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ABSTRACT 

In this study, frequency response and transfer function techniques 
are used together with cross-spectral and fast Fourier transform methods 
to determine the proper boundary values for computing the flow field of 
a coastal sea.  Tide data containing considerable perturbations from 
swell and meteorological disturbances are analyzed. 

In computing the frequency response estimates, the effect of noise 
in the input is treated by a cancelling technique and by the choice of 
a reference station to evaluate the interdependencies among the other 
stations at the boundary.  The usefulness of the network frequency response 
function is threefold:  (1) future conditions can be simulated using 
observed water levels at any single location, (2) boundary information 
for models of different grid size can be obtained by interpolation, and 
(3) missing data at a given location can be estimated optimally using 
data at neighboring stations and the network response function.  The 
paper discusses an example of such an application, the determination of 
a boundary of a two-dimensional model of Jamaica Bay, New York City, 
U.S.A. 

INTRODUCTION 

One of the major difficulties in coastal and estuarine hydrodynamic 
computation is obtaining good boundary information.  For example, the 
computation requires the time histories of water levels at open boundaries 
as one of the major input forcing functions from which is derived the 
internal flow field.  Field measurements at boundaries, as well as within 
the prototype, are also needed during various phases of model development 
and adjustment.  However, such field data often contain noise generated by 
instruments, meteorological disturbances, or short-period waves.  Often, 
part of the records of the critical period may even be missing.  This 
paper deals mainly with problems such as these encountered frequently in 
hydrodynamic and water quality modeling.  The analyses used are the esti- 
mation of network frequency response function, cross-spectral computation, 
noise cancellation, and numerical convolution. 
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ESTIMATION OF NETWORK FREQUENCY RESPONSE FUNCTIONS 

The frequency response function H(f), as Its name indicates, describes 
the amplitude and phase relationship between one fluctuation with a certain 
frequency f as input and the resulting fluctuation as output. 

In determining network frequency response relationships, the statisti- 
cal approach using cross-spectral estimates is used instead of the classic 
method employing the deterministic Fourier or Laplace transforms, because 
the sampling variability, confidence limits, and the phase of the frequency 
response function can only be estimated using cross-spectral procedures. 

A description of the computational method used in this paper is 
presented by Liu, (1) and by Leendertse and Liu.'^'-'-'  Reference is also 
made to the handbook of Jenkins and Watts W and the thesis of Goodman^' 
on this subject.  A brief outline of the computational method is given 
below. 

With respect to the interdependency (or the lack of it) between two 
random time series, xt and yt, we see that if the random processes are 
jointly stationary such that the joint distribution depends only on time 
differences, then the degree of interdependency can be measured by the 
cross-covariance function.  In discrete time this is defined as 

^y(k)   " n^k   E    (xt  " X)   <*t+k " ^ xy 

v- 

n-k 
E 
t=i 

n-k 

t=i 

(i) 

ft) - ~T £  (^t - r>  <xt-k " x) 

for k = 0, 1, 2, ... m, where m is the largest time lag chosen, n the 
total number of data points, and x,y the mean values of the series {x},{y}. 

The relationship between these two stochastic processes can also be 
expressed by the integral equation 

y(t) - U  = I  h(x)[X(t - x) - u ] dr + N(t) (2) 
J0 x 

where h(-r) is the impulse response function, y , u are the mean values 
of the two processes, and N(t) is the uncorrelatedyerror term. 

Wiener   showed that the optimal estimates of h(x) should satisfy 
the following integral equation: 

fi. Y  (t) =    h(T) Y  (t - T) dT (3) xy 

The solution to Eq. (3) may be obtained by Fourier transformation.  Because 
covarlance function and spectral density function form a Fourier transform 
pair, thus 
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Pxy(f) - H(f) • Pxx(f)   or  H(f) = Pxy(f)/Pxx(f)        (4) 

where P  (f) is the cross-spectrum between x(t) and y(t), P  (f) is the 
auto-spectrum of x(t), and the complex valued function H(f) xs the frequency 
response function.  The possibility of using a statistical approach using 
spectral densities to give the frequency response was suggested by Lee. (') 
However, it was laterWthat a quantitative basis for applying the method 
with finite sample records corrupted by measurement noise became available. 

For computing the cross-spectral density function estimate by a 
numerical Fourier transform, the even and odd parts of the cross-covariance 
function are determined by 

A(k) = JstYxv(k) + YTO(k)] (5) 

B(k) = !i[Yxy0O " Y  (k)] (6) 

from which the co-spectral density function is estimated: 

k=m-l 
:  (f) = 2x A(o) + 2  £  A(k) cos (2irfkt) + A(m) cos (2rfmT) xy      L        k=i J 

The quadrature spectral density function is estimated by 

k=m-l 

(7) 

2  £  B<k) sln (2wfkT) + B(m) sin (2Trfkt) 
k=l J 

Qx (f) = 2T|2  2^  B<k) sln (2wfkT) + B(m) sin (27rfkt) |     (8) 

The spectral density functions of input and output are determined 
in a similar manner. If, in Eq. (1), the output series is replaced by 
the input series, we obtain the auto-covariance function of the input, 

oo = ~T E   c*t - *> <^k ~x) (9) 
-   - t=i 

from which the input spectral density function is determined: 

k-m-1 

E 
k=l 

P k=m-l -i 
(k) = 2T y  (0) + 2 Y\     y     (k) cos (2Trfkx) + y     (m) cos (2Trfmx) 

c       I xx        i _i   x.yL xx j 

(10) 

The output spectral density function is determined similarly. 

The time interval x used in the analysis influences the highest 
frequency that can be determined by the analysis method.  At least two 
samples per cycle are required to define a frequency component in a data 
set; thus the highest frequency determined is 

f = ~~ (11) c   2T 
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This frequency is the so-called Nyquist frequency.  If higher frequencies 
are present in the data, these are aliased as lower frequencies. 

The spectral density functions are determined for particular fre- 
quencies f.  These frequencies are calculated only at the special discrete 
frequencies of harmonic number k, where 

kf 
f = —-£  k = 0, 1, 2, 3 ... m (12) 

The total number of discrete frequencies determined depends on the maximum 
lag mx. 

For each spectral function, the discrete value found is a kind of 
average value in a certain range or band.  The bandwidth for the compu- 
tations is 

B = — (13) 
mx 

One would tend to determine the spectral functions with small band- 
width — thus in much detail — by choosing a large value for m. Unfor- 
tunately, this considerably affects the accuracy of the result. 

It should be understood that the analysis method gives estimates 
of the function only.  Since we are dealing with data that is not deter- 
ministic, each sample record used for analysis differs from another and 
the results obtained from these records will also differ somewhat. 

The estimates of spectral density functions described above are 
so-called "raw" estimates, which have certain undesirable properties. 
If a strong periodic component is present, the analysis may show small 
positive and negative values in the frequency bands adjacent to that in 
which the periodic component is present.  This phenomenon is called 
"leakage," and the negative values it produces are particularly bother- 
some.  To counter it, frequency smoothing is used, by which the estimate 
at a particular frequency is computed as a weighted average of the par- 
ticular frequency and the adjacent frequency. 

For example, the smoothed co-spectral density function can be taken 
as 

kf \     „  /(k - l)f \    „  /kf \     „  /(k + l)f 
C  (f) = C  —- =   .25C 
xy      xy \ m /      xy\    m    /     xy \ m /      xy + .5C  —-) + .25C 

/     xv\ m /      xy\ 

(14) 

This frequency smoothing is called "hanning," which is equivalent to the 
Tukey lag window.W  Other methods of minimizing the effect of leakage 
are available,(IJ*) but these are not applied in this investigation. 

For the absolute value of the smoothed cross-spectral density we 
obtain the following estimate: 
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lPxy^l =(Cxy(f)
2 + Qxy(f)T (15) 

Subsequently, the estimated amplitude of the frequency response 
function is 

|H(f)| = Pxy(f) /Pxx(f) - Axy(f) (16) 

and its estimated phase spectrum is 

*(f) = tan_1[Qxy(f)/Cxy(f)J (17) 

The frequency response function thus obtained is an optimal estimate (in 
a least square sense), assuming that the system is linear.  Even if we 
assume that we have a linear system whose input {x} may be measured exactly, 
the output may still contain measurement errors.  In the case analyzed here, 
the output may be influenced by wind and system nonlinearities.  The 
measured output then contains the transformed input signal plus measurement 
noise, etc. (in our case noise caused by wind and nonlinearities). 

It is now possible to introduce a measure of the linear relation 
between the two series, called the coherency function a     (f).  The squared 
coherency is estimated to be 

xy 

2 'Vf)l2 
«;/f) = =—^— (is) 

p (f) p (f) XX    yy 

If the system is completely linear, the squared coherency is unity; 
if the two time series are completely uncorrelated, then the coherency 
would be zero.  If the coherency is less than unity but greater than 
zero, then there is noise in the measurements, the system is not linear, 
or the output {y} of the system is due to an input {x} as well as other 
inputs. 

In determining the behavior of a system it is often useful to see 
how the noise is distributed over the frequency range.  The estimated 
spectral density function of the noise is expressed by 

Vf) -[1 - al^] Vf) (19) 

In a strict sense, when the cross-spectral estimates Px (f) are used 
to determine the frequency response function, the measurement noise at 
the input will cause the frequency response function to be underestimated, 
as can be seen from the equation 

H<f> " Vf)/Pxx(f) = Vf)/[Pxx(f> + Pnnx(f)] < H(f)     (20) 
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c(f) is the 
spectrum of extraneous noise components in the input.  Notice that the 
uncorrelated noise at the output does not cause bias. 

The amount of measurement noise and the error due to it can be 
estimated by computing the amplitude function forward and backward between 
two sets of records (i.e., switching x series and y series in the compu- 
tational sequence).  By going from y to x, the noise in y would cause the 
transfer from y to x to be underestimated, which is equivalent to the 
overestimation of x in the relative amplification factor.  However, by 
going from x to y, the noise in y no longer influences the value of back- 
ward transfer, but the noise in x is now the important factor.  In each 
direction the transfer function is underestimated.  Therefore, the best 
estimate of the transfer function from y to x is 

%[1/Ayx(f) +Axy(f)] (21) 

The error would be cancelled out if the random measurement noise level 
in both records were about the same. 

"2 
The computed coherency Sixv(f) also contains some bias if the phase 

difference between two stations is appreciable.  This bias can be reduced 
by a process called alignment (see Ref. 4 for details), using the peak 
of the cross-covariance as a guide to make the required shift. 

DATA ANALYSIS 

One of the applications of the network frequency response analysis 
is estimating open boundary conditions for a two-dimensional mathemati- 
cal model of the Netherlands coast in the North Sea (Fig. 1).  In order 
to determine the proper boundary conditions for the model, 29 bottom 
pressure recorders were installed by the Netherlands Rijkswaterstaat 
during the months of May and June 1971.  Hourly water level data were 
first analyzed without astronomical prejudices, thus allowing for all 
possible frequencies and their higher harmonics that were present. 

The frequency domain mapping was carried out using arbitrary-radix 
algorithms of fast Fourier transforms.  During the transformation, 
Tukey's^") interim data taper window was applied to eliminate leakage 
from the peaks.  The Fourier line spectra for stations U (reference station) 
and Aj_ are shown in Fig. 2.  The contribution from the meteorological 
disturbances, located in the frequency range below 0.04 per hour, and the 
higher harmonic components induced by the diurnal-semidiurnal components 
can be noted in the graphs. 

Frequency response analyses and cross-spectral computations were 
then carried out between the reference station U and the 21 stations 
located at the model open boundary.  The graphic results from a typical 
analysis are shown in Fig. 3.  In the top row the adjusted bottom pressures 
at station A are shown.  The computed spectra at station A are also shown. 
It will be noted that the higher harmonics of the lunar component, which 
are the quarter-diurnal tide (M4 at f = .16 hr--'-) and the sixth-diurnal 
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AMPLITUDE OF THE CROSS-SPECTRUM 

FREQUENCY    II 

PHASE  SPECTRUM 

PHASE: SPECTRUM COHERENCY SQUARED SPECTRUM OF NOISE 

Figure 3      Frequency response analysis between Station U 
(reference station) and Station Al 
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tide (Mg at f = .24 hr-1), contain much less energy than the semi-diurnal 
tide at f = .08 hr--*-.  This can also be found in the cross-spectrum 
between the reference station U and Aj^ in the first graph in the second 
row of Fig. 3.  The amplitude of the frequency response estimate between 
U and A;L shown in the middle graph, indicates that the amplification 
factor is 1.36 for the diurnal tide (f = 0.04), but only 0.3 for the 
semi-diurnal tide (f = 0.08).  The phase of the response function is shown 
in the third graph of the second row in fractions of a circle.  The phase 
is also shown in the bottom row as the lag in seconds.  The computed 
square coherency and the spectrum of the uncorrelated components are 
shown in the bottom row. 

The spatial distribution of the amplitude and phase of the frequency 
response function and the spatial distribution of the coherency of the 
records for the semidiurnal component from the reference station U and 
the boundary stations are shown in Fig. 4.  The decrease in amplification 
near station A2 indicates the passing of the amphidromic point located 
approximately halfway between the English and Dutch coasts (see Proudman 
and Doodson, Fig. 5, Ref. 9).  The amplitude, phase, and squared coherency 
of the computed frequency response function for the quarter-diurnal harmonic 
(f = 0.16/hr) along the boundary network are shown in Fig. 6. 

Frequency response function for points between gauges can be 
interpolated for models of different grid size.  The impulse response 
function h(k) between the reference station U and the boundary stations 
is obtained by inverse Fourier transform from the co-, quad-, and auto- 
spectra of the reference station. 

h(k) -M-JE [C  (h)/P  (h)l cos^l 2  w) L sy    xxv ' J     m 

V [Q  (h)/P  (h)l sin ^ (22) + 

for k = 0, 1, 2, 3 ... m 
h = 0, ... m 

The water levels at these boundary points for any future condition 
can then be generated optimally from the measured information at station U 
(or from any other single station) by the convolution formula: 

n 
y(nAt) = At E x(kAt) h(nAt - kit) (23) 

k=0 

RECONSTRUCTION OF BOUNDARY INFORMATION 

The aforementioned approach was used for reconstructing the open 
boundary information of a two-dimensional mathematical model of Jamaica 
Bay, New York City, U.S.A., as shown in Fig. 7.(2) During a large-scale 
field observation of water quality for comparing simulated with observed 
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NORTH SEA   TIDE  ANALYSIS 
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Figure 5 Cotidal times, observed amplitudes, and amphidromic points 
near the area of the coastal model for the M? component 
(from Proudman and Doodson, 1924) 
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NORTH SEA   TIDE  ANALYSIS 
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pollutant distribution after a rainstorm, the tide gauge in the bay at 
Canarsie (northwestern corner of Fig. 7) malfunctioned without being 
detected until after the entire field operation was completed.  It was 
found that the gauge became inoperative just before the sampling started 
with a few days of usable data prior to that period.  Without tide 
information, no meaningful simulation could be made.  Rather than request 
another survey, it was decided to reconstruct the missing water level time 
history.  The nearest available tide data covering the entire period was 
the East Rockaway gauge located on Long Island (southeast corner of map). 
The only way for making the simulation is to derive the response (transfer) 
function from East Rockaway to Canarsie with the mutually available data 
before the experiment.  Secondly, response function can be derived between 
Canarsie and Rockaway (open boundary) with data collected in October 1970 
with high accuracy.  Once these response functions are determined, the 
time history of the water levels at the open boundary can be reconstructed 
(either in the frequency domain by transformation or in the time domain by 
convolution) for the water quality simulation period. 

Figures 8a, 8b, and 8c are the computed frequency response functions 
between Canarsie and East Rockaway using the group of data just prior to 
May 31, 1972.  Figures 8d, 8e, and 8f are the response functions between 
Rockaway and Canarsie using October 1970 data (dotted lines).  The solid 
lines in this set of graphs are results derived from another numerical 
simulation of tidal flows between these two stations.  Figure 8g is the 
reconstructed water level (by transformation) at the model boundary 
using data observed from May 31 through June 3, 1972, at East Rockaway. 

With the boundary information determined, the water quality simulation 
can then be carried out.  A typical constituent distribution map is shown 
in Fig. 9. Detailed discussion of this particular simulation can be 
found in Leendertse and Liu.") 

SUMMARY 

The usefulness of the network response function in numerical simulation 
is threefold:  (1) future conditions can be simulated using observed water 
levels at any single location; (2) boundary information for models of 
different grid size can be obtained by spatial interpolation along the 
boundary line; and (3) missing data at any location can be estimated 
optimally (in a least square error sense) using data at neighboring station 
and the network response functions.  The uses of response function and 
cross-spectral density function to make numerical or hydraulic model 
adjustment are discussed elsewhere. ">3) 
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Figure 9  A typical constituent distribution map of water quality simulation 
as generated by the Integrated Graphic System (IGS) developed at 
Rand 
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