
CHAPTER 189 

NUMERICAL MODEL FOR DENSITY CURRENTS IN ESTUARIES 

Karsten Fischer 

1. Introduction 

In the estuarine mixing areas of salt water and fresh water the 
vertical stream velocity profile generally is strongly affected 
by the baroclinic forces, giving rise to upstream currents near 
the bottom. Such reverse currents occur not only in stratified 
estuaries, but also in estuaries of the well-mixed type |1|, 
and they may cause problems like strong shoaling areas, salt 
intrusion, or difficulties when disposing wastes or dredged 
material |3|. The contributions of the salinity variations to 
the tidal motion are comparable to the contributions from the 
fresh water upland discharge |1|. For well-mixed estuaries with 
negligible fresh water discharge, the tidal velocities and water 
elevations may be obtained from numerical vertically averaged 
models or from physical homogeneous-flow models, but for all 
other conditions or desired results one has to use numerical 
vertically discretized models or physical inhomogeneous-flow 
models. As numerical and physical models have different proper- 
ties and deficiencies, they may be used complementarily rather 
than concurrently |4|, the farfield regime apparently becoming 
the domain of numerical models. 

The increased public and scientific interest in water quality 
problems led to the development and application of baroclinic 
numerical tidal models |5, 6| . The present paper is concerned 
with the question, how well the action of baroclinic forces 
can be represented by numerical techniques. As a test example, 
the salt wedge problems is tackled. Studies on salt wedges by 
means of physical models have been very sucessful |1, 7|, but 
mathematical approches were confined to analytical solutions 
for the stationary salt wedge |8 - 10| and simple geometric 
boundaries only. The numerical approach is free from these 
restrictions, giving a solution of the complete equations of 
motion, continuity, and convection-diffusion simultaneously. 

The main difficulty for the numerical model lies in the 
solution of the convection equation. The usual methods to solve 
the convection equation (like Forward Time / Centered Space, 
Upstream Differences, Lax-Wendroff, ADI, Leapfrog, or Galerkin- 
Finite Elements) break down when the convection of fairly sharp 
density jumps is to be calculated, as is the case for the salt 
wedge. Strong artificial diffusivity, mass losses, violations 
of the second law of thermodynamics or even unstable solutions 
are encountered. The numerical errors can be reduced consider- 
ably be using higher order difference approximations |11| at 
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the expense of higher numerical effort and more complicated 
boundary conditions, or by using a floating (Lagrangian) grid 
formulation; however, shearing and circulating flow forces 
the programmer to interpolate back to a fixed (Eulerian) grid 
from time to time, so that the advantage of the Lagrangian 
formulation in part gets lost, while the full numerical effort 
remains. In the baroclinic numerical model, errors in the 
convective solution may distort the whole model because of 
the faulty baroclinic forces (arising from a faulty density 
distribution) which act in the equations of motion. The 
question is, whether the numerical smoothing of sharp density 
jumps still allows for an adequate solution of the dynamics. 

In the present paper, a new method for solving the convection 
equation is described, where the above mentioned numerical 
errors are reduced drastically. The numerical solution is 
compared to a semi-analytic one, ensuring the quality of the 
numerical method. A few exemplary calculations, showing the 
influence of bottom friction, barriers, and tidal motion on 
the shape of the salt wedge, demonstrate the versatility of 
the numerical model. 

2. Numerical Method 

Figure 1 shows the schematic salt wedge and the geometry used 
in the present investigation. We take a channel of constant 
depth a and length S, open at both ends. The lateral (y-) 
dependence is neglected. The freshwater discharge Q enters 
from the right. The salt wedge is formed by the sharp density 
jump between salt water (density pi) and fresh water 
(density p0) at z = -t, the thickness of the wedge over the 
bottom is r. 

L S 

Figure 1.  Salt wedge - schematic for definition of parameters. 
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The numerical solution is based on the following equations: 

the equation of motion 

„. , -     „ -„—z-  =0 (1) 
3t   p 3x 

the hydrostatic pressure equation 

|f + Pg = o (2) 

the continuity equation for incompressible flow 

3u + 3w  _ (3) 

and the convection equation 

3c ,   3c   ,3c   _ , ., 
at + u 3^ + w ai = ° (4) 

where the concentration c is related to the density p by 

P - Po (5) 

u and w are the velocities in the x- and z-direction, 
respectively, p is the pressure, g the gravitational 
acceleration, p the density, and A the vertical eddy 
viscosity.coefficient. In (1), the convective terms have 
been neglected in order to make an analytic solution 
possible which is needed for the comparison purpose. 
Eq. (1) still contains the terms responsible for tidal 
motion and salt wedge formation ,  and major effects from 
the convective terms should only be expected near the tip 
of the salt wedge where the velocity gradient is large. It 
will be shown that this is the region where the numerical 
errors are largest, but the comparison to experimental salt 
wedge profiles is good, so the neglect of the convective 
terms can be justified. In eq. (4) the diffusion terms were 
neglected for the same reason, i.e. the desired analytical 
solution works with two fluid layers of different density as 
depicted in fig. 1, while diffusion would create a 
continuous vertical density profile. For the numerical model, 
a certain amount of numerical diffusivity cannot be avoided, 
and an additional physical diffusion term would make the 
comparisons even more difficult. 

For the numerical solution of the dynamic equations (1-3) the 
scheme of Suendermann |12| was used. The linearized equations 
are solved by an explicit leap - frog method, whereby the z- 
dependency of the velocity u is treated implicitly. The time- 
step of this procedure is limited by the step size along the 
x-axis through the Courant stability criterion. 
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For the numerical solution of the convection equation, a newly 
developed method was applied |13|. For simplicity, the method 
is explained for the one-dimensional case. The spatial density 
distribution is represented by Hermite interpolation functions; 
at the computational grid points, the density value pj and its 
local gradient (-Sp-) j are defined as timedependent variables. 
For example, the density representation between grid points 0 
and 1 is given by 

p (x) = pn a(x) + Pl b(x) + <•§£>  c(x) + (|£), d(x)   (6) 
O OX O OX 1 

with the Hermite interpolation polynomials 

a(x) = 2x3 - 3x2 + 1 b(x) = - 2x3 + 3x2 

3     2 3    2 c(x) = x  - 2x  + x d(x)=x  - x 

This representation has the following properties 

P (o) -po, p(i, -Pl, |£ (o) = (g,o, |£ (1) - (|£)j 

The convection equation 

l£ = -u l£ (8) 
8t     3x K   ' 

is converted to the explicit difference equation 

pj . = pj " uj At <w4 
(9) 

with j the spatial index and n the time-index. At is the 
time step. 

For the gradient variables, another marching equation is 
needed. This equation is obtained from eq. (8) by spatial 
differentiation: 

3 (|£, = -u |i| - |H |£ (10) at  8x      8x   3x 3x 

and transformed to the difference equation 

, n+1   s n  ,4t|5^,^
+^/2^1( 

(°E) 
2 Ax      W . 

3 
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where Ax is the spatial step size. The second term in the 
right-hand side of eq. (11)models the term 3 P and is obtained 
from the evaluation of the second derivativ§xof eq. (6), 
letting x  >• o; upstream differences are taken in eq. (11), 
where the upper line holds for u. > o, the lower line for uJ. < c 
The third term on the r-h-s of eq. (11) is a spatial nonlinear 
term and was omitted in the calculations because of its 
destabilizing behaviour. It was found that eqs (9) and (11) 
together are linearly unstable, but stability could be achieved 
by a small correction to eq. (9). Instead of eq. (8), the 
form 

3t 8x     2 3xz 
(12) 

was evaluated, where the corrective second term could 
immediately be taken from eq. (11) . 

The accuracy of the above described convective solution method 
is compared to serveral other methods in figure 2. 

' 0 

Figure 2.  Numerical solution for convection of density spot, 
a) Initial, b) final density distribution (exact), 
c) present method, d) upstream differencing, 
e) forward time-centered space, f) Fromm's method. 

As test example, the convection of a narrow density spot 
(initial width = 1.Ax) over a distance 24-Ax was calculated 
by iterating over 240 time steps. The best approximation to 
the exact final density distribution is given by the present 
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method, which is even superior to the higher order method 
of Fromm | 11 | . The unstable character of the Forward Time- 
Centered Space method results in the strongly occillating 
curve, while the Upstream Differencing scheme displays the 
strong numerical damping. Many other methods like Leapfrog, 
Lax-Windroff, Finite Elements or Flux-Corrected Transport 
can be shown to be inferior to the method of Fromm |13|; 
the present method gives comparatively very good results, 
uses simple boundary conditions and needs little numerical 
effort, only some more core space is needed for storing 
the gradient values. 

In two dimensions, a second expression analogous to eq. (11) 
has to be evaluated numerically. The calculation can be done 
by fractional time steps, scanning through the coordinate 
directions successively, or by computing and adding the 
contributions from both coordinates simultaneously; the latter 
method was used here. 

3. Semi - Analytic Solution to the Stationary Salt Wedge 

Omitting the partial time derivative in eq. (1), a quadratic z- 
dependency of the velocity u can be obtained for each density 
layer (see fig. 1) separately, by integration. The non-slip 
condition is applied at the bottom: 

u (-a) = 0 (13) 

The total flow across r is zero: 

-t 
J u (z) dz = 0 (14) 

-a 

Introducing the "baroclinic water level" k: 

k (x) = h (x) - c q (x) , (15) 

one gets for the velocity in the lower saline layer 

u (z) = |^ || { 3z2+ 2 (2a + t) z + a (a + 2t)}     (16) 

For the upper layer, the following two conditions are 
applied: 

1.) the velocity u (z) must be continuous at the interface 
z = -t. 

2.) The total fresh water flow across q has the given 
constant value Q: 

h 
/ u (z) dz = Q (17) 

-t 

For the velocity in the upper layer one gets 
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For the calculation of the wedge shape t(x) and the surface 
h(x) two conditions are needed. They are obtained by considering 
the tangential forces: 

1.) the stress at the surface is zero 

|H |     = 0 (19) 
' z=h 

2.) the stress at the interface is continuous 

|2 I        =  |£ I (20) 
dZ       , dZ        . , 'z=-t-o       ' z=-t+o 

Inserting (16) in (20) and (18) in  (19) and (20), one gets 

|t = 1|H (|»Lj£t + 1 - C) (21) 
3x    c 3x  2 a - t 

dh  _ 12 QA  ._», 
3x   " g(h + t)z (4h + 3a + t) K      ' 

This system of nonlinear.first - order differential equations 
was solved (to an arbitrary degree of accuracy) by numerical 
methods, and the solution is refered to as semi - analytic. 

Dimensional analysis of (21) and (22) shows that x scales 
with a1* while t and h scale with a, thereby establishing an 
affine relationship. Integrating (21) over the length L of 
the salt wedge gives the proportionality 

L.2|a^ (23) 

where the remaining constant depends only on the relative 
depth of the salt wedge at the river mouth. Introducing the 
densimetric Froude- and Reynolds-numbers 

0        „   /cga3 Fr =  "     ,   Re = —-— 
/cgad A 

one has 

L >x. || a (24) 

while the corresponding results of Keulegan [7| read 

Re "^ L % ZS-s    a (25) 
Fr "r 

for natural rivers and 
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1 
Re'2" L -v,       ^~    a (26) 

for hydraulic model flumes. 

The difference in the results may arise from the simplifications 
in our theory, especially the constant eddy viscosity A and 
the non - slip condition (13). 

4.  Numerical Results 

The computer code developed for the calculations permits the 
choice of variable step sizes in the vertical direction, 
variable bottom friction and bottom topography, and wind 
stresses at the surface. At the open boundaries upstream and 
downstream, the density distribution was kept fixed during 
the calculation. Care was taken that the salt wedge did not 
reach the upstream boundary. Since the bouyancy forces had 
been omitted in the initial differential equations, the hydro- 
dynamically stable stratification had to be readjusted by 
averaging when a higher density value occurred above lower 
density values. 

The fresh water discharge Q was taken as a dependent variable. 
As upstream and downstream boundary conditions the water 
levels were kept fixed. Stationary solutions were obtained 
after 10 000 time steps (=4 weeks model time). The uniqueness 
of the solution was checked by starting from various density 
distributions; up to some minor differences in the velocity 
distribution, the same results were obtained in every case. 
More details of the calculations can be found in |14|. 

The following parameters were used throughout the calculations: 

- Channel length s = 36 km, height a = 13.7 m 

- Salt wedge thickness at the downstream end = 6.8 m, 
concentration = 3% 

-3  2 
- Eddy viscosity coefficient A = 10  m /s 

- Water levels upstream 4.7 cm, downstream 0.0 cm. 
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Salt wedge profiles and water levels h[cm] 
-4 

0 

\      Salt wedge 
\      height r 

0 3 6 9 12 

— exact,     o Hermite-interpotation, 
15 13 21       "       24   x[km] 

 upstream differencing 

Figure 3,  Stationary salt wedge profiles and water levels 

Figure 3 shows the stationary salt wedges, computed by the 
various methods. For the present numerical method called 
Heritute-interpolation", the 1.5% - isohaline was plotted 

as salt wedge boundary. The comparison to the semi-analytic 
curve called "exact" is good, major differences occur only 
at the tip of the wedge (where the neglect of the convective 
terms may play a significant role). It should be noted, 
however, that the wedge thickness in this region is comparable 
to the vertical grid spacing, as indicated in the figure. 
For comparison, another numerical solution is shown where 
the convection equation was solved by "upstream differencing". 
From this one can conclude that only the numerical high - 
precision solution of the convection equation leads to 
resonable results in the field of highly stratified estuaries. 
The differences in the water level are less important, as 
shown m the upper part of the figure. 

At x = 9 km, the vertical density profiles of the three 
different solutions are shown in figure 4. 
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«r[m] 

Vertical Density Profiles 

of stationary saltwedges 
at    x = 9km 

  exact 

...©...   Hermite-interpolation 

 upstream 
differencing 

s[%] 

Figure 4.  Vertical density profiles of stationary salt wedges 
from fig. 3. at x = 9 km 

The sharp density jump of the exact representation is 
reproduced fairly well by the "Hermite-interpolation" method, 
while the "upstream differencing" - result shows a very long 
tail extending towards the channel surface. 

All of the following numerical results are obtained with the 
method of "Hermite-interpolation". Figure 5 shows the changes 
in the shape of the salt wedge, when the density profile at 
the river mouth is altered. 
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r[m] 

Figure 5.  Vertical salinity profiles at river mouth x 
and corresponding salt wedges 

From this figure one can see that little changes in the river 
mouth density cause substantial changes in the wedge length. 
This high sensibility of the baroclinic model will make the 
calibration of parameters in a realistic calculation easier, 
and it might be interesting to observe such an effect in natura. 

Figure 6 shows the influence of bottom friction on the salt 
wedge shape; the dimensionless friction coefficient R is 
defined by the Taylor formula for the bottom stress 

R u, 
b1 (27) 

where u, is the bottom velocity. With decreasing bottom 
friction the length of the salt wedge increases. One could 
have thought of an increased fresh water discharge (because 
of the decreased bottom friction) and a corresponding 
shortening of the salt wedge length (see eq. 23), but the 
opposite is true. 
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r[m] 

Figure 6.  Influence of bottom friction R on salt wedge profile 

The influence of a bottom barrier on the salt wedge form is 
demonstrated in fig. 7 

rDnl 

i 1 x [km] 
36 

Figure 7.  Influence of bottom barrier on salt wedge profile 
a) without barrier, b) with barrier 
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As can be seen in the figure, a barrier height d which is 
about 1/3 of the undisturbed salt wedge height, is fully 
sufficient to prevent the salt wedge from spreading out 
upstream. This result is contrary to Keulegan's |7| statement 
that the barrier must be as high as the salt wedge. The 
problem can be elucidatet by considering the velocity 
distribution eq. 16. For the lower two thirds of the wedge 
height r, the fluid moves upstream. No salt water can be 
transported upstream across a barrier of height d = 2r/3, 
because the transport velocity above this level is down- 
stream. In addition, the velocity profile near the bottom 
is changed by a barrier, so that a barrier height of only 
r/3 prohibits salt intrusion. 

As a first instationary calculation, a tidal wave was 
superimposed on the fresh-water discharge. The data for 
the calculation are: 

upstream downstream 

- average water levels:      5.3 cm 0  cm 

- tidal amplitude: 102.8 cm       102.8 cm 

- tidal phase shift: 25.0 deg.        0   deg. 

- salt wedge thickness: 7.0 m 

The calculation was carried out until periodic conditions 
were obtained. Figure 8 shows the salt wedges at high and 
low water. The difference in length is not large, but the 

-i x[km] 

Figure 8.  Salt wedge under tidal excitation, a) minimal, 
b) maximal salt water intrusion into the estuary 
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difference in salt wedge volume is. The constant height of 
the salt wedge at the downstream end is an unrealistic 
boundary condition and should be replaced by a tidally 
varying one.. An indication of a computational instability 
was found near the tip of the wedge where the concentration 
at a single grid point was slowly but steadily increasing 
during the tidal periods. This effect can certainly be 
removed by more realistic boundary conditions and shall 
be further observed. 

Finally, in order to show the relation of the present cal- 
culations to experimental data, the semi-analytic salt wedge 
curve is compared to Keulegan's |7| affine curve in figure 9. 

Figure 9.  Comparison of semi-analytic salt wedge(full line) 
to experimental data. Dotted line: Keulegan's salt 
wedge |7|, fitted to critical flow conditions at 
river mouth 
Circles: Keulegan's salt wedge, fitted to present 

results 
Dashed line: Water surface 

Taking the point of critical flow in the fresh water layer 
as "river mouth", 

•rgr 
eg 

(28) 
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the dotted curve, taken from Keulegan's table |V|, should 
be compared to that piece of the semi-analytic solution curve 
covering the same x - interval. The comparison is rather bad, 
however, the relation (28) is based on homogeneous flow in 
both fluid layers and not very well justified experimentally 
|7|. Relaxing this condition and fitting Keulegan's curve 
(circles in fig. 9) to the present one, a very good comparison 
is obtained; the empirical critical depth for this case is 

Q 
/cga (29) 

In conclusion, the present numerical model appears to be well 
suited to calculate the hydrodynamics of highly stratified 
estuaries. Of course, the numerical problems in calculating 
partially mixed estuaries are comparatively small. The results 
of such a calculation are given in figure 10. 

r[m] 
Wl 

13. 
121 

I 
+ <=—i—i 
I 

10-1 
I 
I 
I 

8?   «H 

I 

6-1 
I  

'1 
I 

<—I—I 

2.5 

2.8W 

+      <—i—i     + + 

1.8 

..water 
surface 

+        + 

t- <H + 

+ «H—< 

+ 4- -*H 

+ + 

^ + 

2.4 

bottom 

25cm/s 

18 24 30 36 x[km] 

Figure 10.  Horizontal velocities (arrows) and salinities 
(numbers) in a well - mixed estuary (stationary) 
Dashed line separates regions of upstream and 
downstream currents. 

For this calculation, a horizontal and a vertical diffusion 
term were added to the density transport equation (4). 
The diffusion coefficients were taken as large as allowed by 
stability conditions for an eyplicit difference scheme. At 
the boundaries fully mixed conditions were prescribed 
(numbers indicate density values). The partial stratification 
in the interior had developed dynamically. The combined effects 
of longitudinal stratification and sloping bottom lead to a 
zone of upstream current velocity, indicated in the lower 
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left part of the figure. This upstream current apparently 
exists independently from the degree of vertical stratification 
in the estuary, but only caused by the longitudinal strati- 
fication. The tip of the upstream current zone or equally the 
tip of the salt wedge are known to be the areas of maximum 
shoaling |3|. In consequence, for longitudinally stratified 
estuaries no information about the sediment transport can be 
obtained from measurements of surface velocities or calculations 
with vertically averaged numerical models, and this seems to 
hold for vertically stratified and mixed estuaries as well. 

5. Summary and Conclusions 

A numerical model for density currents in estuaries was presented, 
combining a classical solution scheme for the dynamical equations 
with a new solution scheme for the transport equation. The 
effects of baroclinic forces caused by density differences were 
studied in a two-dimensional x-z-model, and the results for a 
stationary salt wedge were shown to be in good agreement with 
a semi-analytic solution and experimental data. The uniqueness 
of the numerical solution was checked by varying the initial and 
boundary conditions. The influence of bottom friction, a bottom 
barrier, and tidal motions were studied; and the stationary 
solution for a well - mixed estuary was obtained. 

It was found that the accuracy of the results for stratified 
estuaries depends mainly on the quality of the convective 
solution scheme, and that the present method of "Hermite-inter- 
polation" gives satisfactory results in every case. As a practical 
aspect, it was found that bottom barriers for preventing salt 
intrusion into estuaries need not be as high as the undisturbed 
salt wedge. For realistic calculations, the time - dependency 
of water levels and vertical density profiles at the open ends 
of the estuary must be known from measurements. 
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