 0 9621 r = 0 9790 r = 0 9878 r = 0 9910 

Figure 4 exhibits the result of estimating the return 
wave heights for the data of Table 1. Depending on the 
distribution functions fitted to the data, the return wave 
heights vary and the difference increases as the estimate is 
made to longer return periods. 

There is no absolute criterion to choose a particular 
function among several candidates fitted to an extreme data. 
For practical purposes, the correlation coefficient r be- 
tween the ordered variate x( „, > and its reduced variate y( m > 
can serve as the basis of selection. In the example of 
Table 1, the Weibull distribution with k = 2. 0 indicates the 
highest correlation with r = 0.9910 and is chosen as the 
distribution best fitted to the data. 

5. STANDARD DEVIATION OF RETURN VALUE WHEN THE TRUE 
DISTRIBUTION IS KNOWN 

A set of extreme wave data being analyzed is regarded as 
a sample drawn from an unknown population of storm waves. 
Another set of extreme waves to be obtained in the coming 
several tens of years will form a sample different from the 
present sample, even if no long-term climatic change exists. 
The two sets of extreme data will surely yield different 
distribution functions and the return wave heights will 
eventually be different. 

Figure 5 shows some 
bility of return values, 
bution (A = 1 and B = 5) 

results on the statistical varia- 
A population with the FT-I distri- 
is assumed, and Monte Carlo Simula- 
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tions are carried out to yield 10,000 uncensored samples 
each for the sample size N = NT = 20 and 100. By fitting 
the FT-I function to each sample, the return value at the 
return period R = 100 is estimated. The difference between 
the estimated and true return value is normalized with the 
standard deviation of each sample a „. Figure 5 presents 
the histograms of this normalized deviation in the form of 
probability density. As seen clearly, the deviation may 
exceed 2 a K in case of the sample with N = 20 and 1 a x for 
N = 100. 

Monte Carlo simulations have been carried out for var- 
ious combinations of the distribution functions, the sample 
size, and the censoring parameter, in order to obtain suf- 
ficient data on the statistical variability of the return 
values. For each combination, the standard deviation of the 
dimensionless variate z = <$„-xR)/a x has been evaluated. 
Figure 6 is an example of the standard deviation a 2 multi- 
plied by -/TsT in order to reduce the influence of the sample 
size on data presentation. The data are those of censored 
ones (v = 0.25) sampled from the FT-I distribution. 

Empirical formulations of the standard deviations of the 
return values have been tried by referring to the formula 
cited by Gumbel (1958) as in the following form: 

where 

[1.0 + a (y„ - c + £ ln-v )2]1/2/v
r¥    (14) 

a = a! exp[a2 N
-1- 3 + K  (-lnv )1/2 ]       (15) 

The coefficients in the above equations are assigned the 
values listed in Table 2. The dashed and dotted curves in 
Fig. 6 represent the empirical predictions of the standard 
deviations of the return values. 

Table 2. Coefficients of Empirical Formulas for Standard Deviation 

of Return Values When the True Distribution Is Known 

Distribution at a2 K c £ 

FT-1 0. 64 9.0 0. 93 0. 0 1. 33 

Weibull (k=0.75) 1. 65 11.4 -0. 63 0.0 1. 15 

Weibull (k=1.0> 1. 92 11.4 0. 00 0.3 0.90 

Weibull (k=1.4) 2. 05 11.4 0. 69 0.4 0. 72 

Weibull (k=2.0) 2. 24 11.4 1. 34 0. 5 0. 54 

Once the dimensionless  deviation a *   is  evaluated, the 
standard deviation of the return value can be approximately 
estimated as a  (xB) = a  2 a x.      The confidence interval of 
the return value is then constructed with a  (xB ). 

6.  PROBLEM OF FINDING TRUE DISTRIBUTION 

The capability of finding out the true distribution from 
a random sample of  extreme data has  been tested with Monte 
Carlo  simulations.  Figure 7  demonstrates  some results. 
A parent distribution is  assumed, and  10,000  uncensored 
random samples with the size 10 and 100 were prepared.  For 
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each sample, a group of nine candidate distributions were 
applied and the best fitting one was selected by the crite- 
rion of the largest correlation coefficient between X(m> 
and y(mj. The ordinates in Fig. 7 shows the relative 
frequency of the best-fitted function, while the abscissa 
stands for the distribution functions: k =0.75 to 2.0 
denote the Weibull distributions and "L-N" stands for the 
log-normal distribution. The set of Weibull distributions 
is same as that used by Petruaskas and Aagaard (1970). 

It is clear in Fig. 7 that a small sample has only a 
small chance of selecting the parent distribution as the 
best-fitting one. Even at the sample size N = 100, samples 
from the FT-I distribution can be mistaken as those belong- 
ing to the log-normal distribution. Such competitive power 
of the log-normal against the FT-I and the Weibull distri- 
butions is one reason for the rejection of the former from 
the candidates of the distributions functions in the present 
proposal of extreme data analysis. 

The low capability of a statistical data analysis in 
recognizing the true distribution function is due to the 
statistical variability of random samples. The standard 
deviation of an uncensored sample with the size 40 from the 
Weibull distribution (k = 1.0), for example, can be less 
than 0.5 times or more than 1.7 times the population value. 
A sample with a small deviation tends to be better fitted by 
the distribution with narrower spreading, and vice versa. 
Use of the statistical method other than the least square 
method may slightly enhance the capability of recognizing 
the true distribution, but the amount of enhancement will be 
small. 

7.  BIAS CORRECTION TO RETURN VALUE WHEN THE TRUE 
DISTRIBUTION IS UNKNOWN 

Fitting of an extreme data to a distribution other than 
the true one causes a certain bias to the estimated return 
values, even though the right plotting position formula is 
employed. For example, if a sample from the Weibull with k 
= 1.0 is judged to be best fitted to the Weibull with k = 
0. 75, the return values will be overestimated because of the 
latter's characteristic of having a longer tail. 

An attempt for the correction of this kind of bias is 
made in this paper, by assuming the five candidate distribu- 
tions have the equal probability of existence in the nature. 
Another series of Monte Carlo simulations have been made 
with 2,000 to 10,000 samples for each combination of the 
parent distribution, sample size, and censoring parameter. 
Each sample is analyzed with the procedure described in this 
paper, and the return values are estimated and compared with 
the true values. The difference is normalized as z = (xR - 
xi)/s x and its ensemble mean is calculated for each dis- 
tribution function which is best fitted to samples taken 
from various parent distribution functions. The ensemble 
mean of the dimensionless difference Z„ is thought to repre- 
sent the bias due to not-knowing true distribution and is 
empirically formulated as in the following: 
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Table 3.  Example of the Estimation of Return Wave Heights 
with Bias Correction and Their Standard Errors 

Return FT- -I Weibull(0.75) Weibull(1. 0) Weibull (1.4) Weibull(2. 0) 
Period H„ a   (H) H„          or   (H) HR         a   (H) H„         or   (H) HB         a   (H) 1 •"" • > 1   Bl   ) < m ) (ml              {>) ( m )             ( m ) ( m )              !•} ( m )             < m ) 

2. 0 6.2 0. 4 5.9        0.3 6.0        0.4 6.2        0.5 6.4        0.5 
5. 0 7. 3 0. 7 6.8        0.5 7.1        0.6 7.3        0.7 7.6        0.8 

10. 0 8. 1 0.9 7.6        0.7 7.9        0.8 8. 1        0. 9 8.4        1.0 
20. 0 8. 9 1. 2 8.3         1.0 8. 8        1.1 8.9         1.2 9.3         1.3 
SO. 0 10. 0 1. 6 9.4        1.4 9.9        1.5 10.0         1.5 10.4        1.7 

100. 0 10.8 1. 9 10. 1         1.6 10.7         1.8 10.6         1.9 11.2        2. 1 

Z» = (AC (y„ + a lnv )"      : y„ > 
10 y« 

• a  lni> 
• a lnv 

(16) 

The coefficients Ac and a and the exponent p are as- 
sgined the following values depending on the distribution 
functions and the censoring parameter: 

FT-1 
=   1.0; 
Ac    =10.046 -   0. 40[logio (60/N)]3 

|0.046 exp{-2. 5[log10 (N/60)]2} 
a    =0.9, p  =   1. 0 

=  0. 5   &  0.25   ; 
Ac   =0.01   -   0.044[log10(N/300)]4 

a    =   0. 9, p  =   1. 0 

N<60 
Ng 60 

Weibull    (k  =   0.75) 

= |0. 
to. 

Ac   =|0.030  exp{-0. 6[log10 (N/4)]2}    :v=   1.0 
.025  exp{-0.7[log10 (N/15)]2}:v =  0. 5  &  0. 25 

=1-0.05 
(-0.0C 

0. 028  N~°- 25 : v =   1. 0 
022   -   0. 0006 [ log! o (N/50) ]2:i> =  0.5  & 0.25 I 

1. 0, p   =  2. 1 J (20) 

a    =  2.7,        p  =   1 

Weibull   (k =   1. 0)    : 

At 

a 

Weibull   (k =   1.4)    : 

Ac   =(-0. 40  N_0- 8 

1-0. 10  N-0- 4 

a    =0.5, p  =  2. 7 

Weibull    (k  =  2.0)    : 

(17) 

(18) 

(19) 

= 1-0. 
1-0. 

-0. 50  N_0- 7 

64  N_0- 6 

a    =   0. 35,      p  =  3. 4 

: v =   1.0 
: v =   0. 5   & 0. 25 

: v =   1.0 
: v =  0.5   & 0. 25 

(21) 

1(22) 

The bias correction can be made by using Z„   as 

(xR)cor   = xR   -  Z„    a x (23) 

Table 3 lists the return wave heights with bias correc- 
tion for the data of  Table 1.  The bias correction by the 
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above formula may have been excessive, being judged from the 
fact that the Weibull distribution with k = 2.0 predicts the 
largest return heights after bias correction. This is due 
to the assumption of the equal probability of the five dis- 
tribution employed. A responsible engineer may adjust the 
amount of bias correction in his selection of design waves. 

8. STANDARD ERROR OF RETURN VALUE WHEN THE TRUE 
DISTRIBUTION IS UNKNOWN 

When the true distribution is unknown, the standard 
error of the estimated return value differs from the stan- 
dard deviation formulated as in the form of Eq. 14. By using 
the simulation data for the above bias correction, empirical 
formulation has been made for the standard error of return 
value with bias correction. The standard error is defined 
as Sn = a  [(xR - xH)/a  x] and is formulated as 

Sn = {1.0 + As |y„ + a  lnv |P>/V""N" 

The coefficient As is expressed as below, 

As = bt + b2 [log10 (N/Nc)]
2 

(24) 

(25) 

and the coefficients a ,      bi,  b2,  and Nc and the exponent 
p are assigned the values as in Table 4:  a is common with 
Eqs. 16 to 22.  An example of the comparison between the 
simulation data and empirical formula is shown in Fig. 8. 

Table 4. Coefficients of Empirical Formulas of Standard Error of 

Return Values when the True Distribution Is Unknown 

Distribution V bi b2 Nc P £ 

FT-1 1 

0 

0 

s, 0. 25 

0. 24 

0. 46 

0. 36 

0. 14 
80 
50 

1. 6 
1. 6 

0. 9 
0. 9 

Weibull 

(k=0.7S) 
1 

0 

0 
s. 0.25 

0. 57 

0. 41 
0. 18 
0. 22 

20 
20 

1. 2 
1.2 

2. 7 
2.7 

Weibull 

<k=1.0) 

1 

0 

0 

5, 0.25 

0. 55 
0. 38 

0. 15 
0. 17 

15 
20 

1.7 
1. 7 

1.0 

1. 0 

Weibull 

(k=1.4) 

1 

0 

0 

5, 0. 25 

0. 37 

0. 46 

0. 08 
0. 09 

1000 
20 

2. 3 

2. 3 

0. 5 

0. 5 

Weibull 
<k=2.0) 

1 

0 

0 

5, 0. 25 

0. 30 

0. 56 

0. 36 
0.20 

80 
100 

3. 2 

3. 2 

0. 35 

0. 35 

The absolute magnitude of the standard error can be es- 
timated as (7 (XR ) = S„ a K. The columns of a (H) in Table 
3 list the estimated standard errors of returgi wave heights 
for the extreme wave data listed in Table 1. By taking the 
one-sigma or two-sigma criterion, one can easily construct 
the confidence interval of the return wave heights. 

9.  PROBLEM OF MULTI-POPULATIONS 

Any statistical data analysis must satisfy the condi- 
tion of homogenuity: i.e., all the data under analysis 
should belong to the same population. Extreme waves are 
generated by hurricanes, monsoons, frontal systems, and 
others.  Strictly speaking, these meteorological  disturb- 
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ances create different populations of storm waves and they 
should be analyzed separately. Resio (1978), for example, 
demonstrated the necessity of separate analysis of extreme 
waves off Cleveland in Lake Erie. Carter and Challenor 
(1981) also discussed the effect of seasonal variations of 
wind speeds and wave heights on the estimation of their 
return values. 

Separation of extreme waves according to their genera- 
ting sources is feasible and the extreme data analysis can 
be made for each type of storm waves. For each population 
data, the best distribution function is fitted and the re- 
turn wave height is estimated separately. To estimate the 
overall return value, the method by Carter and Challenor 
(1981) can be modified as follows. First, the distribution 
function for the partial-duration series data is converted 
to that corresponding to annual maximum series data by 
assuming the Poisson distribution. Then, the overall 
distribution function is evaluated as the product of all 
the individual distribution functions.  Thus, 

F(x) =  h exp{-a,d[l -Fj(x)]} 
3  ~   1 

=  exp{ -hill - Fd (x) ] } (26) 
j - I 

where n denotes the number of populations, andX j and Fd 
are the mean rate and the best-fitted distribution function 
of the  j-th population,  respectively.  The overall distri- 
bution function thus  evaluated represents the nonexceedance 
probability of annual maximum wave height.  The return wave 
height for the return period R  is numerically evaluated as 
the height corresponding to the probability of F = 1 - 1/R. 

10.  CONCLUDING REMARKS 

The present paper is essentially an extension of the 
work by Petruaskas and Aagaard (1970). The plotting posi- 
tion formulas have been examined and modified. The number 
of candidate distribution functions is reduced from eight to 
five, in recognition of low capability of the extreme data 
analysis in separating the true distribution from other 
candidates. The magnitude of errors owing to not-knowing 
the true distribution is estimated in terms of both the bias 
and the standard deviation. Empirical formulations are pre- 
sented to estimate the amounts of bias and standard error of 
return wave heights. 

It should be emphasized that any estimation of return 
value is accompanied by the statistical variability due to 
sampling error. In other words, an extreme wave data under 
analysis is but a sample taken from an unknown population 
of storm waves. Depending on the characteristics of a 
particular sample relative to those of population, the 
result of extreme data analysis might be an overestimate 
or an underestimate compared with the population value. 
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which remains unknown. A responsible engineer should take 
this uncertainty into account when he has to make selection 
of design waves. The formula of standard error presented as 
Eq. 24 would serve as a guide to measure the magnitude of 
uncertainty. 

The uncertainty of return wave height can only be re- 
duced through the increase of the time span of wave obser- 
vation or wave hindcasting. Sampling of many storms as much 
as possible within a given time span is also helpful in 
reducing the amount of standard error of return wave height. 
In this sense, further continuous efforts of instrumental 
wave observations  of   longer duration should  be encouraged. 
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