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Abstract 

Sediment transport in random waves at constant water depth is analyzed 
by dividing the flow field into two regions—the internal region and the 
boundary layer region.  The suspension and transport of sediment in these 
two regions are treated separately. The total transport is then obtained 
as the total of these regions through matching boundary. 

In the bed layer, the load concentration is assumed to be proportional 
to the specific weight of the sediment and to the probability that the fluc- 
tuating lifting force exceeds the weight of the sediment. The bed load is 
then transported by the secondary flow (which is unidirectional) in the 
boundary. 

In the internal flow region, the sediment suspension is treated as a 
diffusion problem with the intensity of diffusion to be proportional to the 
amplitude of fluid particle motion.  The transport velocity is assumed to be 
the same as the mass transport velocity of the wave. 

The predominant mode of transport is found to be suspended load. The 
total transport in a wind-generated wave field can be expressed as a power 
law of wind speed. For the case tested, the power should be of the order of 
4. 

1.  INTRODUCTION 

The analysis presented in this paper applies only to regions well beyond 
the surf zone where the flow field, though irregular in appearance, can be 
described in reasonable detail without going into micro-structures.  In other 
words, the water surface variations, the internal flow characteristics, and 
the pressure field can still be expressed in manageable mathematical expres- 
sions in gross terms. 

To facilitate calculations of sediment motion, the flow field is divided 
into two zones. The upper zone, where viscosity plays a negligible role except 
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on water mass transport, is termed zone of suspended load.  In this zone, 
sediment is in a state of suspension duj2 to the combined effects of turbulence 
and orbital motion of fluid mass.  The lower zone, which is a thin turbulent 
boundary layer near the sea bed created by wave motion overhead, is termed 
bed load layer following Einstein's terminology.  In this zone, sediment 
particles roll, slide, and sometimes jump. As stated by Einstein (1972), 
the measureable thickness of this turbulent boundary layer is usually rather 
small; 5-10 m.m. are very common values. However, since it is directly 
adjacent to the sea bed, it could be very effective in sediment transport. 
The suspended load can be considered to occupy the full water depth. There- 
fore, although the sediment concentration may be relatively small, the trans- 
port rate may still be appreciable. From these observation, sediment trans- 
port in both zones need proper attention. 

Therefore, the analysis naturally breaks down into investigating the 
following four parts systematically:  1) Bed Load Concentration, 2) Bed Load 
Transport, 3) Suspended Load Concentration, and '4) Suspended Load Transport. 

The problems are first formulated for monocromatic wave train and the 
results are then generalized for random waves. The total sediment transport 
rate is obtained through matching boundary conditions of the two zones. 
Because of the complicated mathematical formulations, computer programs are 
developed to facilitate numerical computations. 

2. BED LOAD 

Concentration—Let the bed-load concentration be expressed as C0 = NgW where 
Ns is the number of particles per unit volume inside the bed layer and 
W = A]D3ys is the dry weight of sediment particle.  Since in a unit volume 
Ns is inversely proportional to the size of the sediment particle and is 
proportional to the probability, p, of a sediment particle to be set in motion, 
we have 

Co " Ao P Ys »> 

where AQ is an empirically determined constant.  The probability, p, is equal 
to the probability that the instantaneous lift exceeds the weight of the 
particle (Einstein, 1950), i.e., 

p = p (L + L'> W) 

where L is the mean lift force and L' is the fluctuating component of the lift 
force. 
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On the further assumption that in a turbulent boundary layer L' is a 
random process following a normal distribution of zero mean and standard 
deviation proportional to the mean lift (a = ri L, where ri is a constant 
of proportionality), Einstein arrived at the following expression for the 
probability distribution function 

= 1 

*r  n 

2 
z 

e " 2 dz (2) 

1 

2A3 
where BA =    ; D is equivalent diameter of the sediment particle; C is the 

lift coefficient of sediment particle; A is a constant and    =  s  p g 

-2 
P u 

is known as the flow intensity function in which u is the amplitude of the 
oscillatory flow velocity in the direction of wave propagation. Therefore, the 
problem of determining the bed-load concentration, aside from a number of con- 
stants of proportionality, becomes a problem of determining the horizontal 
velocity in the boundary layer. 

Analogous to the laminar case (Schlichting, 1960), Kalkanis (1964) pro- 
posed the following expression for the horizontal velocity component in a 
fluctuating furbulent boundary layer. 

u = UQ {1 + f±
2  - 2f cosf2}

1/2 cos(wt + 6) (3) 

f, sinf. 
-13^ 9/^ -112 

in which f = 0.5 e ^^- y, f = 0.5 (By) '  ~ 0.3$y, 8 = tan    , and 
1        aBD    2 1 - f cosf2 

3 = /in  . Therefore, the bed-load concentration in a monocromatic waye train 
/ 2y 

can be determined through Eqs. Q-), (21, and QL. For, random waves, the.-velocity 
is expressed by 

u = Xu  [cos (k.x - (D.t + e.) - f, . cos (k.x - u.t + f„. + e.)l  (4) 
. oi       I    l    i'   li    v i    l    2i   I 

where £ U . = / S(u)dio and S((u) the spectral density function of wave energy. 
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Transport 

Within the boundary layer of a wave field, the first order effect is to 
relieve the sediment particles of all or part of their weight so as to bring 
them into a state of incipeint equilibrium. At this state, if there is no 
other incidental current, the net transport will result only from higher order 
effect. 

Now treat the mass transport velocity as the second order effect such 
that, to the second order, the velocity field inside the boundary can be 
expressed as; 

(u + U)e + (v + V ) e ex       e  y 

where U and V are the second order velocity components and are of the order 
of eu and ev, respectively. The e is a perturbation parameter,of the order 
of ak for deep water wave and hk for shallow water wave.  Substituting the 
above expression into the boundary layer equation in the horizontal direction 
yields, 

3(u + U ) . 8(u + U )2 , 3(u + U )(v + V )    , a  ,  „2  ,  , „ ,   ,c. v e'+      e'    + _ e^j e/_ = - 1 &g_ + ,J)  (u + U„)   (5) 
3t        3x 3y 

e 

To the second order, the pressure inside the boundary layer is equal to that 
at the outer edge of the boundary layer, the mean momentum equation inside the 
boundary layer reduces to a balance between shear stress and Reynolds stress: 

—     2u 3(uv)     a e (6) 

"^7 
From Eq. (3) or (4) the vertical velocity component inside the boundary 

layer can be obtained through continuity relation. The shear stress uv can 
then be solved through the fact that u and v are orthogonal functions. The 
second order horizontal velocity U is then solved from Eq. (6) when the 
following boundary conditions are specified: 

(1) At the outer edge of the boundary layer, the mean shear stress is 
negligible. 

 e = 0    at    y = » 
3y 
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(2) At the bottom, the velocity is zero 

"e " °     at    y - 0 

The solution obtained is in the Eulerian reference frame. The true mass 
transport velocity,which is a Lagrangian property, is obtained through trans- 
formation of coordinate (Longuet-Higgins, 1953) by 

U = Ue+(fudt)ll+<Hl7 (?) 

The solution is (Liang and Wang, 1973) 

0.5 k u 2      -I; 1.5 E 2 - 0.2256.2 

U = I     x    01 5- {-e 1 sin0.36,y[E y + £ j±-] 
i 2v(E1 + 0.09et ) E  + 0.09P± 

-F v 1*2-^     Ei 
-e    iy cos0.3g.y[0.36.y + ± — ] 

l I 2 2 
E±    + 0.098^ 

0.15 6,      -2E y 
+ —5-=-i (e      x    - 1) +      X'2 gi    El      . 

1 E      + 0.096^ 

r. k U ?        -v _2E^ 
+ I    i    oi      {1 - e    1    cos0.3g,y + 0.25 e      x 

i    2 to 1 

-E.y 
+ 0.5 e    x    y[EjCos0.38.y + 0.36  sin0.3B.y]} i x i i 

0.5 k.   u    2 -E y 2 -E y 2 
+ 1  ,     1    Pl     o       {0.5(E       e    1)       -    0.5(0.3B.e    *) 

i 2u±CE      + 0.09B± ) i 

"Eiy 2 2 + 0.5 e    x    cosO.SB^t-E      + (o.3g±)^] 

-E.y 
- 2(0.5)E 0.3B±    e    x    sinO.36^} (8) 

,         _        133 sinh(k-;h> 
Where Ei a^.D    1 
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3.  SUSPENDED LOAD 

Concentration 

Generally, sediment suspension in a fluid media is treated as a diffusion- 
dispersion process.  This line of approach is followed here.  The diffusion 
equation takes the following form: 

I7 + V • (CY ) = V • (e VC) (9) dt ~s        m 

where C is sediment concentration (Mass/volume); V is the particle velocity 
vector and e is the diffusion coefficient. Tor Suspended sediment in a wave 
field, the concentration and velocity can both be divided into three components: 

C = C(x,y) + C (x.y.t) + C (x,y,t) 

V = V + V + V' 
_s  „  ~w 

Here. C and V are the mean values. C and V are the wave induced components, 
~ w    _w 

and C", V are the turbulent fluctuations. Substituting C and V into the 

diffusion equation and taking the time average yields 

V- (C V + C V  + c*V') = V- (e  VC) 
-   W~W     - m (10) 

Integrating and assuming C = 0, VC = 0 at free surface the following equation 
is arrived at: 

CV = e VC - cfT" - (Pv* (11) m      w_w 

The right hand side .of the above equation represents the effects of 
molecular diffusion, wave agitation and turbulent diffusion.  In the usual 
context of the diffusion process (Hinze, 1962) it is further assumed that 

C V - -e VC ;  CV = e' VC w„,w    w   ' 

where e and e' are, respectively, the diffusion coefficients of wave motion 
and turbulence. Since molecular diffusion is usually negligible, the task of 
solving Eq. (11) rests on the estimation of e and e". Following Prandtl's 
mixing theory, these coefficients are assumed to be proportional to certain 
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characteristic velocities and mixing lengths. For sediment suspension in 
a wave field, it is reasonable to assume that the characteristic velocities 
for both e^, and e"- are proportional to the amplitude of the vertical 
velocity component of the wave field. Furthermore, if mixing lengths 
are treated as constant in the flow field, a commonly adopted assumption, 
the diffusion equation becomes 

—      dcT CV = ov H£ 
m dy (12) 

where a is a constant of proportionality and Vm is the amplitude of the 
vertical velocity component. For small amplitude waves it is expressed 

Vm =  • ,,„ sinh ky sinh ky 

where a is the wave amplitude; w is the angular frequency; k is the wave 
number, h is the water depth and y is the vertical coordinate measured from 
eea bottom, as shown below: „ 

Figure 1. Definition Sketch" 

For regular waves, the solution of Equation (12) is: 

ky p      tanh tf-) 
— - t —y- ]R as) 
r     tanh (——) 

in which y is a reference level where C = C and R = —^2  where G is 
r r        cr k a to 

the mean particle settling velocity. 

For random wave systems, the suspended sediment distribution function 
can be shown as equal to 

hi 
C r r Tanh 2   .R. 

C   i       Vr  X (14) 

r  1  Tanh -±£- 
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where R. =  • i  and 1 a." -   I  S(u))dto. For shallow water, both 
X        > 0 o  k^a JO .      i     ' o 

Equations (13) and (14) reduce to power law. 

Transport—In a wave field, it has been shown by Longuet-Higgins (1953) 
that the field equation for mass transport, correct to the second order, 
takes the following form: 

v *<ui + vi> j' *sdt + v   J ^fdt^ (15) 

where 1  is the mass-transport velocity stream function, u and v are the first 
order velocity components, and \fr    is first order stream function.  In the 
present case of random wave field, the first order velocity components 
and stream functions are, respectively: 

cosh k y 
U = T U .  . ,  ,   cos(k.x -u .t +!) 
v L.    oi sinh k.y     x    x    i 

x x 

a. . sinh k.y    ,;      ^ , ^ \ 
. _  v i i  j/_ cos (k.x - »t + E .) 

Vs~ ~ L    k.  sinh k.h     i    i    x 
i  x       x 

where E is the random phase angle.  Substituting the above equations into 
Equation (15), we have 

2 

V4 T = V4 (I J^- sinh 2 k.y) ("> 
i ^i 

Let i|<(0) = 0 0-7) 

then the requirement of zero net mass transport in the whole field yields 

Kh) = 0 0-8) 

at the outer edge of the interior region.  Furthermore, at the bottom of 
the interior region (y = 0), the horizontal velocity must be matched with 
the outer edge velocity of the boundary layer; i.e., 

fl    U 3x
 ly=0 " 
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where Ura can be deduced from Equation (18). With the boundary conditions so 
defined, solution of <\> can be obtained from Equation (16). The mass trans- 
port1 velocity can then be obtained through differentiation. The solution is 

V - Z 'iVi 
i 4 sinh^h 

3 sinh2 k h  2 
2 cosh 2ki^ +   2kh       <h-2 J) 

i      n 

+ I 
V  A. 
oi i 

i 4v(E±
2+ 0.096 2) 

1.26.Ei 

E "+ 0.09$,. 

0.3  "i 
2 " 4   E. 

l(^-2b:> + 1 (20) 

4.  RESULTS 

Before examining the case of sediment transport in random waves, it 
is instructional to compare our results with some of the existing information 
which, unfortunately, is limited to monocromatic wave trains. 

Behattacharya (1971) studied the sediment suspension in shoaling waves 
experimentally. Those data obtained near horizontal bed were compared with 
Equation (13) and the value of a  was found to be 5.15 m.  (p-/p = 2.83)(Fig. 2). 
The mass transport velocity for a regular wave train in a constant water depth is 
illustrated in Fig. (3) with a roughness of D = 0.0005 to .00015.  The theore- 
tical results of Longuet-Higgins (1953) and Hwang (1970), and the experimental 
results of Russell(1957), are also shown in the same figure to offer some com- 
parisons. 

For random waves, the case illustrated here assumes the following input 
condition: water depth (h) = 7.5 m., density ratio (Y /Y) 

= 2.83, viscosity (v) = 
_ c     o s 

0.976 x 10  m /sec, mean sand grain size (D) = 0.65 m.m. The random wave is 
generated in accordance with the deepwater wave spectrum of Pierson and 
Moskowitz (1964). 

For the bed load, Table 1 shows the concentration for various wind speed: 
Figure 4 illustrates the mass transport velocity distribution inside the boundary 
layer.  For the suspended load, Figure 5 plots the concentration for various 
wind speeds; the mass transport velocities are shown in Figure 6. 

The total transport of sediment (the summation of bed load and suspended 
load) is shown in Figure 7. 
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Bed-Load Concentration 

TABLE 1 

h = 7.5m    ,   ps/p     = 2.83     ,   V = 0.976 x Iff6 m2/seC     ,  D - 0.65• 
2,3 , 

8(d))   =   (0.0081 g  /a )   EXP   [-0.74   (g/vu)   ] 

v  (knots) (PPM) 

20 0.227 0.723 1201.324 
25 0.079 0.882 1465.064 
30 0.035 0.913 1516.925 
35 0.018 0.923 1533.957 
40 0.010 0.928 1541.190 

Although the wave spectrum chosen here may not be compatible with the finite 
depth case, the results illustrated above revealed a number of interesting 
facts: 

1) The bed load is of minor importance in sediment transport if the 
wave is the only factor under consideration. 

2) The suspended load concentration increases rapidly with increasing 
wind velocity.  However, the gradient of the suspended load in the water 
column decreases as wind speed increases. 

3) For small wind velocity (or small waves) the shape of the mass 
transport velocity distribution in the vertical direction is similar 
to that obtained in the laboratory; the velocity possesses forward com- 
ponents at the surface and bottom layers with return flow in the middle. 
As the wind speed increases,the forward velocity component at the surface 
layer diminishes and eventually becomes return flow, thus, the wave mass 
transport advances with the wave celerity at the lower half of the water 
column and returns from the upper half. 

4) The direction of the sediment transport is with the direction of 
wave propagation; the reate of transport can be approximated by a power law 
of wind speed; i.e., 

Qs = A(V)
n 

where A is a constant. For the case studied, the value of n is approximately 
equal to 4. 
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Figure 4 

Mass transport velocity distribution inside the boundary layer under a 
random wave train. 
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Figure 5 Suspended Sediment Concentration vs. Wind Velocity 
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Figure 6 

Mass transport veracities under random waves 
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Figure 7     Rate of Sediment Transport vs. Wind Speed 


