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ABSTRACT

The wasp Anisopteromalus calandrae is a small ectoparasitoid that attacks stored product pest beetle larvae that
develop inside grain kernels, and is thus a potential insect control tool. The components of 4. calandrae venom
have not been studied, but venom from other organisms contains proteins with potential applications, such as
pest management tools and treatments for human diseases. We dissected female A. calandrae and collected
venom and associated glands. Using high throughput sequencing, a venom gland transcriptome was assem-
bled that contained 45,432 contigs, 25,726 of which had BLASTx hits. The majority of hits were to Nasonia
vitripennis, an ectoparasitoid from the same taxonomic family, as well as other bees, wasps, and ants. Gene
ontology grouped sequences into eleven molecular functions, among which binding and catalytic activity had
the most representatives. In this study, we highlighted the most abundant sequences, including those that are
likely the functional components of the venom. Specifically, we focused on genes encoding proteins potentially
involved in host developmental arrest, disrupting the host immune system, host paralysis, and transcripts that
support these functions. Our report is the first to characterize components of the 4. calandrae venom gland that
may be useful as control tools for insect pests and other applications.
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INTRODUCTION

Parasitoid wasps are a diverse group of insects with an esti-
mated 150,000-600,000 species that utilize a large variety
of host insects, at different developmental stages, and on
different parts of the host (Quicke, 1997). Parasitoid wasps
are generally divided into two main categories, endoparasitic
and ectoparasitic. Endoparasitic wasps deposit an egg or
eggs inside the host, while ectoparasitic wasps deposit one
or multiple eggs and complete development on the cuticle
of the host. It is hypothesized the main effect of endopara-
sitoid wasp venom is temporary paralysis and immune sup-
pression of the host to protect the wasp’s offspring from
encapsulation or other host immune responses (Parkinson
et al, 2002b; Vincent et al, 2010; Mortimer et al, 2012). The

primary survival strategies of ectoparasitoid wasps are to
alter host development and metabolism to provide nutri-
tional resources for their offspring (Rivers and Denlinger,
1994; Nakamatsu and Tanaka, 2003). Although wasp strat-
egies differ between types of parasitoid and species, in
all cases the parasitoid must manipulate the host to make
the environment conducive to its own needs (Rivers and
Denlinger, 1995; Richards and Parkinson, 2000; Parkinson
et al, 2001; Rivers et al, 2002; Danneels et al, 2010; de
Graaf et al, 2010a).

Changes in host physiology after parasitoid attack include
specific responses, such as developmental arrest, paralysis,
changes in lipid storage, and suppressed immune response
(Beckage and Gelman, 2004). The ectoparasitic wasp genus
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Euplectrus injects venom that prevents molting and evokes
the premature appearance of storage proteins in the hemo-
lymph of the host, presumably for the benefit of parasitoid
nutrition (Coudron and Brandt, 1996). The greater wax
moth, Galleria mellonella, becomes completely paralyzed
after attack from Bracon hebetor, and paralysis occurs with
as little as one part venom to 200 million parts host hemo-
lymph (Weaver et al, 2001). A recent paper followed the
transcriptional changes within flesh flies after attack from
the ectoparasitoid wasp Nasonia vitripennis and found a
large group of developmental genes reduced in expres-
sion compared to normally developing flies (Martinson
et al, 2014). The authors identified a family of genes from
the enhancer of split complex that may be involved in
initiating apoptosis of neural tissue, in turn causing host
development arrest.

Studies have also looked at the venom components respon-
sible for the changes in host phenotype. In N. vitripennis,
79 venom proteins were identified; over half were novel
proteins not yet associated with wasp venom (de Graaf
et al, 2010a). The most highly represented proteins were
serine proteases and their inhibitors (Danneels et al, 2010;
de Graaf et al, 2010a). Similar proteins also were found
in the endoparasitoid wasp Chelonus inanitus using an
expressed sequence tag and proteomic approach (Vincent
et al, 2010). Using transcriptomics and proteomics, Colinet
et al (2014) identified 16 venom proteins from the aphid
parasitoid wasp, Aphidius ervi, including three y-glutamyl
transpeptidases that were the most abundant and involved
in intracellular redox status, cytosolic iron metabolism, and
inflammation. A functional study of the ectoparasitic wasp
Eulophus pennicornis, a parasitoid of late-instar larvae of
Lacanobia oleracae, identified a group of metalloprotein-
ases (EpMP1-3). Injecting host larvaec with recombinant
EpMP3 resulted in host inability to appropriately molt and
induced partial mortality (Price et al, 2009).

At the molecular level, most of the available literature is
found within the Drosophila melanogaster/endoparasitoid
system. Injection of a wasp egg into the D. melanogaster
cuticle elicits a series of immune pathways including
Toll, prophenoloxidase (proPO), Imd, JakStat, INK, etc.,
ultimately leading to lamellocyte migration, encapsula-
tion, and melanization of the wasp egg (Rizki and Rizki,
1990; Sugumaran, 2002; Sorrentino et al, 2004; Matova and
Anderson, 2006; Tang et al, 2006). This specific cascade
is not observed in ectoparasitoid wasps, but general host
immune responses are likely similar.

Because of their chemical properties, venom proteins can
benefit humans via compounds to fight disease. There are
several examples of medicinal venom compounds isolated
from snakes (Koh et al, 2006), scorpions (Ding et al, 2014),
and spiders (Saez et al, 2010). For example, cobra venom is
being developed into therapeutics to help those who suffer
from arthritis (Gomes et al, 2010), antitumor-analgesic pep-
tide found in the Chinese scorpion has anti-cancer properties
(Liu et al, 2003), and GsMtx-4 in the Chilean rose tarantula
has properties to reduce pain associated with surgery, labor,
inflammation, and burns (Park et al, 2008). In insects, pro-
teins from the ant (Pachycondyla goeldii) and the honey-
bee (Apis mellifera) also are being examined for medicinal
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potential. P goeldii is part of the Ponerinae subfamily, with
peptides appropriately named ponericins, exhibiting anti-
bacterial and insecticidal properties (Orivel et al, 2001).
Similarly, the honeybee has antibacterial compounds, api-
daecins, which are induced in response to infection and are
active against a range of human pathogens (Casteels et al,
1989). Honeybee venom also has potential in cancer therapy
(Orsolic, 2012). However, in contrast to parasitoid wasps,
these organisms use venom to stun or kill prey, and do not
deposit an egg on or within the host. Thus, these venoms
may be less complex than those of parasitoids.

The ectoparasitoid wasp Anisopteromalus calandrae
is a cosmopolitan wasp that shares a family and sub-
family (Pteromalidae and Pteromalinae, respectively) with
N. vitripennis, the current wasp model with a sequenced
genome and other genetic tools (Werren et al, 2010).
A. calandrae is a small (2.25 mm) ectoparasitoid that
attacks late-instar stored product pest beetle larvae that
develop inside grain kernels, such as Sitophilus zeamais
(maize weevil) and Rhyzopertha dominica (lesser grain
borer). The female wasp locates a grain kernel that contains
a host larva, drills into the kernel with her ovipositor, injects
a venom cocktail into the host, and deposits an egg on the
larva cuticle covering the injection site. Egg placement is
perhaps to give the newly hatched larva a place to attach
its mouthparts. The wasp’s venom cocktail induces changes
within the host to allow for development of the parasitoid
offspring. When the parasitoid larva hatches, it uses the host
nutrients for the remainder of its development. The most
noticeable phenotypic effect of the venom in the host larva
is paralysis, important for the placement of the egg on the
host cuticle, and in some cases, allows for host feeding by
the female wasp as well (Gokhman et al, 1999). The molec-
ular strategy of the wasp venom and the host’s molecular
reaction is unknown.

A. calandrae is capable of significantly reducing host popu-
lations, and is being used as a biological control agent in
the U.S. and other countries (Ahmed, 1996; Ngamo et al,
2007). Despite its common agricultural use, the mechanism
by which the wasp controls the host and the components
of the venom cocktail are unknown. In this study, we used
transcriptome sequencing to analyze the venom gland,
venom reservoir, Dufour gland, and ovipositor of female
A. calandrae. This work is the first to describe the venom
transcriptome of a stored product insect parasitoid wasp.
We highlight transcripts in highest abundance and those
most likely to be the functional components of the venom.
We mainly focus on transcripts that encode proteins with
potential to paralyze, alter developmental time, or inhibit
the immune response of the host.

MATERIALS AND METHODS

Insect cultures

A. calandrae and its host were kept in mass culture at the
Center for Grain and Animal Health Research, in a chamber
maintained at 30 £1°C, 65% RH, and 16L:8D photoperiod.
Wasps were cultured on wheat infested with Rhyzopertha
dominica as a host. To produce a cohort of beetle larvae,
100 adult beetles were placed in 1 L jars filled with wheat
and allowed to oviposit. After 1 week, adults were removed
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from the wheat using a sieve and the jars were returned to
the chamber. After 2—4 weeks the wheat kernels contain-
ing developing beetle larvae (third-fifth instar) were divided
into 0.25 L portions and placed in 0.5 L jars. Twenty wasps
of mixed sex were added to each of the jars. Wasp progeny
emerged after about 12 days.

Dissections

Female wasps were aspirated from culture and placed into
a small glass vial for dissection within one wk of emerging.
Wasps were placed on ice until non-mobile and were dis-
sected in phosphate buffered saline (PBS). Venom glands,
venom reservoir, ovipositor, and Dufour gland were removed
with fine-tipped forceps by gently pulling on the ovipositor
(Howard and Baker, 2003). Approximately 30—50 tissue sets
were placed in a 1.5ml centrifuge tube with 100ml RNAlater
(Qiagen, Venlo, Limburg). A total of 150 females were dis-
sected. Groups of venom glands and associated tissues were
pulled toward the bottom of the tube via low-speed quick
centrifugation to ensure all tissues were covered with RNA-
later and kept at 4°C until processed.

Sample preparation and sequencing

Samples were centrifuged quickly at low speed and excess
RNAlater was removed from the top of the tube. Sam-
ples were covered in TRIZOL and cells were disrupted
(BulletBlender, Next Advance Inc., Averill Park, NY, USA)
for 2 min at setting 8. Tubes were spun briefly and superna-
tant was collected. Total RNA was recovered using a mini
prep kit (ZymoResearch, Irvine, CA, USA).

Samples were pooled and mRNA was collected using
Agilent Technology Dynabeads mRNA DIRECT kit (Santa
Clara, CA, USA). cDNA libraries were prepared via a 400
bp RNAseq v2 kit according to the standard input protocol
(Life Technologies, Grand Island, NY, USA). The resulting
sample was divided into two, diluted, and sequenced on a
Personal Genome Machine with 318v2 chip (PGM, Life
Technologies) as technical replicates.

Data analysis

Sequences were assembled into contigs using DNASTAR
SeqMan NGen (Lasergene Genomics Suite v12.0.9,
Madison, WI, USA), resulting in 45,432 contigs with an
N50 of 848 bases. Raw contigs have been uploaded to NCBI
Sequence Read Archive (accession number PRINA301414).
Contigs were submitted to BLAST2GO PRO CloudBlast
(B2GO, Valencia, Spain) using a BLAST strategy to maxi-
mize resources. Initially, we limited BLASTx to only the
arthropod database and hits to the top 5, <e'®. A second
BLASTx of non-hits to all databases (nr) also was limited to
5 top hits and <e. Contigs with BLAST hits were mapped
to GO terms, and submitted to InterProScan in B2GO PRO.
BLAST statistics were obtained in B2GO PRO. Data files
were compared to the contig file to calculate the number of
transcripts per contig using Q-seq (DNASTAR Lasergene
Genomics Suite v12.0.9, Madison, WI, USA). Individual
sequences of interest were translated via B2GO PRO, and
conserved domains were found with either B2GO PRO or
NCBI conserved Domain Search (Marchler-Bauer et al,
2015). Specific translated contigs of interest were sub-
mitted to the protein database at NCBI, using BLASTp.
Protein alignments were assembled via MUSCLE in either
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MEGA (Tamura et al, 2013) or DNASTAR MegAlign Pro
(DNASTAR Lasergene Genomics Suite v12.0.9, Madison,
WI, USA). Maximum likelihood phylogenetic trees were
made in MEGA using default parameters and 500 iterations
of bootstrapping analysis.

RESULTS AND DISCUSSION

Sequence statistics

Venom glands from 4. calandrae were pooled and incor-
porated into one library, and two technical replicates pro-
vided almost 8 million reads with average sequence length
of 125 base pairs. Sequences were assembled and aligned
into 45,432 contigs, and BLASTx analysis found 25,726
contigs with hits to the NCBI database (>¢). Analysis with
BLAST2GO PRO (Gétz et al, 2008) indicated that 22,412
had conserved domains reported in InterProScan (SIMAP
database (Gotz et al, 2011)), and 17,000 had annotations
(Figure 1A). The top five sequence hits for each contig
were most common to N. vitripennis, accounting for over
35,000 hits, followed distantly by Apis mellifera (western
honeybee), Megachile rotundata (leafcutter bee), Microplitis
demolitor (parasitoid wasp), among others (Figure 1B).
Level two, gene ontology (GO) grouped sequences into
eleven molecular functions (Figure 1C), of which binding
and catalytic activity had the most representatives.

Most abundant transcripts

Among the most abundant sequences were those with
descriptions and functions related to muscle and muscle con-
traction, including troponin and myosin (Table 1). Troponin
C in insects is found in thick muscle bands that give pro-
longed contraction without the expenditure of much energy.
In the A. calandrae venom gland, we suggest that these pro-
teins are used to contract muscles around the gland and are
associated with the ovipositor, controlling the injection of
venom into the host tissue. The function of troponin C in the
venom gland also was hypothesized in Colinet et al, (2014),
where sequences with predicted muscle function were pre-
dicted for pumping and injecting venom during oviposition.
Other highly represented transcripts included cytochrome
p450, alpha-amylase, carrier protein, mitochondrial ATP
synthase subunit, fructose-bisphosphate aldolase-like, and
trypsin, most likely involved in cellular maintenance and
general housekeeping. Interestingly, a virus polyprotein also
was highly expressed in the dataset. The virus is a positive-
sense single-stranded RNA virus from the family /flaviridae
and was identified in V. vitripennis (NvitV-1) as a persistent
commensal infection (Oliveira et al, 2010). Thus, this virus
likely also infects the closely related 4. calandrae.

Venom-related transcripts

A large portion of A. calandrae contigs encoded venom
proteins (D, F, G, H,, K, L, N, O, Q, T, U, V, X, Z; Table 2),
each letter corresponding to venom proteins of V. vitripennis
with unidentified functions (de Graaf et al, 2010a). Some
transcripts were found in multiple contigs (listed in Table 2),
but most were short fragments or fragments of the full-
length transcript (see example in Supplemental Figure 1).
In this study, the read count we report includes full-length
and partial transcripts. Thus, the overall read count may be
inflated, and only the most complete contig(s) are described
in this section.
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The most abundant transcripts encoded venom protein Z
(contig 79; 10,715 reads; Table 2), highly similar to N. vitrip-
ennis venom protein Z (¢*°). A PRK12704 conserved domain
was found at the 3’ end of the molecule, and is described as a
phosphodiesterase in the chaperone_C1pB protein family. This
type of domain has been described in Staphylococcus aureus
and is part of a novel regulator required for virulence (Nagata
et al, 2008). The most abundant venom protein Q transcript,
contig 2 (25,059 reads), was highly similar to N. vitripennis
venom protein Q (e7") (Supplemental Figure 1). A PRK05431
conserved domain was identified at the 3’ end of the molecule,
described as seryl-tRNA synthetase. More work is needed to
characterize these venom components, originally found in N.
vitripennis, and now also identified in A. calandrae.

Other highly expressed transcripts in the transcriptome
encoded a vitellogenin protein (contig 162, 34,806 reads),
venom acid phosphatase acph-1-like (contig 270, 24,002
reads), three arginine kinases (contigs 1396, 1658, 297,
14,776 reads), four GOBP-like venom proteins (contigs
142, 2480, 2519, 8481, 11,338 reads), two metallopro-
teinases 3-like (contigs 308, 5633, 10,340 reads), and two
Kazal-type serine protease inhibitor-like venom proteins
(contigs 1226, 173, 10,906 reads, Table 2). Many of the
enzymes encoded in the A. calandrae transcriptome have
been characterized in different systems and/or identified in
other insect venoms and we highlight those likely involved
in venom function based on the existing literature.

Protease inhibitors

Parasitoid systems have evolved strategies to inhibit host
immune pathways. The main host defense against damaged

B-1,3-glucan +
BGBP l

Lipopolysaccharide
+LGBP
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tissue, bacterial infection, or parasitoid attack is melaniza-
tion. The melanization pathway encapsulates foreign mate-
rial before it can cause the host further damage (Rivers
et al, 2002). One pathway that leads to melanization is the
prophenoloxidase (proPO) system (Cerenius and Soderhall,
2004). ProPO is found in insect hemolymph and when acti-
vated leads to antimicrobial cascades and melanization of
foreign material (Figure 2). A serine proteinase cascade
is activated by very small amounts of lipopolysaccharides
or peptidoglycan, components of microbes, that in turn
cleave prophenoloxidase-activating enzyme (Pro-ppA) to
active ppA. This enzyme catalyzes the reaction that con-
verts proPO to active PO, and in the presence of oxygen
and phenols, leads to melanization. While this process is
necessary for immune defense, it must be held in check, as
byproducts (quinones) are highly reactive and damaging.
Therefore, several types of serine protease inhibitors (SPI)
are employed, including pacifastin, serpins, and Kuntz fam-
ily inhibitors (Kanost, 1999). SPIs have been identified in
crayfish and locust (Simmonet et al, 2002). In the crayfish
pacifastin inhibits the proteolytic cascade blocking the acti-
vation of proPO (Hergenhahn et al, 1987). In the migratory
locust, pacifastin was isolated from many tissues including
hemolymph and fat body in both adults and larvae (Clynen
et al, 2001; Kromer et al, 1994). Additionally, a Drosophila
melanogaster mutant lacking a serpin inhibitor resulted in
excessive melanization (De Gregorio et al, 2002). SPIs have
been identified in parasitoid venoms as well, including C.
inanitus (Vincent et al, 2010), Cotesia rubecula (Asgari
et al, 2003), N. vitripennis (de Graaf et al, 2010a), Pimpla
hypochondriaca (Parkinson et al, 2004), P puparum (Zhu
et al, 2010), and now A. calandrae. Thus, it is likely that

Peptidoglycan
+PGBP

[Serine proteinase cascade]

SPIs: Contig 139933, 14273, 21756

Contig 10452

Coe )—

S

__________ .
Serine proteinase |
homologs 1

4

Contig 208, 621,
15637, 40965, 10452

I— Serpin, e.g. pacifastin

Prophenoloxidase |:> Phenoloxidase

ﬁ

Melanin

{1 | quinones

Figure 2. ProPO pathway in an insect host, adapted from Cerenius and Soderhall (2004). The ProPo pathway in the host is depicted
with black colored boxes and arrows, and 4. calandrae contigs encoding proteins with possible inhibitor action at specific points in

the pathway are indicated with red text.
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parasitoids take advantage of this mechanism by suppress-
ing melanization and encapsulation of wasp material by SPIs
at the ovipositor injection site and/or larval feeding site.

Specifically, we identified transcripts that encoded four
groups of SPIs that are potential inhibitors of the proPO
pathway: a small SPI-like venom protein (contigs 208
and 621), cysteine-rich pacifastin venom protein 1 and 2
(contigs 15637 and 40965), serpin 5 (contig 10452), and
cysteine-rich ku protein 1 and 2 (contigs 13933, 14273,
and 21756; Table 2). Small SPI-like venom protein tran-
scripts were abundant in A. calandrae venom (9,101 total
reads) and were highly similar to N. vitripennis protein
NP_001155083. SPI-like venom protein and cysteine-rich
pacifastin venom protein 1 and 2 (35 reads) had a pacifastin
I conserved domain, thus likely candidates for proPO sup-
pression. Additionally, 4. calandrae cysteine-rich ku venom
protein transcripts were similar to those in N. vitripennis,
encoding five cysteine-rich proteins (de Graaf et al, 2010a).
InterProScan identified a conserved Kunitz family of ser-
ine protease inhibitor domain (¢cd00109) in these sequences
that consists of six conserved cysteine residues linked by
three disulphide bonds. A similar protein was identified in
P hypochondriaca (Parkinson et al, 2004), but its function
has yet to be determined.

We also identified transcripts for three Kazal-type serine
protease inhibitor-like venom proteins (KPI, contigs 1226,
173, 353, and 3089, 20,033 total reads, Table 2). KPIs are
typically about 40-60 amino acids long in invertebrates
and can inhibit more than one protease based on variation
in six conserved cysteine residues (Rimphanitchayakit and
Tassanakajon, 2010). KPIs have been described in the saliva
of blood sucking insects, where they interfere with coagula-
tion factors, prolonging the blood meal (Campos et al, 2004;
Friedrich et al, 1993). There is also evidence that KPIs have
antimicrobial properties. Two KPIs have been identified in
the wax moth (G. mellonella), particularly in the cocoon silk
(GmSPI 1 and GmSPI2) that inhibit bacterial subtilisin and
fungal proteinase K (Nirmala et al, 2001).

Transcripts encoding proteins with conserved trypsin
inhibitor domain were also found in 4. calandrae venom:
chymotrypsin inhibitor, venom peptide-2-like, venom
peptide-like, venom serine protease, and venom protease-
like (contigs 11459, 1466, 32786, 29876, 43584, respec-
tively, Table 2). Contigs 11459 and 1466 were similar to
N. vitripennis venom peptide SjAPI-2-like that also has a
trypsin-conserved domain. Similar proteins were found in
P hypochondriaca (cvpl; Parkinson et al. 2004) although
function has not been determined in this wasp.

Calreticulin

In addition to melanization, insects have the ability to
neutralize large foreign material via encapsulation. The
encapsulation process refers to the movement of host
hemocytes to a foreign object, surrounding the object, and
eventually forming a smooth, melanized capsule around it.
A contributor to encapsulation is calreticulin (CRT). CRT
is a ubiquitous calcium-binding protein with many proper-
ties and functions in the cell. For example, CRT is involved
in calcium modulation for homeostasis by binding intercel-
lular calcium, and acts as a molecular chaperon, leading to
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phagocytosis, cell adhesion, cell spreading and encapsula-
tion. CRT has been identified in a number of parasitoid sys-
tems, including N. vitripennis (de Graafetal, 2010a), Cotesia
plutellae (Cha et al, 2015), Diadegma semiclausum (Etebari
et al, 2011), and P puparum (Fang et al, 2011; Wang et al,
2013). Two recent studies have suggested CRT works as an
antagonist, competing for binding sights with host CRT,
thus inhibiting hemocyte encapsulation of wasp material
(Chaetal, 2015; Wang et al, 2013). Down regulation of CRT
was found in Tenebrio molitor larvae challenged with the
microbial toxin Cry3Aa from Bacillus thuringiensis (Oppert
et al, 2012). Our data in 4. calandrae included three CRT
contigs (754, 1607, and 2209) with a combined 5,713 reads
(Table 2). Therefore, A. calandrae, may use CRT to inhibit
hemocyte encapsulation of wasp material, the venom injec-
tion site, and/or the larval feeding site.

C1-q-like venom proteins

A protein was identified from A. mellifera with a con-
served C1l-q domain, with similarity to a C1-q venom pro-
tein in N. vitripennis and Acyrthosiphon pisum (de Graaf
et al, 2010b). In higher order organisms, C1-q is a major
link between innate and acquired immunity. In humans,
CRT blocks the Cl-g-immunoglobulin interaction, and it
is hypothesized that CRT inhibits C1-q-hemolytic activity
(Kishore et al, 1997). However, the function in venom is
unknown and currently thought to be a venom trace ele-
ment, or one with little expression and no direct function in
venom secretion, largely based on the fact that C1-q protein
is expressed in the N. vitripennis female and male abdomen
as well as in venom, hypopharyngeal, mucus, and salivary
glands, and also brain, midgut, hemocyte, and abdomen in
A. mellifera (de Graaf et al, 2010b). Thus, it is likely that
CRT and Cl1-q perform vital functions in insects as well,
although more research is needed (Danneels et al, 2010). In
this study, we found two transcripts with C1-q domains with
a total of 111 reads in 4. calandrae venom (contig 20942
and 26203, Table 2).

Peptidases

The A. calandrae venom transcriptome included tran-
scripts encoding two types of exopeptidases: venom serine
carboxypeptidase isoforms x1 and x2 and venom dipepti-
dyl peptidase IV isoform x1-3 (contigs 33255, 33448 and
1633, 15069, 7588, 38117, 25635, respectively, Table 2).
Both exopeptidases have been described in honeybees
as members of the nine major allergens (Kim and Jin,
2014). Venom serine carboxypeptidase is named Api m 9
(Matysiak et al, 2014) and dipeptidyl peptidase IV is termed
Api m 5,in A. mellifera. The latter enzyme was proposed
to process premelittin into its active form, melittin, one of
the two most highly expressed allergens in honeybee venom
(Blank et al, 2010).

We also identified a transcript encoding a trypsin-like
serine peptidase, venom protease-like (contig 43584,
Table 2). A similar sequence was identified in the nematode
that parasitizes Galleria mellonella (Balasubramanian
et al, 2010). The authors found that nematode trypsin
affected insect hemocyte spreading and disorganized
actin filaments. A similar process in 4. calandrae is con-
ceivable, where venom trypsin affects the host’s encapsu-
lation mechanism.
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Venom acid phosphatase

We identified 34,386 transcripts with sequence descrip-
tions similar to acid phosphatase (AP, contigs 270, 2473,
4597, 327, 26605 and 30699, Table 2), encoding venom
AP-like, venom AP, and venom AP acph-1-like proteins.
Venom AP is another major allergen in honeybee venom
(Api m3) and was recently characterized via recombinant
expression (Kim and Jin 2014). APs are also found in other
venomous species, including Bothrops jararaca (pit viper,
Carneiro et al, 2001), and other parasitoid wasps, includ-
ing N. vitripennis (de Graaf et al. 2010a), P hypochondri-
aca (Dani et al, 2005), and P puparum where the gene has
been cloned (Zhu et al, 2008). However, the function of
AP in parasitoid venom is unknown. In the desert locust,
Schistocerca gregaria, APs from an infections fungus were
suggested to target the immune system by dephosphory-
lation of immune proteins, disabling host defenses (Xia
et al, 2000).

Endonuclease

Endonucleases cleave phosphodiester bonds within a poly-
nucleotide chain, including both RNA and DNA, single and
double stranded molecules. These nucleases were identified
in nematocyst venom of marine invertebrates (Neeman et al,
1980; Neeman et al, 1981) and snake venom (Georgatsos
and Laskowski, 1962). A similar endonuclease to those
encoded by transcripts in 4. calandrae (contig 1954, 6277,
1904 and 6154, Table 2) is the N. vitripennis venom endonu-
clease that was the first of its kind to be identified in insects
(de Graaf et al, 2010a).

Metalloproteinases

The main goal of a parasitoid wasp is to manipulate a host
such that the wasp offspring can use it as a vessel and
food source. To accomplish this, the venom must contain
properties that stop host development, and subvert the
developmental timing to benefit the wasp life cycle. Met-
alloproteinases (MPs) and have been found in many ven-
omous animals and are highly related in wasp species, in
particular E. pennicornis and N. vitripennis (Figure 3A).
MPs also are found in snake venoms, sometimes composing
up to 65% of the total proteins in the venom, and are consid-
ered highly toxic to mammal hosts (Markland and Swenson,
2013). Snake MPs act on the host in many ways, includ-
ing hemorrhagic, fibrinolytic, blood coagulation factor X
activating, apoptosis, pro-inflammatory, and inactivation of
blood serine peptidase inhibitors (Markland and Swenson,
2013). We identified venom MP 2-like (contig 3993, 534
reads) and 3-like (contig 308 and 5633, 10,340 reads) tran-
scripts in 4. calandrae (Table 2). The sequences in our study
identified as MP 2-like were partial sequences and thus not
discussed further. However, sequences encoding venom
MP 3-like enzymes in A. calandrae were almost full length
and share a similar zinc-binding motif as those found in
snakes HEXXHXXGXXH (Figure 3A, black box and aster-
isk), except for a single substitution, G for N. This motif
is identical to the tomato moth parasitoid, E. pennicornis,
where three MPs have been identified (EpMP1-3). Injection
of EpMP3 into tomato moth fifth-instar larvae resulted in
delayed development and growth as well as some mortal-
ity due to the inability to molt to the sixth instar (Price et
al, 2009). The close sequence similarity of E. pennicornis
and A. calandrae suggests a similar function, delaying host
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development. MPs have also been identified in the wasp
venom of C. inanitus (Vincent et al, 2010) and P. hiypochon-
driaca (Parkinson et al, 2002a). Wasp, ant and snake MPs
group mostly into separate subclades (Figure 3B, purple,
blue, and green, respectively). However, there are several
examples of MP subclades that have high identity, including
A. echinatior and N. vitripennis (bootstrap = 100), snakes
and some ants (bootstrap = 99). Most wasp MPs had low
identity to snakes (bootstrap = 50), including A. calandrae.

v-glutamyl cyclotransferase

We identified a small number of transcripts with a GGCT-
like domain and annotated as y-glutamyl cyclotransferase-
like venom protein (contigs 34508 and 36225, Table 2) found
also in N. vitripennis (de Graaf et al, 2010a). y-glutamyl
cyclotransferase participates in glutathione metabolism. The
balance of glutathione in the cell is important, and deviation
can result in oxidative stress and apoptosis. Falabella et al
(2007) and Colinet et al (2014) identified a y-glutamyl trans-
ferase in 4. ervi that induced apoptosis in the germ cells and
ovariole sheath in the host, effectively resulting in castra-
tion. It is not known if this effect is a byproduct of oxidative
stress, or a direct effect of venom y-glutamyl transferase on
reproductive tissue.

Venom allergen

A large group of venom allergens, including those annotated
as venom allergen (contig 13197 and 3104), venom allergen
3 (contig 30907) and 3-like (contig 2046), venom allergen
5 (contig 7323) and 5-like (contig 133), and venom carbox-
ylesterase-6 (contigs 13545, 10623, 12603, 13047, 14514,
24778) transcripts were identified in the A. calandrae venom
transcriptome (Table 2). A BLASTx of contig 2046 and
contig 12782 resulted in similar outcomes: high maximum
scores to many predicted allergen proteins in other hyme-
noptera, mostly other wasps and ants, but few annotated
with regards to function in the venom. Alignments with
contig 2046 and 7323 highlighted the functional region,
conserved domain SCP_euk (cd05380) from the cysteine-
rich secretory protein family (CAP, pfam00188; data not
shown). This type of allergen protein has been studied
mostly in the context of human allergies, and is described
in several wasp and ant species. For example, allergen 5 has
been studied extensively in A. mellifera (Api m 5 or aller-
gen C) and has sequence identity to dipeptidyl peptidase [V
(discussed above). Similarly, the Vesupla vulgaris homolog
(Ves v 3) has been studied, because in humans VES v 3 can
cause a serious IgE-medicated allergic reaction (Blank et al,
2010). Another example in Solenopsis invicta is allergen 3
(So I 3), which is a very prominent component, composing
15-25% of the total venom cocktail (Hoffman et al, 1988).
Additionally, carboxylesterase-6 is one of the main aller-
gens in honeybee venom (Api m8; Matysiak et al, 2014).
The sequences found in 4. calandrae were similar to those
in N. vitripennis, M. rotundata, Tribolium castaneum, and
Microplitis demolitor.

The reproductive-associated vitellogenin-like protein tran-
script was the fifth highest in abundance in the 4. calandrae
venom transcriptome, with 34,806 reads (contig 162,
Table 2). Vitellogenin is a major protein in oocyte develop-
ment (Tufail et al, 2009) and could be contamination from
the ovaries. However, vitellogenin has also been recognized
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Figure 3. A. Predicted protein alignment of A. calandrae metalloproteinases (contigs 5633 and 308), those from two other parasitoid
wasp species, N. vitripennis (XP_008213426 & XP_008236471) and E. pennicornis (EpMP1-3) and from the snake Bothrops moojeni
(P85314). The black box contains the conserved domain and the asterisk highlights the G to N change found in insects in compari-
son to snakes. B. Phylogenetic analysis of metalloproteinases across taxa. Numbers represent bootstrap values after 500 iterations.
Branches are highlighted to show taxa; snake species are in green, ants are in blue, and parasitoid wasps are in purple. A. calandrae is

highlighted in yellow.

as another venom allergen in 4. mellifera (Api m 12) and
V. vulgaris (Ves vo; Blank et al, 2013).

Odorant Binding
Odorant binding proteins (OBP) and chemosensory pro-
teins (CSP) are involved in odorant reception by binding,

solubilizing, and delivering odorant molecules to olfactory
receptors or chemoreceptors (Deng et al, 2013). In the A.
calandrae venom transcriptome, we identified many OBPs
and CSPs, and two with high sequence counts: general odor-
ant binding (GOBP)-like venom protein and chemosensory
protein 1 (contigs 142, 2480, 2519, 8481 and 254, Table 2).
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The predicted 4. calandrae GOBP-like venom protein was
similar to V. vitripennis OBP67 (NP_001155150), a member
of the pheromone binding proteins (PBP) that are specific
to males and associated with pheromone-sensitive neurons
and GOBP conserved domains. Finding GOBP conserved
domains in 4. calandrae was perplexing, since we only used
female wasps in our study. However, OBPs are a dynamic
and highly specific group of proteins, and have low similar-
ity between species (Vieira and Rozas, 2011). Historically,
OBPs were assumed only to be in chemosensory tissues, but
recent work has identified OBPs throughout the insect body,
including an OBP (PpOBP) gene expressed and localized
in the venom apparatus of P puparum (Wang et al, 2014).
The specific function of OBPs and CSPs in the venom and
venom-associated glands has not been established, but is
hypothesized to be part of the parasitoid-host interaction,
such as finding an appropriate (i.e. not already parasitized)
host for oviposition.

Hormones

In vertebrates, corticotropin-releasing factor binding pro-
tein (CRH-BP) is a 322-amino acid soluble protein. CRH
binds to CRH-BP with high affinity in humans, protecting
the former from degradation and acting as a delivery system.
However, it is believed CRH-BP has an antagonistic role in
regulating CRH (Woods et al, 1994). In bony fish, CRH-BP
regulates the stress response (Huising et al, 2004), a process
that has been well conserved across taxa. A study with 4.
mellifera indicated a striking similarity between honeybee
CRH-BP sequence and the vertebrate homolog, indicating
the CRH signaling system in both phyla share a common
ancestor (Huising and Flik, 2005). In insects, it is thought
that CRH-BP binds diuretic hormone-I (DH-I), which is
released by endocrine glands that receive input from the
insect brain (Kataoka et al, 1989; Reagan, 1994; Schoofs et
al, 1997). DH-I, as the name suggests, is involved in water
regulation via the Malpighian tubules (Clottens et al, 1994).
A similar sequence was identified in the Chinese honeybee
(A. cerana cerana), and authors found the expression of
CRH-BP increased following environmental stressors, such
as cold, heat, and UV treatment. Expression was higher
during adult and pupal stages, and in particular the pupal
head (Liu et al, 2011). The function of CRH-BP in para-
sitoid wasps is unknown, and finding this transcript in A.
calandrae is the first report in the venom apparatus (contig
528, Table 2). We hypothesize that CRH-BP in wasp venom
could be used to manipulate the host CRH and in turn its
response to stress. Additionally, it may be used to regulate
DH-I, which affects the amount of water secreted by the
host Malpighian tubules, and sustain the nutritional value
of the host for the wasp offspring. Alternatively, it may be
associated with the Dufour gland, which was included in
the dissections.

We also found a sequence encoding a Bax inhibitor 1-related
domain called growth hormone-inducible transmembrane
(Ghitm, contig 1489, Table 2). In mammals, this type of
protein inhibits apoptosis, and Ghitm expression has been
proposed to function in tumorigenesis and adipose tissues
(Li et al, 2001; Nagel et al, 2004; Reimers et al, 2007). An
ortholog of Ghitm was identified in B. mori and named pro-
thoracic gland-derived receptor (Pgdr) in insects (Nagata
et al, 2006; Yoshida et al, 2006). The function in insects is
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crucial for the regulation of insect molting and metamor-
phosis (Gilbert et al, 2002; Gilbert et al, 1997). The func-
tion of Pgdr in parasitoid venom may influence the timing of
host molting to be more conducive to its own developmental
timing. Since this is the first report of Pgdr in transcripts
from the venom gland and associated tissues, more research
is needed on the potential role in venom mode-of-action.

Hyaluronidase

Hyaluronidase has been found in the venoms of most rep-
tiles (Girish et al, 2004; Pukrittayakamee et al, 1988; Tu and
Hendon, 1983) and insects including honeybees (Skov et al,
2006) and wasps (Bacek et al, 2013; King et al, 1996; Skov et
al, 2006; Vincent et al, 2010). Hyaluronidase depolymerizes
hyaluronic acid, one of the major components of animal con-
nective tissue, and is referred to as a venom spreading factor
(Humphrey and Jaques, 1953). A. calandrae contig30340
and 27737 encoded a protein that was 94% similar to N. vit-
ripennis hyaluronidase-like predicted protein (Table 2). We
propose that 4. calandrae uses hyaluronidase to move com-
ponents of the venom through the host tissues more quickly.

Arginine kinase

As previously discussed, a major task of parasitoid venom is
to paralyze the host. Paralysis may be necessary for proper
attachment of the wasp egg to the cuticle of the host, or a
side effect of other processes. We identified two types of
arginine kinase (AK; contigs 1396 and 1658, 297) tran-
scripts in A. calandrae (Table 2). In general, AKs are made
up of an N-terminal domain involved in substrate speci-
ficity and a C-terminus catalytic domain, and catalyze the
buffering of ATP in cells required for high and fluctuat-
ing energy requirements (Fritz-Wolf et al, 1996), includ-
ing the muscles involved in insect flight and jumping. A
study with the paralytic spider wasp, Cyphononyx dorsa-
lis, identified two forms of AK, a full length and truncated
version, lacking the N-terminal domain (Yamamoto et al,
2007). The authors made recombinant forms of AK in bac-
teria and found both paralyzed spiders, via relaxing of the
legs similar to the effect of the crude venom. However, the
crude venom caused a prolonged paralysis, up to 40 days,
whereas the paralysis caused by the truncated protein lasted
only 15 days, but had stronger paralytic activity, achiev-
ing paralysis with only 1-3 pg in contrast to 10 pug of the
full-length enzyme. Similarly, two forms were identified in
two solitary wasp species, Eumenes pomiformis and Oran-
cistrocerus drewseni, comprising 31.9% and 43.5% of total
venom components, respectively (Baek and Lee, 2010). The
AK transcripts identified in A. calandrae are much shorter
in length than that of C. dorsalis and may represent frag-
ments of the full transcript. We speculate involvement of 4.
calandrae AK in host paralyzation and immobilization.

Superoxide dismutases

Superoxide dismutases (SODs) have been described as a
virulence strategy in bacterial and fungal pathogens, and
are one of the most important cellular enzymatic defenses
against detrimental reactive oxygen species (ROS) gener-
ated by aerobic metabolism. In the context of parasitoidism,
the wasp may use SODs to prevent tissue damage and
ultimately death of the host while the wasp offspring devel-
ops. This is important for both endoparasitoids that need to
maintain the host for development, as well as ectoparasi-
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toids that need reliable nutrition after offspring emerge as
larva. Three types of SODs (SOD1-3) have been identified
in two Leptopilina species (L. boulardi and L. heterotoma)
venom (Colinet et al, 2011). SOD1 was primarily located in
the cytoplasm, SOD2 was restricted to the inner matrix of
mitochondria, and SOD3 has an N-terminus signal peptide
for extracellular matrix binding. In 4. calandrae, we found
SOD-associated contigs with sequence similarity to SODI
and SOD3 (contigs 2375 and 6075, Table 2). A BLASTx
of contig 2375 and the protein database at NCBI resulted
in sequence similarity of 71% or greater with all top 100
hits, including insect orders Hymenoptera, Coleoptera,
Diptera, Orthoptera, Hemiptera, Lepidoptera, Isoptera, and
Ixodida, as well as sequences from mammals to plants to
polychaetes, suggesting SOD 1 is highly conserved across
all taxa (Figure 4A). However, the orthology is maintained
within orders, as indicated by higher bootstrap values for
A. calandrae to other wasps. A. calandrae contig 2375 was
similar to L. boulardi and L. heterotoma SOD1 (Figure 4B),
while A. calandrae contig 6075 was similar to L. boulardi
and L. heterotoma SOD3, with a similar signal peptide
(Figure 4B, black box). An alignment of the 4. calandrae
sequences with other parasitoid wasp SODs, including L.
boulardi, L. heterotoma, and N. vitripennis demonstrated
high sequence similarity, with seven identical residues scat-
tered throughout the enzymes (Figure 4B, asterisks).

Similarly, transcripts encoding peroxiredoxin were found in
the A. calandrae wasp transcriptome (Table 2). Peroxiredox-
ins are enzymes that protect against oxidative stress, like
SODs, but specialize in trapping nitrogen reactive oxida-
tive species (NROS). Peroxiredoxins have been identified in
many other insects, such as D. melanogaster (Radyuk et al,
2001), Gryllatalpa orientalis (Kim et al, 2005), Anopheles
sp. (Peterson and Luckhart, 2006), Bombyx mori (Shi et al,
2012; Wang et al, 2008), Bombus ignitus (Hu et al, 2010),
Papilio xuthus (Zhu et al, 2009) and Tenebrio molitor (Zhu
et al, 2014). However, the literature describes peroxiredoxin
in terms of the host, and our report is the first of peroxire-
doxin in the venom of a parasitoid.

Chitin binding venom protein

Transcripts were identified in this study encoding proteins
with a conserved chitin binding and peritrophin-A domain
(contig 8670, Table 2), found in the peritrophic matrix of
insect chitinases (Elvin et al, 1996). In N. vitripennis, a sim-
ilar protein is part of the cuticular lining of the venom res-
ervoir (Bridges and Owen, 2005; Ratcliffe and King, 1969).
Some chitin binding proteins (CBP) also exhibit antifungal
properties. For example, many CBPs in plants bind to chi-
tin in pathogenic fungi, and chitinases degrade the foreign
chitin (Mehmood et al, 2011). A similar process also has
been found in the sweet potato hornworm, Agrius convilvuli
(Chae et al, 1999). Additionally, CBPs degrade the larval
gut between developmental instars and metamorphosis
(Chen et al, 2014).

Low-density lipoprotein receptor-like venom protein

We identified a small group of transcripts from 4. caland-
rae annotated as low-density lipoprotein receptor-like (LpR)
venom protein (contig 13731, Table 2). Similar proteins have
been isolated in N. vitripennis (de Graaf et al, 2010a). The
function of this protein in venom remains unknown, but insect
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LpR is part of a distinct group of low-density lipoproteins
with function different than those in mammals (Rodenburg et
al, 2006). Generally, LpRs are involved in mediating endocy-
tosis of the major yolk proteins vitellogenin and lipophorin.
LpRs have been isolated in many tissues of the female insect,
including ovary, fat body, midgut, brain, Malpighian tubules,
and muscles (Tufail and Takeda, 2009).

CONCLUSIONS

We have identified 64 different types of transcripts in the
venom gland, venom reservoir, ovipositor, and Dufour
gland of the agriculturally important wasp A. calandrae.
Seven transcripts encode proteins that are likely involved
in suppressing host encapsulation/wound healing at the
ovipositor injection site and/or larval feeding site (small
serine proteinase inhibitor-like venom protein, cysteine-rich
pacifastin, serpin 5, cysteine-rich ku venom protein, venom
protease-like, and calreticulin), nine transcripts likely
encode venom allergens (venom serine carboxypeptidase,
vitellogenin, venom dipeptidyl peptidase, three venom acid
phosphatases, and venom allergen, venom allergen 3 and
5), and two encode SODs. Two groups of hormones were
identified; one involved in a general stress response, and the
other with potential function in modifying the host’s molting
and metamorphosis (corticotropin-releasing hormone and
growth hormone, respectively). We also found evidence of
a hyaluronidase that may promote the spreading of venom
throughout the host body, an arginine kinase that likely
causes host paralysis, and two metalloproteinase 3-like
transcripts for inducing host developmental arrest, among
others. This is the first work to characterize components
of A. calandrae venom, and validation of the speculated
function of venom proteins and host responses are needed.
Future work will lead to a more in-depth understanding of
host-parasite interactions as well as the potential to develop
novel pest control strategies.
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proPO; prophenoloxidase

Pro-ppA; prophenoloxidase-activating enzyme
SPI; serine protease inhibitors

KPI; Kazal-type serine protease inhibitor
GmSPI1-2; KPIs in the wax moth

CRT; calreticulin

AP; acid phosphatase

MP; metalloproteinases

OBP; odorant binding protein

CSP; chemosensory protein
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Figure 4. A. Phylogenetic analysis of highly conserved superoxide dismutases. Species names are followed by the protein used in
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maroon, Lepidoptera in purple, Diptera in blue, and mammals in light blue. 4. calandrae is highlighted with maroon text. Numbers
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GOBP; general odorant binding protein

CRH-BP; corticotropin-releasing factor bindng protein
DH-1; diuretic hormone-I

Ghitm; growth hormone-inducible transmembrane
Pgdr; prothoracic gland-derived receptor

AK; arginine kinase

SOD; superoxide dismutases

ROS; reactive oxygen species

NROS; nitrogen reactive oxidative species

CBP; chitin binding protein

LpR; low-density lipoprotein receptor
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