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AND CUSPIDAL COAST 

By Mikio Hino 

Professor, Department of Civil Engineering 
Tokyo Institute of Technology 

O-okayama, Meguro-ku, Tokyo 

SYNOPSIS : The hydrodynamic instability theory is developed on the for- 
mation of rip-current and cuspidal coast.   The most prefered wave length 
is shown to be about four times the distance from the shore to the breaker 
zone.   Typical patterns of flow field and bottom configurations are re- 
presented.   Finally, the theory is compared with field observations. 

I    INTRODUCTION 

Recently two theories have been proposed on the mechanism of for- 
mation of rip-currents.    Bowen's theory which has been presented in 
Journal of Geophysical Research in 1969 is based on the forced mechanism 
caused by standing edge waves which induce the spatially periodic distri- 
bution of radiation stress. 

On the other hand, in 1972 the author proposed a hydrodynamic in- 
stability mechanism.   A series of papers on this problem has been published 
in the Proceedings of Japanese Conference on Coastal Engineering and the 
Technical Report of Department of Civil Engineering, Tokyo Institute of 
Technology. 

The author' s basic idea is as follows; If waves are incident on a 
straight coastal line and if the water depth is uniform along it, the uniform 
wave-setup along the shoreline should be formed caused by the radiation 
stress of incident waves.   Such a uniformly long wave-step would be un- 
stable to an infinitesimal disturbance, as if a slender rod compressed 
axially buckles when a critical compressive stress is exceeded.   Moreover, 
if waves are obliquely incident, the same mechanism as that for sand-wave 
formation in open channels will operate to form sand-bars caused by long- 
shore currents. 
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902 COASTAL ENGINEERING 

II    BASIC EQUATIONS 

The motion of water is described by eqs. (l), (2) and (3) in terms of 
the mean surface elevation 1 , the vertically averaged horizental velocity 
components U and V in offshore and longshore directions and water depth 
below the still water surface h(x), 

pd [u(h+v)]/9t+a[p(h + i?)u2]/9x 

+ 9  [p ( h + 1? ) uv ] /9y + 9sXx/9x +9sxy/9y 

= - pg ( h + J? ) dy/dx- pGu -  •  •     (1) 

pd [v(h + )?)]/9t+9[>(h + J?)uv]/9x 

+ 9  [P ( h + V ) v2 ]/9y+ 9sxy/9x + 9syy/9y 

= ~Pg ( h + i? ) dy/dy-pCv •   •   •      (2) 

9 ( h + 9 )/9t +9 [ u ( h + 9 )]/9x 

+ 9 [ v ( h + V ) J /9y = 0 *  *   *     (3) 

where C means the frictional coefficient having dimension of velocity, and 
sxx> syy an(i sxy represent the radiation stress tensor introduced by Lon- 
guet-mggins and Stewart (1964), 

sa = 3E/2-Bc2 ( sin»/c )2 ,    sxy = Ec cos S ( sin^/c ) 

Syy =E/2+Ec2 ( sin»/c)2 

E=|pg(2a)2 [ (4) 

(2a)= r(h +7 ) ( O^X^LB) 

o=fc/umax=|c'(|yih)=Odyih, Oi = rc'/n, c=o(o.oi), 

where E expresses energy of wave, c is wave celerity and Lg is the 
distance from shore to a breaker zone.    By Snell's reflection law, 
(sin 8 /c) remains constant in course of the propagation of wave. 

The last equation to solve the problem is the conservation equation of 
bottom material transport; 

9h/9t=9(Os   u )/9x + 9 ( Os v )/9y (5) 

where Cg is the transport coefficient of bottom material and is considered 
to be dependent not only on the material but also on the wave characteristics 
and water depth.   However, for the time being it is assumed to be a constant. 

Small perturbations are imposed on the steady state.   Hence, the 
variables are expressed as 
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U = u' (x,  y,   t ) 

V = V0 (x) + v' ( x,   y,   t ) 
(6) 

V = V0 ( x ) + v' ( x,  y,   t ) 

h = d ( x )+h' ( x,  y,   t  ) 

where V0(x) represents the longshore current,   >?0(x) is the wave setup in 
an equilibrium state, and d(x) means the initial water depth. 

Equation (6) is substituted into equations (l), (2), (3) and (5).   The 
0-th order terms yield the wave setup equations, 

dV0/dx = -( 3r2/8 ) cos2 9 / [l + ( 3r2/8 ) cos2 « ] • 9h0 /0x-(7) 

and the velocity distribution of longshore current, 

V0(X)=-(5rVl6Od)(cos(?.sin(?B -/h.B+^oB  )  CCho + >?o   )/(h„B+'?0B  )) 

•  [d(h0+?.„ )/dx ]         (8) 

On the other hand, the first-order perturbation terms give the linear- 
ized equation for perturbation variables.    Henceforward, variables will 
be nondimensionalized by the gravitational acceleration g and the distance 
from shoreline to the breaking zone Lg.   For instance u /   ^gLB —» u> 
x/Lg—> x and t vg/LB—* *•   Moreover, primes to express perturbed 
quantities will be omitted henceforth, 

9w f + A„ du 
dx + aiU + B i,^+B : 1 " 9x ' dy 

bf v 

+ 0^11+0^^ + 0^ + Dil-§Jl+Dil-g|+dIh =0       (9)-(12) 

( i =1,   2, 3, 4 ) 

where w-j = u, W2 = v, w-j =i)   and W4 = h and Aj-| , A^2, a^ etc. are 
functions of x which are complicated and lengthy; for instance, 

A12=V0 (x) 

ai   =Od/\/ho +y„ 

CM =(3^/8) [l-(h0 + 70)(sin2 0/c* )]+l 

C12 =(5r2/16)cos#(sin»/c)v/(h0+i?0 ) 

c, =-(3/2/8)-(sin2^/c2)[d(h0+i?0 )/dx] 

D„=(3r2 /8) [l-(h0+?0  )(sin20/c2)] 

Dx 2 
=0i 2 

d, =c, 

(13) 
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a2 

B22 

b2 

Coo 

=V0 (x) 

=Od/\/h7+Vo 

= (5rVl6)[ cos«(sin«/c)]\/h0+!?0 

= l+rV8+(3rV8)(sin»/c)2 (h„+7„ ) 

c2   =-(Cd/^)[V0(h0 + 7o)
/2]+(5?-2/32) 

[ co s 9 ( s in 9/c ) ] ( h0 + Vo fA: ( h„' +?„' ) 

D21 

D22 

=02 

=C. 

(14) 

III     SOLUTION OF FULL EQUATIONS 

In this section, a method is presented which solves straightforwards 
the full equations (linear simultaneous partial differential equations) for 
the four dependent variables, eqs. (9) through (12). 

a)   Linear ordinary differential equations 

The temporal and spatial changes of the perturbation variables are 
expressed as eq. (15), 

u(x,y,t)=U(x)exp[ iky+pt] 

v( x,y , t )=V(x)exp [ iky+pt] 

>?(x,y,t)=Z(x)exp[ iky+pt] 

h(x,y, t)=H(x)exp [iky+pt] 

(15) 

The perturbations are assumed to be periodic with wave number k in 
the longshore direction, and to grow exponentially with time.   If the real 
part of p which is to be determined later as an eigen-value problem is 
positive, the small perturbation is unstable to develop fully into large bot- 
tom configuration and strong longshore current system. 

Substitution of the above Fourier component decomposition expression 
into eqs. (9) - (12) gives a system of linear simultaneous ordinary differen- 
tial equations, 
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F,U(x) +r1Z' (x)+R, Z(x) + s1H' (x)+S1H(x)=-pU(x) 

F2U(x)-K32V(x)+r2Z' (x) + R2 Z(x) + s2H'(x)+S H(x)=-pV(x) 

f,U' (x)+P3U(x)+G,V(x) +B,Z(x) +SsH(x)=-pZ(x) 

f„U' (x) +G4V(x) =-pH(x) 

16) 

where F., f., G., 
follows,1     x      x 

(i = 1, 2, 3, 4) are functions of x and given as 

y, F1(x)=Od/ [h0(x) +90(x)]    3    rikV„(x) 

'I 

s, 

= Gi =g, =0 

= -(3r2/8 ) (sin0/c)2(ho(x) + ^(x)) 

+ ik (5 rV 16 ) [cos 0 ( sin 0/c ) ] (h0 (x) + Vo (x) ) 

= (3ry8)[l-(sin«/c)2(h0(x)+'?„(x))]+l 

= R, 

= r,-l 

y,. (17) 

F2(x)=dv0(x)/dx 

Q2 (x) =Cd Who (x) + 70 (x) + ikV0 (x) 

R2(x)=(5rV32)[cos«(sin^/c)](h0(x) + '?„(x)fH-(^(x) 

+ ^(x))-GdV0(x)/-[2(h0(x) + '?o(x)^] + ik[(r2/8) 

+ (3r2/8)(sin0/c)2(ho(x)+7o(x))+l] 

r3(x) = (5ra/16)cos0(sin0/c) x/(h0 (x)+% (x)) 

S8(x) =Rs(x)-ik 

s2 (x) = r2 (x) 

f2(x)=g2 = 0 

(18) 

f8 -h0(x)+i?„(x)+Cs 

Fs = hJ(x)+7o(x) 

Gs= ik [h0(x)+70(x)+Cs] 

R3= ikV0(x) 

S3 = ikV0(x) 

ga = ra = So = 0 

(19) 
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Fig.  1    :   Coordinate system and symbols 
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Fig. 2   :   Graph of Hermitian polynomial functions 

mutiplied by exp (-x2/2)/nJ 
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G4=~ ikGs 

F4 = g4 = R4 = U = S4 = s4 = 0 

(20) 

b)    Boundary conditions 

The boundary conditions imposed on the above system of differential 
equations are written as 

U(x) = 0 

U(x)-»0 

Z(x)^0 

H(x)-»0 

(x = 0 ) 

( X^>°°  ) 

(   X  ->M   ) 

( X -»oo  ) 

(21) 

c)   Eigenvalue problem, Determination of p 

Equations (16) together with the imposed boundary conditions at s at 
the coast and the infinity (21) constitute the eigenvalue problem.    Two 
methods of solution may be applied; that is, (a) the finite diference 
approximation of equations (16) reduces them into a set of simultaneous 
linear equations which requires the determinant of coefficient matrix to be 
zero.    (b) The dependent variables are expressed by series of Hermitian 
polynomials which are substituted into equations (16).   By applying the 
minimum weighted residual method, a set of linear equations for the expan- 
sion coefficients is obtained which also defines the eignevalue problem. 

The unknown functions U, V, H and Z of x, are expanded as the 
series of Hermitian polynomial functions.   Figure 2 shows the Hermitian 
polynomial functions of the lower order multiplied by e -xVz   .   As may be 
imagined, these curves seem to represent the real bottom topography.   As 
a consequence, it is expected that the Hermitian polynomial series expan- 
sion will converge rapidly, 

U(x)=   2 *„e-*/2 Hsn-^x) 
n = i 

c© 2 / 
V(x)=   2  /3„e-*/2 H2(n-1)(x) 

n = ] 

2   r„e-*/2 H2(n_i:i(x) Z(x) 

H(x) 2   ' 
n = l 

-^H2(„-1)(x) 

(22) 

where Hn's are the Hermite polynomial functions.   In order to satisfy not 
only the boundary condition of U(x) defined at x=«   but also one at x = 0, 
only the odd order Hermite polynomials are considered in the first ex- 
pression of eq. (22).   While other variables ( V(x), Z(x) and H(x) ) are 
expressed as sum of the even order Hermite functions. 
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The Hermitian series expression eq. (22) is substituted into eq. (16). 
These equations are multiplied by the n-th order Hermite function and 
integrated with respect to x from 0 to infinity.   This procedure is the 
so-called moment method (one of minimum weighted residual methods). If 
we truncate the Hermite expansion at the n-th term, we obtain  the 4n x 
4n dimensional linear simultaneous equations for the unknown expansion 
coefficients.   These equations are represented in the matrix form as given 
by eq. (23).   This matrix system defines the typical eigenvalue problem of p. 

ICO 

1(2) JC2) K(2) l/2) 

1(3) JC3) K;
(3

)        •    L(3) 

IC4) jCO 

/    \ /   \ 
ai «i 

\ «2 «2 

I/» 

Pi Pi 

LC2> 

P* P, 

P, 
rl = -p ?i 

L(3) 

0 
K 

(23) 

where 
A•Y=(-p)Y 

Y = [ «„ «,, - «„, fiv - fiB, r„ - r„, «„ - <?„ ]T 

(23  a) 

In this matrix representation, the elements I, J, K and L- further 
constitute the submatrix system which are to be determined by the equa- 
tions given 

I°'°" (2-fl)!JF '  Jo" e~XV' H^-i (x)H2n_l(x)F1(x)dx •   •   -(24) 

C°(2m_2
0!J7   • j0°°e-^H2m_1(x)[{H'2(n_l)(x)-xH2(n.l)(x)( 

r,(x)+R1(x)H2(n_l) (x)]dx •   •   •   (25) 

|n     (2m 
2     r»    _ %/ 
-1)!^     Jo   e H»-'(xKlHi(n-l)(x)-xHi(rl) 

(x)}s1(x) + S,(x)H2(n_1)(x)]dx (26) 
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and for i = 2, 3 and 4 

Tm _ ^~ f°°»-^.H (   \ m,n       (2(hi-l))!J^     Jo l(m-l)U; 

[-fi(x)H2n(x)+H8n_1(x)Pi(x)]dx •••     (27) 

•CD ^ 
' H2(m_o (x) Ha(n„!) (x)Gj (x)dx 

•   •   •     (28) 

K 

n'n       (2(m-l))f,fF 

m>"     (2(m-l))T^     jo "2(m-0^x; 

[-ri(x)H2n_1 (x)+H2(m_l)(x)Ri(x)]dx •••     (29) 

... 42    f<*>      _x2/2 . 
T (•'  —~>—; , . . . . -• \       e H„fm_, )(,xj* Lm,n      (2(m-l))fJF    Jo Umi;v 

[-H8n_1(x)si(x) + Hir(n_l)(x)Si(x)]dx •••     (30) 

The eigenvalue problem posed by eq. (23) is solved numerically apply- 
ing the Library subroutine supplied for the system HIT AC 8800.   The results 
will be presented in the subsequent section. 

After inspection of the components of eigenvector coresponding to a 
maximum eigenvalue, it was found that the maximum of the eigenvector 
components (that is the coefficients  a„,  /9n, r„    and   <?n  ) corresponds not 
necessarily to     <Sn's, the coefficients in the series expansion of bottom 
deformation.    That is to say, the instability mechanism may sometimes 
dominate in the fluid system rather than in the bottom topography.    In such 
a case, it was also found that the longshore celerity of instability propa- 
gation which is given by Im(p)/k where Im means the imaginary part is 
too much higher than that observed in real phenomena.   This may be spu- 
rious instability caused by the temporally averaged fundamental equation, 
which necessitated us to proceed to the improved analysis to be described in 
the next section.    In consequence of these discussions, the bottom mode max- 
imum eigenvalue is defined for which the maximal value of 32 components of 
the eigenvector corresponds to anyone of the coefficients of   <Jn .    The surface 
or fluid mode maximum eigenvalue is defined for which the maximum conponent 
of the corresponding eigenvector is either one of    an, fia or    rn . 

Several parameters are grouped into the following two parameters, 

0 = ( 3r2/8Gd)(dh/dx)B 

^ = 0S/Cd h„B 
(31) 
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IV. METHOD OF SOLUTION BASED ON RESPONSE TIME CONCEPT 

a) Concept of response time 
To solve analytically a system of Eqs. (9) to (12) seems to be formid- 

ably difficult.   Methods of analysis of the modern fluid dynamics are to 
attack complicated problems not purely mathematically but to solve them 
after simplification of original equations through the physical interpre- 
tation of the basic equations.   This attitude has been established by L. 
Prandtl when he proposed the concept of boundary layer in 1904. 

Turning to our problem, the fact is soon appreciable that the response 
of fluids is quick to the deformation of bottom boundary, while the bottom 
materials respond very much slowly to the changes in the fluid system. 
Therefore, the state of fluid system may be considered to be quasi- 
stationary; that is u, v and    9  are weakly time-dependent only through a 
gradual change in the bottom topography h(x,y; t).   The concept of response 
time has already been proposed and applied in the first paper of a series 
of author's reports on this problem in which the Fourier series expansion 
is used to express the unknown variables as a preliminary attack. 

b) Quasi-stationary solution for fluid system 
In the linearized partial differential equations except the last one, 

i.e.eqs.  (9) - (11), the terms of partial differentiation with respect to 
time are omitted to be solved for a given stationary bottom configuration. 
The unknown variables u, v and 17 and the given bottom depth h are ex- 
pressed in terms of the Hermite polynomials as follows, 

u(x,y) =   2  anK (x)e-x/2eiky 
n —1 

v(x,y) = J/nH^-oWe-^e^ 

9(x,y)=   Z   rnH2(n_1)(x)e-x2/2e'ky \ (32> 

h(x,y) =   S   SnHm(x)e-^eik'' 

(m = 2(n-l) orm = 2n-l) 

In the above equations, the function h(x, y) and thus    dn's   are assumed to 
be given, for the time being; while u, v and rj   , that is an's , £n's and r„'s 
are considered unknown.   In order to elucidate clearly the way of think- 
ing, the general expressions of eqs. (32) are simplified, taking only one 
term of the series but instead multiplying them by expCi^x)    to compensate 
for the elimination of other terms, into eq. (33) 

u (x,y) =«H, (x) e-*'A el(ki*+k>ri 

v(x,y)=/?H, (x)e-x2/2ei(kix+k2>') 

?(x,y) = rHm(s)e-*ei(kiI+ki') 

h(x,y) = <SHm(x) e-^e'Oi^+V) 

(33) 
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Substituting eqs. (33) into eqs. (9) - (11) and applying the moment method 
(i.e. integrating both sides between (0 , °°) after multiplication by Hm ( x ) f 
one obtains the linear simultaneous equations for the unknown coefficients, 
a, P and T ; 

(34) 

where 

Ii=^00C{ik1Ail(x) + ik2At2(x)+ai(x)}HI(x)-A11(x)H2(xDHm(x)e-x2/8 dx 

Ji=/„00C(ikIBil(x) + ik2Bi2(x)+bi(X)}H2(x)-Bil(x)H3(xDHm(x)e-x2/2 dx 

Ki=^ooC{ik10il(x) + ik2Ci2(x)+ci(x)}Hm(x)-Cil(x)Hm+i(xDHm(x)e-^^ dx 

Li=r°°C{ikir)tl(x) + ik2Di2(x)+di(x)}Hm(x)-Dil(x)Hm+,(xDHnl(x)e-x2/8 dx 

I. Jl K,S v 
I, J2 K2 /? = - ^ L2 

I, J3 K3/ Js ^,J • 

Therefore, the unknown coefficients   a , /9 and   r are obtained 

II J. c -l 

It J2 K2 L2 

I, Ja K, L, 

(36) 

c)     Instability of bottom boundary 
If the coefficient     d is considered to be a slowly varing function of 

time as suggested by the response time concept, the velocity field u and v 
are also weak functions of time. 

Equations (33) together with eq. (36) are substituted into the con- 
servation equation of bottom material transport, eq. (12), to obtain 

Hm(x)- »(x) 

»(x) 
:CS(«,( ik1H1(x)-H3(x)) 

+ /?»( ik2)H2(x)) + s 
(37) 

where  e is a residual term and    a* = a/<5,       /9„ = f)/d    .   Applying the 
moment method, (that is multiplying Hm (x) on both side of the above 
equation and integrating in the range (o, °°) , one obtains the solution, 

<5(t) =Aept 

where A is an integration constant and p is given by 

(38) 
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P=   J^m)  C«*/°°{ ikl H1(x)Hm(x)-H2(x)Hm(x)}e-x2'/2 dx 

+/9*/o°° { ik2 H2 (x)Hm(x)e-x2/2 dx } ) 

The initial perturbations may be stable or unstable depending on the 
sign of the real part of p, 

R(p) ^> 0   '.   unstable 

R(p)  = 0   I  neutral 

R(p) < 0   :   stable 

The maximum value of R (p) has been sought for a family of parameters kj 
and m for the fixed values of the langshore wave number of rip current 
and cusp    k2    , the incidence angle of waves 6 , and the bottom slope dh/dx. 

V. THEORETICAL RESULTS AND COMPARISON 

WITH FIELD OBSERVATIONS 

a)      Stability diagram 
Figures 3 a) and b) show examples from results of this eigenvalue 

problem obtained by the methods described in III and IV, respectively, 
(Hino (1973 a and b)).   In these figures, the abscissa is the wave number 
k in the direction of shoreline, and the ordinate is the real part of the 
maximum eigen values.   It is evident that the most unstable mode appears 
at k = 1 .6, that is the wave length in longshore direction of rip current 
and cusp is 

1=2»AS4 } (40) 

Since unit of length is chosen as a distance from shoreline to breaker 
zone, the most prefered wavelength Lr of rip and cusp is about four times 
the distance from the shore to the breaker zone   LB > 

LrS4LB / (40a) 

b) Theoretical prediction of flow fields and bottom topography 
Simultaneously with the determination of eigenvalue p, the eigen 

vectors which are coefficients of the Hermite series are determined. 
Therefore, the rip current and cuspidal bottom system are reconstructed 
from eq. (22), and shown in figures 4, 5 and 6.   Figure 4 illustrates 
the results of theoretically determined flow field, bottom topography for 
the case of normal wave incidence.    The cellular flow field develops and 
the so-called rip channel is to be formed.   Figures 5 and 6 are also the 
theoretical results for an oblique wave incidence.    It is noted that the 
longshore current becomes to meander and the sand bars to develop. 

c) Comparison with field observation 
Figure 7 cited from the report on field experiments (Public Works 
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9tmax(/» „.*) 

A -. 10' 

, k 
,7ig. 3 a)   :   An example of the instability-curve determined 

by the method described in III. 

*~k 

Fig. 3 b)   :   An example of the instability-curve determined 

by the method described in IV. 
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Fig. 4   :   The cellular pattern of 

secondary current (left) and 

perturbation in bottom topo- 

"graphy - the shaded areas are 

scoured - (right), for normal 

wave incidence,   k=i.6 > 0=2, 

^=103. 
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Fig. 5   :   The cellular partern of 

secondary current (left) and 

the accompanied perturbation 

in bottom topography - the 

shaded regions are scoured 

(right);  0=10°, k=0.6,  0=2, 

,1=103. 
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Fig. 6   :   The meandering flow pattern composed of the basic 

longshore current and secondary perturbation flow (left), 

the perturbation in mean water elevation (middle) and the 

perturbation in bottom topography - the shaded areas are 

scoured (right) ;    0=10°, k=1 .6, <Z>=20,  /f=103. 
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Fig. 7   :   Comparison between the theoretical prediction and 
the field observation (cited from the report of Public 
Works Research Institute, Ministry of Construction) 
on the relation of Lr 3? 4.0 Lg, eq.  (40 a). 

'////////////////////////////////////////////////////, 
r \   r 

'//////'• 

Fig. 8   :   Schematic representation of cellular flow patterns 
(above left) from the papers by Horikawa et al. (1971) 
and Sonu (1972), and of rip current and rip-channel 
(right) drawn schematically by the present author 
based on the field observation by Sonu (1972). 
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Fig. 9   :   Field observation of 

meandering shore currents 

for oblique wave incidence 

(I))    CW^ iii hollom di'plti < 

Zv,-,/4&~ 

i.c)   Cuspidal coast and ci'csc 

(fully developed stage) 

Fig.  10   :    Theoretically estimated change in bottom depth 

contour and formation of cuspidal coast and 

crescent bar. 
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(a) 

Fig.  11    :   Theoretically estimated 

bottom contour (a) and longshore 

meandering bars by aerial photography (b) 
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Research Institute, Ministry of Construction) represents the relationship 
between the wave length of rip current generation Lr  and the distance 
from shore to breaker zone   LB , showing a good agreement with the 
theoretical prediction, eq. (40a). 

Figure 8 is the schematic representation of results of field observation 
by Horikawa et al (1971) and Sonu (1972) of longshore current system when 
waves are incident normally.    These figures agree qualitatively with figure 
4. In comparing the theory with expriments, it should be remarked that 
the theory predicts the initial stage of developments which may be treated 
by linearization, while field data are obtained in general for the fully 
developed stage where the nonlinear effects predominate. 

Figure 9 illustrates schematically the results of field observation 
performed by Horikawa et al (1971) and Sonu (1972) which are to be com- 
pared with the theoretical results, figures 5 and 6. 

The process of development of cuspidal coast and crescent bar may 
be explained by the author's theory.    The cyclic perturbation in bottom 
depth accompanied by periodic shore current system (figure 10a) ), if it 
is superposed on the original bottom configuration, composes undulating 
contour lines (fig.  10b)).   If the instability mechanism develops further 
into the nonlinear region, the offshore currents are intensified, the 
onshore currents becoming weak.   At the same time, shorelines will be 
cyclically excavated and deposited (fig.  10 c) ). 

Formation of longshore meandering bars (fig.  11b)) may also be 
explained by the superposition of perturbed bottom and the original contour 
line (fig. 11a)). 

VI.   CONCLUSION 

Formation of the systematic feature of shore current and shore bottom 
topography is shown to be results of the hydrodynamic instability caused 
by the radiation stresses.   The linearized perturbation equations for the 
vertically averaged velocity components u and v, the water surface 
elevation   TJ   and the scouring depth of bottom h are derived.    The depend- 
ent variables are assumed to have functional forms such as u (x, y, t) = 
U(x)exp ( iky + pt ) and so on.    Consequently, the fundamental partial 
differential equations are reduced to the simultaneous ordinary differential 
equations for variations in the offshore direction.    These constitute an 
eigenvalue problem for the temporal exponential growth rate p under the 
given boundary conditions. 

Two methods of solving the problem are presented.    One is the 
moment method (a procedure of the minimum weighted residual methods) 
based on the Hermite polynomial expansions of the dependent variables. 
The other is the quasi-stationary analysis based on the response time 
concept.    Both methods reduce the simultaneous ordinary differential 
equations to the matrix form of eigenvalue problem. 

Results of computation show that the system of shore current and 
bottom topography is hydrodynamically unstable for a small perturbation. 
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For a given bottom movability, the temporal exponential growth rate has 
a peak value at a certain longshore spacing about four times a distance 
from shoreline to breaken zone. 

The cellular flow patterns of perturbed secondary currents as well 
as the contour maps of bottom scouring and water surface elevation are 
shown.    The several results obtained in this investigation conform with 
results of qualitative field observations reported by oceanographical 
geologists and coastal engineers . 
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