EFFECT OF WAVE-CURRENT INTERACTION O THE WAVE PARAMETER
Yu-Cheng Li! and John B. Herbich?
T. ABSTRACT

The interaction of a gravity wave with a steady uniform current is
described in this paper. Numerical calculations of the wave length
change by different non-linear wave theories show that errors in the
results computed by the Tinear wave theory are less than 10 percent
within the range of 0.15 < d/Ls < 0.40, 0.01 < Hs/Lg < 0.07 and
-0.15 £ U/Cg < 0.30. Numerical calculations of wave height change
employing different wave theories show that errors in the results
obtained by the Tinear wave theory in comparison with the non-linear
theories are greater when the opposing relative current and wave
steepness become larger. However, within range of the following cur-
rents such ervors will not be significant. These results were veri-
fied by model tests. Nomograms for the modification of wave length
and wave height by the 1inear wave theory and Stokes' third order
theory are presented for a wide range of d/Lg, Hs/Lg and U/C. These
nomograms provide the design engineer with a practical guide for es-
timating wave lengths and heights affected by currents.

2. INTROQUCTION

With increasing human activities in both the coastal and immediate
offshore region, the problem of wave-curvent interaction has been
evaluated by a number of researchers. From an engineering practice
point of view, the effect of wave current interaction on the wave
parameters must be known. Previous research involved different
assumptions and considerations. Several researchers employed the
Tinear wave theory combined with the idea of conservation of energy
flux (5,12,13), or combined with the idea of conservation of wave
action flux (8,9); others employed the non-linear wave theory (6,15).
The problem concerning the interaction of waves and currents in an
inlet has also been studied (3,7). Additional research (11,18)
describes the change of velocity distribution due to the interaction
of waves with currents.

One purpose of this study was to evaluate the difference between the
change in wave parameters when employing either the equation of con-
servation of wave energy flux or the equation of conservation of wave
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action flux. The results were evaluated with reference to practical
engineering applications. Another purpose of this study was to deter-
mine the error in the calculated wave parameter by employing both the
Tinear wave theory and non-linear wave theories (Stokes' third order
wave theory was mainly considered). A two-dimensional case was con-
sidered and both the following and the opposing currents were analyzed.

3. THEORETICAL CONSIDERATIONS

Evaluation of change in the wave parameters may be obtained in two
steps: a) evaluation of the change in wave length, and b) evaluation
of the change in wave height. In both cases, the energy dissipation
in wave propagation was neglected.

3.1 Change in Wave Length
The Tinear wave theory was considered first. The influence of non-

linearity of waves is evaluated in the latter part of this section.
The wave celerity in the current may be calculated as follows:

CL=U+Co o ()
where

= K e s s e e+ s + s & s e * 2 &+ s s s s s s e .
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Equation 1 can be rewritten as
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In engineering applications, the value of C = C, is unknown, there-
fore, the ratio U/C is also unknown. Thus the ?o]]owing formula may
be used

LI ()
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Combining equations 6 and 7, the relationship between L/Lg with U/Cg

and kgd can be obtained from

Uig=ce = &) o E)
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3.2 Change of Wave Height

The process of the interaction of progressive waves with a steady
uniform current (the following or the opposing current only) may be
evaluated as follows: (a) in the first step only currents and waves
propagate separately, (b) in the second step the combined current
and waves interact and finally a steady motion of wave-current com-
bination propagates as shown in Figure 1. If we neglect the change
in the current profile because of the wave-current interaction, the
current energy flux will remain the same before and after the inter-
action process.

To-date, two concepts, i.e. the conservation of wave energy flux
(12,13) and the conservation of wave action flux (1,8) were employed.
However, since there is no major difference between the two methods,
the principle of conservation of wave action flux was selected for
the analysis.

The idea of conservation of wave action flux was first suggested by
Garrett and evaluated by Bretherton and Garrett (1). Jonsson (8)
described a practical application for the case of interaction of waves
with a steady uniform current, In the present case (as shown in
Fig. 1) the following equation may be used

E -
;; Cga} e 00
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x
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Equation 7 indicates that the wave action flux before and after in-
teraction must be the same, i.e.

E _ S
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Steady
Uniform
Current (only)

3

Steady

Process Field

Progressive
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Fig. 1. Wave-current interaction
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where
wr=wa—kU=ws—kU ..................... (9)
Cgs = %CSAS .......................... (10)
Cga =U+ Cgr = U+ 1/CV,A .................... (11)
Cgr = %CrA .......................... (12)
_ 2kd
A=1+ SRORA  * ottt e e e e e e (13)
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Accordingly, the wave height change can be determined by the follow-
ing equations:

3.2.1 Linear wave theory

5 Lok A% -4

ﬂ—s=<1-!) I = T .. .(16)

When non-linear wave theory is employed, Equation 12 is no longer
correct. Generally, the error in using this eouation instead

of the correct one for non-linear waves will not be greater than 6
percent. Thus as a simplification for the non-Tinear wave analysis,
Equations 12 and 15 may be used and will not produce a significant
error. The results by Skjelbreia (14), Tsuchiya and Yasuda (17) were
employed in calculating the wave energy.

3.2.2 Skjelbreia's Stokes' Third-Order Wave Theory (01d)

Wave energy E may be calculated by the following equation

- 2(hy? 3 2/Hy2
E g (1t (L) [B + V7Y " (L) 30 (17)
where
4nd
1.2 3 2 g
B = 3( ) (1 + e U (18)
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Accordingly, wave energy in still water, E, can be calculated
similarly as

2
vHg
S 8

o
==

S

2 2
a + r2 (q) (B, + 32 3256 2 (i) FD ... .(20)

where Bg and Fs may be obtained from a similar formula as B and F in
Equations 18 and 19 (changing L to Lg only). The wave height change
can then be calculated as follows

2 Hg 2 3 s Hs 2 1%
(Ten(12) By + 13zy(zmey ™ () Fsd?
E__: R 5 s .{21)
s 2¢Hy? 3 2(Hy2rqk
{1+n (L) [B + T32)(Z567 ™ (L) F13

where R is determined by Equation 16. This equation must be solved
by iteration.

3.2.3 Tsuchiya's Stokes' Third-Order Wave Theory {New)
Energy flux, W, can be determined by the following equation

i
8

7H, 2

W= yH2C {%A + (TTJ G v v v e e e (22)

where A is defined by Equation 15, and G is

2
G = Ch22kd + 3ChZkd + 2 g—sthd + 9(2kd + Shzkd)
16Sh*kd 64Sh7kdChkd
2
+ 3(Chkd + Ch3kd) + kdThkd + Sh®kd .(23)
8Sh*kdChkd 2Sh'kd
Since
W= e (1 —2kd (24)
1 + Sh2kd

Thus wave energy may be determined as follows

1 e wH\2G .
E = g'yH {1+ 2(7j) K} O ¢4

and wave energy in still water ES is
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TH, 2 G
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where Gg can be determined s1m11ar1y as G from Eauation 23, and the
wave number k is changed to kg in the case of still water. As a re-
sult, the wave height change can be calculated as follows

TrHS 2 GS
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where R is determined by Equation 16. Equation 28 must also be solved
iteratively. When the non-linear wave theory is used, the wave celer-
ity is determined not only by the parameter of kd, but also by the wave
steepness H/L. Due to the interaction of wave and current, the wave
steepness H/L can be changed as the wave length determined by the
non-linear wave theory Ly is not the same as that determined by the
linear theory L, i.e., Ly # L. The value of Ly/L can be determined

as follows

3.2.4 Employing Skjelbreia's Method
2 2
wHy 14HaChT2kdy - (28)
16Sh"kd

%

Wave celerity Cy = (%»Thkd) {1+ (

( ﬂJZ 14+4Ch22kd _
Sh¥kd

e
and LN/L =1 + 3 N] .(29)

where wave steepness H/L is the value under wave-current interaction.

L
Thus, Ly =N ke Lo (30)
Wls I,

L 1 LS

3.2.5 Employing Tsuchiya's Method

1
2

2
(1 + = (1" —L (achtkd - ach?kd + 5))

Wave celerity C, = (£ Thkd)
v AR
- (9 %
(@ Thd) N, (31)
and
L/l = N, = {1 + 2 (2= (gchvkd - 4ch2kd + 5)) (32)
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Thus
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LN/L:T'L—:NZL— ....................(33)

Coefficients N1 and Ny show the influence of non-linearity of waves.

4. DATA ANALYSIS AND RESULTS

4.7 The Results of Modification of Wave Length by the Linear Wave
Theory Due to Wave~Current Interaction

Using Equations 4, 5 and 6 different combinations of dimensionless
parameters U/C (or U/Cg), and d/Lg may be calculated. The results
are shown in Figures 2 and 3. As shown in Figure 2, it is clear that
the wave length change L/Lg with the relative current U/C is greater
in deep water than in shallow water.

4.2 Modification of Wave Length by Hon-Linear Wave Theory and Error
Estimates Due to Linear Theory

Numerical calculations of the wave length were made employing Stokes'
third order wave theory (14,17). The ratio of wave length computed

by the non-Tinear wave theory with that computed by the Tinear wave
theory is given in Table I. It can be seen that the wave length cal-
culated by the non-linear wave theory is usually greater than that
calculated by the linear theory. Vithin the range of 0.15 £ 0.40,
0.01 s Hg/lg < 0.07 and -0.15 = U/Cg = 0.30, the wave lengths computed
by the linear wave theory are approximately 10 percent less than those
computed by Stokes' third-order wave theory. Tahle II shows a com-
parison of the results obtained by the Tinear wave theory with data
obtained by the non-linear wave theories and with model test data.

It appears that the results obtained employing different methods are
quite similar. Also a comparison of the wave length (obtained by

the linear wave theory) with Hales' and Herbich's model tests data

(2) are given in Table III; the agreement is considered quite good.

4.3 Modification of Wave Height

The results obtained with the linear wave theory (Eauation 17) are
shown in Figure 4.

The results given by Skjelbreia's Stokes' third-order wave theory for
different wave steepnesses (i.e. Hg/Lg = 0.01 ~ 0.07) (Equation 26)
are shown in Figures 5-8.

The results Shown by Tsuchiya's modification of Stokes' third-order
wave theory are presented in Figures 9-12 for wave steepness Hg/Lg =
0.01 ~ 0.07.

A comparison of the results employing the linear theory (Figure 4)
with that of Skjelbreia's method (Figures 5 through 8) is shown in
Table IV. The following observations were made:
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2.40- LINEAR THEORY
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Fig. 2. Wave length change computed by Tinear wave theory
(L/Lg versus U/C)

o
QO vz 01
<
D
drL, = 005 Lo.8
D\EI/'
0.8 Lo7
0.20°
02 fos
0 3
0.5¢ Los

L/Ls or C/C,

Fig. 3. The wave length change computed by linear wave
theory (L/LS versus U/CS)
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H/HS LINEAR THEORY WAVE ENERGY FLUX
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Fig. 4. The wave height change computed by
Tinear wave theory

H/L = 0.01, STOKES 3 THEORY WAVE ENERGY FLUX
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Fig. 5. The wave height change by Stokes {old)
third-order wave theory for H¢ /L =0.01
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H/L = 0.03, STOKES 3 THEORY WAVE ENERGY FLUX
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Fig. 6. The wave height change by Stokes
(01d) third-order wave theory for
HS/LS = 0.03
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H/L = 0.05, STOKES 3 THEORY WAVE ENERGY FLUX
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Fig. 7. The wave height change by Stokes
(01d) third-order wave theory
for HS/LS = 0.05
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H/L = 0.07, STOKES 3 THEORY WAVE ENERGY FLUX
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Fig. 8. The wave height change by Stokes -(o01d)
third order wave theory for HS/LS=O.07
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Hs/Ls =0.01, NEW STOKES 3 THEORY
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Fig. 9. The wave height change by Stokes (new)
third-order wave theory for H¢/Ls=0.01
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Hs/Ls-0.03, NEW STOKES 3 THEORY
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Fig. 10. The wave height change by Stokes (new)
third order wave theory for H./L.=0.03
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Hs/Ls-0.05, NEW STOKES 3 THEORY
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Fig. 11. The wave height change by Stokes (new)
third order wave theory for Hs/Ls=0'05
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Hs/Ls=0.07, NEW STOKES 3 THEORY
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d/L=045

=010 0.00 0.10 0.20 0.30 0.40

Fig. 12. The wave height change by Stokes (new)
third order wave theory for HS/LS=O.O7
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(1) In the following current, errors in wave height change by the
Tinear wave theory are minimal in comparison with the results
obtained by the non-Tinear wave theories.

(2) When there is an opposing relative current and the wave steepness
is sufficiently large, errors in wave heicht employing the Tinear
theory will be greater than errors obtained employing the non-
linear theories.

(3) When the relative current velocity U/C increases, the change of
wave height by Tsuchiya's theory differs from the above results.
Using his method, under deep water conditions the wave height
change H/H. increases with the increase of U/C and reaches a peak
value, aftéer which the value of H/Hg decreases with the increase
of U/C.

4.4 Comparison of Numerical Solution Experimentally Obtained Results
Table V shows a comparison of the results of the wave height change
by computation (Equation 21) with the exoerimental data. It can be
seen that the computed values agree reasonably well with experimental
data. The mean error is less than 8 percent.

Table V. Comparison of Calculated Values With Authors’

Test Data
H/Hs
d/LS HS/LS u/c Experimental Calculated
Data Value
0.093 0.048 0.083 0.97 0.89
0.093 0.048 0.161 0.87 0.85
0.054 0.012 0.075 0.87 0.9
0.092 0.030 0.151 0.86 0.85
0.067 0.017 0.157 0.90 0.80
0.244 0.075 0.078 0.89 0.84
0.244 0.075 0.177 0.64 0.71
0.250 0.043 0.080 0.73 0.84
0.134 0.013 0.069 0.88 0.883
0.141 0.035 0.070 0.92 0.88
0.271 0.073 0.136 0.77 0.71
0.094 0.019 0.122 0.88 0.81
0.183 0.021 0.148 0.85 0.73
0.159 0.063 0.145 0.70 0.81

Table VI shows a comparison of the results of the wave height change
by numerical calculation (Equation 21) with the results of Hales' and
Herbich's empirical formula (2}. Their formulas are as follows:

Wave height change due to the following current:

—

H U U2 L 5,2
= 0.90760 - 0.98801 E»v+ 0.21123 (E—J + 0.00164 7f'+ 0.00006 (a~)
s s s
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HS Hs 2 U Ls TS
+0.88017 = + 1.05971 (12) - 0.00312 ¢ () + 0.88371 & (1)
S S S S S
Hg L
+o.mW31E—(—%). R

S

Table VI. Comparison of Calculated VYalues With
Hales' and Herbich's (H&H)

N Hy U/c, = 0.10 0.20 0.30
L Ls H8H Cal. HEH Cal. HaH Cal.
0.20 0.0  0.841 0.865 0.748  0.781  0.659  0.745
0.03  0.886 0.862 0.795  0.780  0.689  0.743
0.05  0.932  0.859  0.843 0.780  0.726  0.74]
0.07  0.979 0.853  0.891 0.779  0.764  0.737
0.30 0.01  0.83¢ 0.848  0.742  0.765  0.653  0.736
0.03  0.871 0.847 0.780  0.764  0.687  0.735
0.05  0.929 0.844  0.820 0.763  0.724  0.732
0.07 _ 0.976  0.840 _ 0.860 _ 0.760 __ 0.762 _ 0.727
0.40 0.01  0.832 0.845 0.738  0.765  0.650  0.763
0,03  0.865 0.843 0.773 0.764  0.686  0.734
0.05  0.898 0.842  0.808 0.762  0.723  0.731
0.07  0.933  0.838 _ 0.844  0.759 _ 0.761 _ 0.727

Since Hales' and Herbich's model test data were discrete during the
opposing current, a comparison of numerical calculations with their
empirical equations was not made. From Table V it can be seen that the
wave height change H/Hg decreases with the increase of relative depth
d/Lg both by the theoretical method and by Hales' and Herbich's for-
mula. It appears that the wave steepness variable has a greater in-
fluence in Hales' and Herbich's empirical formula than in the theore-
tical equation. Onthe average, the difference in the results given

by these two methods is within a range of 5 to 7 percent.

5. CONCLUSIONS

1. There is no dominant difference in the results obtained for the
change of wave length due to the wave-current interaction by
using either the linear or the non-Tinear wave theories. Within
the range of 0.15 < d/Lg s 0.40, 0.01 < Hg/Lg < 0.07 and -0.15 <
U/Cg < 0.30, errors by the Tinear wave theory are less than 10
percent as compared with the results obtained employing the non-
linear wave theories.

2. Numerical calculations of wave height change by different wave
theories indicate that the errors resulting from the use of the
linear wave theory in comparison with errors resulting from the
non-linear theories are greater when the opposing relative current
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and wave steepness both become larger. However, within the range
of the following currents such errors will be minimal.

3. The important factors influencing the change of wave parameter
are relative current velocity U/C (or U/Cg), relative water
depth d/L. and wave steepness H¢/Lg. The relative current ve-
locity U/E is the most important parameter. In case of
the wave-~current interaction, not only the wave parameter is
changed but also the velocity distribution of steady flow with
depth is changed. In this paper the change of steady surface
velocity due to wave-current interaction is neglected. This
should be considered in further research.

4, For engineering purposes, the nomogram provided in this paper
may be used to estimate the change of wave parameter due to wave-
current interaction. Figure 3 and Figures 5 through 8 are recom-
mended for the calculation of wave length and wave height changes,
respectively.
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APPENDIX II - NOTATION

The following symbols are used in this paper:

C
Ch
d
E

wave celerity;
hyperbolic cosine;
water depth;

wave energy;

B L B N 1)
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wave height;

wave number;

wave length;

hyperbolic sine;
hyperbolic tangent;

wave period;

surface current velocity;
angular frequency.

ECc—H-qUIrrxx
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Subscripts:

a apparent value by the observer;
group velocity;

relative value of wave to current;
value in still water,

Y
r
S





