
CHAPTER SIXTY NINE 

PROFILE ASYMMETRY OF SHOALING WAVES ON A MILD SLOPE 

Paul A. Hwang*, A.M., ASCE 

Abstract 

From limited experimental evidence, shoaling monochromatic waves 
seem to possess certain similarities.  Specifically, the harmonic com- 
position follows the trend of solitary or cnoidal waves, and the phase 
difference of harmonics vary with water depth monotonically.  Based on 
the above observation a similarity model is constructed to study the 
asymmetric properties of shoaling waves.  The implication of wave 
asymmetry on wave breaking is discussed. 

Introduction 

When the amplitude of a monochromatic wave becomes appreciable, 
the wave profile becomes asymmetric with respect to the horizontal 
axis, that is, a higher crest elevation than trough levels (Stokes, 
1880).  On shoaling water, in addition to the horizontal asymmetry, 
the wave form is obviously skewed with respect to the vertical axis 
with a steeper crest front than the crest rear face.  Extensive studies 
have been conducted to study the wave asymmetry, especially for the 
case of breaking waves (McCowan, 1894; Munk, 1949; Iversen, 1952; 
Biesel, 1952; Ursell, 1953; Ippen and Kulin, 1955; Eagleson, 1957; 
Galvin, 1969; Goda, 1970; Hwang, 1982; Kjeldsen, 1981, 1983).  Many 
studies of wave transformation at different stages of shoaling process 
also presented asymmetric information for nonbreaking waves (Iwagaki, 
1968; Iwagaki and Sakai, 197 2; Svendsen and Buhr-Hansen, 1978; Flick et 
al., 1981).  The writer is especially interested in the approach of 
Flick et al. who performed harmonic analysis of the nonlinear shoaling 
waves.  They found that both the amplitude and the phase spectra of a 
monochromatic shoaling wave vary with water depth in a deterministic 
fashion from the beach toe up to the breaking point: the amplitude 
spectrum resembles that of a cnoidal wave of the same height and the 
phase angle of each harmonic changes monotonically with decreasing 
water depth.  Hwang (1982) applied harmonic analysis on breaking waves 
at different locations on sloping beaches, a very similar amplitude and 
phase spectral transformation was observed.  It is speculated that 
certain similarity relationships of shoaling waves exist.  The follow- 
ing presents an attempt to construct a similarity model for shoaling 
waves and to study their asymmetric properties. 
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of Delaware, Lewes, Delaware 19958. 
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A Similarity Model 

Flick et al.   (1981)  and Hwang   (19.82)   studies wave profiles by 
Fourier decomposion 

11 =  2,     a    cos (not + <b   ) (1) n=l       n Tn 

where n is the surface fluctuation, a the n-th component, a  the angular 
frequency, t the time coordinate and $ the phase lag of the n-th 
component.  They found that the variation of a with water depth follows 
closely the Fourier components of solitary or cnoidal waves (Figure la), 
and the phase of each oomponent changes monotonically with water depth 
(Figure lb) . 

The amplitude spectrum of a cnoidal wave is given by (Cayley, 1895). 

8 , 2,3 n 
a   — k h nq 
n = 3 

H     1 " q^ (2)_ 

where 

q = exp [~ir K(l-m)/K(m)] (3) 

and K(m) is the complete elliptic integral of the second kind.  The 
cnoidal parameter m is related to the wave parameters by the following 
relationship 

3TT
2
 Ur 

m = 
4K2(m) (4) 

Ur is the Ursell number, defined as 

Ur = H/k2h3 (5) 

where H is wave height, k the wave number and h the water depth. 

The amplitude spectrum of a solitary wave is given by (Gradshteyn 
and Ryzhlk, 1980) 

-1 C6) 
n  4n 
H   3Ur 

sinh 
(3Ur)1/2 

Eqs. (3) and (6) are plotted on Figure la along with experimental 
data.  The difference between two theories is found insignificant in 
the range shown, and both theories agree with the trend of data reason- 
ably well.  In the following, we use Eq. (6) to calculate harmonic 
amplitudes due to its simplicity. 
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Wave theories developed that considered the bottom slope modula- 
tion of the surface profile (Iwagaki, 19-68; Chu and Mai, 1970.; Iwagaki 
and Sakai, 1972; Guza and Davis, 1974) generally show poor agreement 
of the harmonic phase lags.  The empirical relationship derived from 
the data in Figure lb is used 

i>    =  -0.03 - 0.34(kh-l) (7) 

where $     is  expressed  in Tr-radian.     Alternatively,   <j>    can be expressed 
in Ur   (Figure  2) 

<j>    = -0.05 - 0.052 Ur (8) 
n 

Calculation shows little difference on the asymmetric properties (dis- 
cussed in next section) using either equation.  Eqs. (7) and ($) 
did not consider the variation of $ with bottom slope or the harmonic 
numbers.  From the limited data collected, the effect of bottom slope 
on cj> is very difficult to distinguish.  Trying to establish a complete 
empirical relationship of cf> from such a small data set is probably not 
justified.  The simplification employed therefore only gives a quali- 
tative description.  Eqs. (3) or (6) and (7) or (8) define a wave 
profile. 

Wave Profiles and Asymmetric Factors 

Figure 3 shows a few examples of the normalized wave profiles 
defined by Eqs. (6) and (7).  For each profile, fifteen harmonics 
were included (Eq. 6).  Due to the superposition of harmonics, the wave 
form is asymmetric with respect to the horizontal axis.  The wave form 
is also skewed due to different phase lags among harmonics.  The degree 
of asymmetry (both horizontal and vertical) increases with decreasing 
depth (or increasing Ur). 

There are many different parameters proposed to define the wave 
asymmetry (Iversen, 1952; Adeyemo, 1968; Iwagaki and Sakai, 1972; 
Kjeldsen, 1981, 1983, among others).  The parameters e, S,   A, and u 
proposed by Kjeldsen (Figure 4) are adopted for the following discus- 
sion.  The parameter e (the crest front steepness) is of special inter- 
est to this study since it represents the largest "local" steepness of 
the wave form and may dominate the wave breaking inception; £ is re- 
lated to the "global" wave steepness H/L (where L is the wave length) by 

' h <   - Jl' —   3 £ " n /L    ~  H L' L (9) 

The factor a    = (n'/H)(L/L')_ can be interpreted as a "front steepness 
amplification factor," which defines the ratio between the crest front 
and the overall steepnesses.  For a pure sinusoidal wave, a = 2. 
Similarly, a "rear steepness amplification factor" can be defined as 
% = (n'/H) (Jj/L").  For nonlinear symmetric waves a - a > i 
tor asymmetric waves <x_ > a_ > 2. 

F   B. 
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Fig. 5 plots the asymmetry factors ct and a with respect to the 
dimensionless water depth kh.  Both vertical and horizontal asymmetry 
increase toward shallower water.  The degree of asymmetry at any given 
depth (kh) increases with wave nonlinearity (H/h).  The horizontal 
asymmetry u is found to be smaller than the corresponding symmetric 
wave of the same amplitude spectrum (compare the solid and the dashed 
curves of H/h=0.5, Fig. 5b), at the lowest kh range calculated, a 
reduction of 6% was shown.  The vertical asymmetry factor X  is identi- 
cally one for a symmetric wave.  The slope amplification factors at 
the crest front a and crest rear a    are plotted in Fig. 5c and d.  As 
mentioned before, a =a  =2 for a sinusoidal wave.  Both a and a increase 
with wave nonlinearity, in which case, the crest region becomes narrower 
and trough region is elongated.  For a symmetric wave a =aR. When waves 
become asymmetric, the crest front becomes steeper and the crest rear 
becomes milder (compare dashed and solid curves for the case H/h=0.5 in 
Fig. 5c and d). 

Fig. 6 plots X, u, a_ and a vs. Ur.  Similar conclusions as those 
of Fig. 5 can be drawn. 

Discussion and Conclusion 

The amplitude and phase spectra of shoaling waves changes continous 
with water depth.  The former resembles the spectra of either cnoidal 
or solitary waves.  A similarity model was constructed to study the asym- 
metric properties of shoaling waves using the solitary wave spectrum and 
an empirical relation of the harmonic phase lags with water depth. 

As expected, the resulting wave profiles become more asymmetric 
both horizontally and vertically as water depth decreases or Ursell 
number increases.  Compared with a symmetric wave of the same ampli- 
tude spectrum, the vertically asymmetry factor is always higher but the 
horizontal asymmetry factor shows a decrease.  Due to the skewing of the 
wave profile, the crest front steepness is considerably greater than the 
overall wave steepness H/L. 

The wave steepness is closely related to the breaking occurance. 
In the classical studies of limiting (symmetric) Stokes' wave in deep 
water, the enclosing angle at wave crest was found to be 120° (Stokes, 
1880).  McCowan (1894) proved that the breaking angle of a wave in 
shallow water is still 120°.  These results were confirmed by laboratory 
experiments and field observations (Gaillard, 1904, see eg. review of 
Kinsman, 1965).  Michell (1893) showed that the corresponding maximum 
steepness H/L=l/7 in deep water.  When a wave moves into shoaling water, 
the limiting steepness decreases and becomes a function of both rela- 
tive depth and the beach slope.  Although this subject was studied 
extensively, the mechanism of wave breaking on a sloping beach is not 
yet clear.  Subsequently, the breaking characteristics were generally 
expressed in terms of the ratio between the breaking wave height and 

water depth (Hj^/h^), or the ratio between the wave height at breaking 
point and at deep water (H./H ).  Many empirical formulas were proposed 
(Iversen, 1952; Galvin, 1969; Coda, 1970 among others).  From the above 
short literature survey, it seems that the breaking angle is one of the 

rare breaking invariants (another invariant maybe the fluid particle 
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acceleration but this is very difficult to measure).  For waves of verti- 
cally asymmetric profiles, the breaking angle is more closely related to 
the crest front and crest rear steepnesses.  The crest front steepness 
is probably an important geometric index for "local" wave steepness. 
The local wave steepness was used by Longuet-Higgins and Smith (1983) in 
measurements of breaking probability. 
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