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1. Introduction

Let us consider a mesh on [0, 1] which is defined by

0 = x0 < x1 < ... < xn = 1

with xi − xi−1 = P, for i = 1, 2, . . . , n. and P ≥ h, throughout h > 0, will be a real number. Consider
a real continuous function S(x, h) defined over [0, 1] which is such that its restriction Si on [xi−1, xi]
is a polynomial of degree 5 or less for i = 1, 2, . . . , n, then S(x, h) defines a discrete quintic spline if

D
{j}
h Si(xi, h) = D

{j}
h Si+1(xi, h) j = 0, 1, 2, 3. (1)

where the difference operator Dh are defined as

D
{0}
h f(x) = f(x), D

{1}
h f(x) = (f(x+ h)− f(x− h))/h

D
{2}
h f(x) =

f(x+ h)− 2f(x) + f(x− h)

2h
.

Let B(5, 1,∆, h) is the class of deficient quintic splines interpolation of deficiency of one, where in
D∗(5, 1,∆, h) denotes the class of all discrete deficient quintic splines which satisfies the boundary
conditions

D
{2}
h S(x0, h) = D

{2}
h f(x0),

D
{2}
h S(xn, h) = D

{2}
h f(xn),

(2)
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Mangasarian and Schumaker [1, 2] introduced discrete splines to find solution of certain minimization
problem. For different constructive aspect’s of discrete splines, we refer to Schumaker [3], Astor Duris
[4] Jia [5], Dikshit and Powar [6] and Rana [7]. Rana and Dubey [8, 9]. The objective of the present
paper is to study the existence, uniqueness and convergence properties of deficient discrete quintic
spline with uniform mesh point.

We introduce the following interpolating conditions for a given function f

S(xi, h) = f(xi)

D
{1}
h S(xi, h) = D

{1}
h f(xi)

}
i = 0, 1, . . . , n (3)

and prove the following:

Problem 1: Given h > 0, for what restriction on P does there exists a unique S(x, h) ∈ B∗(5, 1, P, h)
which satisfies the conditions (2) and (3).

2. Existence and Uniqueness

Let R(z) be a quintic Polynomial on [0, 1], then we can show that

R(z) = R(0)T1(z) +R(1)T2(z) +D
{1}
h R(0)T3(z) +D

{1}
h R(1)T4(z)

+D
{2}
h R(0)T5(z) +D

{2}
h R(1)T6(z),

(4)

where

T1(z) = (1− z)3(1 + 3z − 6z2)

T2(z) = z3(10− 15z + 6z2),

T3(z) = z(1− 6z2 + 8z3 − 3z4),

T4(z) = z3(−4 + 7z − 3z2),

T5(z) = z2(1− z)3/2,

T6(z) = z3(1− z)2/2.

Now, we are set to answer the Problem 1, in the following:

Theorem 2.1 For any h > 0, there exists a unique deficient discrete quintic polynomial S(x, h) ∈
B∗(5, 1, P, h) which satisfies the conditions (2) and (3).

Proof Denoting x = xi + pt, 0 ≤ t ≤ 1, we can expressed (4) in the form of the restriction Si(x, h) of
the deficient discrete quintic spline S(x, h) on [xi, xi+1] as follows:

S(x, h) = f(xi)T (x) + f(xi+1)T2(x) + PD{1}
n f(xi)T3(x) + PD{1}

n f(xi+1)T4(x)

+ PD{2}
n f(xi)T5(x) + PD{2}

n f(xi+1)T6(x),
(5)
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where

T1(x) =
1

P 5
(xi+1 − x)3[P 2 + 3P(x− xi)− 6(x− xi)

2]

T2(x) =
(x− xi)

3

P 5
[10P 2 − 15(x− xi)P + 6(x− xi)

2]

T3(x) =
(x− xi)

P 5
[P 4 − 6(x− xi)

2P 2 + 8Pi(x− xi)
3 − 3(x− xi)

4]

T4(x) =
(x− xi)

3

P 5
(xi+1 − x)(3(x− xi)− 4P )

T5(x) =
(x− xi)

2

2P 5
(xi+1 − x)3

T6(x) =
(x− xi)

3(xi+1 − x)2

2P 5
.

Observing (4) it may easily be verified that Si(x, h) is a quintic on [xi, xi+1] for i = 0, 1, . . . , n − 1

satisfying (2) and (3) and writing H(a, b) = ap2i + bh2, for real a, b and D
{2}
h Si(x, h) = mi(h) = mi,

(say), we shall apply continuity of the third difference of S(x, h) at xi in (5) to see that

mi+1H(1, 10) + 2H(3, 10)−mi−1H(1, 10) = Fi − Fi−1 (6)

where Fi = [H(20, 120)∆f(xi)−H(12, 6)D
{1}
h f(xi)P−PD

{1}
h f(xi+1)H(8, 60)] and ∆f(xi) = f(xi+1)−

f(xi).

We can easily see that excess of the absolute value of the coefficient of mi over the sum of absolute
value of the coefficients of mi−1 and mi+1 in (6) under the condition of Theorem 2.1 is given by

l i(h) = 2H (2 , 0 )

which is clearly positive, thus the coefficient matrix of the system of equations (6) is diagonally
dominant and hence invertible, therefore the system of equation (6) has “a unique” solution, which
completes the proof of the Theorem 2.1. �

Remark 2.2 The studies concerning discrete splines smaller values of h, have special significance for
simple region that “discrete” spline reduce to continuous spline as h → 0.

3. Error Bounds

For a given h > 0, we introduce the set

Rh = {x0 + jh| j is an integer}

and define a discrete interval as follows

[0, 1]h = [0, 1]
∩

Rh
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for a function f and discrete points x1, x2, x3 in the domains the first and second divided difference
are defined as

[x1, x2]f =
[f(x1)− f(x2)]

(x1 − x2)

and

[x1, x2, x3]f =
[x2, x3]f − [x1, x2]f

(x3 − x1)
.

respectively similarly, we can define the higher order divided difference. Now in this section, we shall
obtain the precise estimate of the error bounds for deficient discrete quintic spline interpolation for s
of Theorem 2.1, i.e. e = f − s over the discrete interval [0, 1]h.

We shall need the following Lemma due to Lyche [10].

Lemma 3.1 Let {ai}mi=1 and {bj}nj=1 be given sequence of non-negative real numbers such that∑m
i=1 ai =

∑n
j=1 bj then for any real valued function f , defines on discrete interval [0, 1]h, we have

|
m∑
i=1

aj [xj0 , xj1 , ..., xjk ]f −
n∑

j=1

bj [yj0 , yj1 , ..., yjk ]f |

≤ w(D(K)
n f, |1− kh|)

∑
aj

k!

for relevant values of j, k. It may be observed that system of equation (6) may be written as

A(h)M(h) = F (7)

where A(h) is the coefficients matrix and M(h) = mi(h). However, already shown in the proof of
Theorem 2.1 A(h) is invertible. Denoting the inverse of A(h) by A−1(h), we note that row max norm
||A−1(h)|| satisfies the following inequality

||A−1(h)|| ≤ y(h) (8)

where y(h) = max{li(h)}−1.

For convenience, we write f{1} for D
{1}
h f, f

{2}
i for D

{2}
h f(xi) and w(f, p) for modules of continuity of

“f” the discrete norm of a function f over the interval [0, 1]h is defined by

||f || = max |f(x)|. (9)

Theorem 3.2 Suppose S(x, h) is the deficient discrete quintic splines interpolate of Theorem 2.1 then

||e(x)|| ≤ k1(p, h)w(f
{1}, p), (10)

||e{1}(x)|| ≤ k2(p, h)w(f
{1}, p), (11)

and

||e{2}(x)|| ≤ y(h)k∗(p, h)w(f{1}, p) (12)
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||e{2}(x)|| ≤ k(p, h)w(f{1}, p)

where k1(p, h), k2(p, h), k(p, h) and k∗(p, h) are some positive functions of p and h.

Proof Writing f(xi) = fi. Equation (7) may be written as

A(h) · e{2}(xi) = Fi(h)−A(h)f
{2}
i = Li (say). (13)

We shall estimate Li(f) by using Lemma 3.1, due to Lyche [10]. It may observe that the

|Li(f)| = |
6∑

i=1

ai[xi0, xi1]f −
8∑

j=1

bj [yj0, yj1]f | (14)

where

a1 = H(20, 120), b1 = H(12, 60)

a2 = H(20, 120), b2 = H(8, 60)

a3 =
1

h
H(1, 10), b3 = H(12, 60)

a4 =
1

h
H(3, 10), b4 = H(8, 60)

a5 =
1

h
H(1, 10), b5 =

1

h
H(1, 10)

a6 =
1

h
H(3, 10), b6 =

1

h
H(3, 10)

b7 =
1

h
H(1, 10)

b8 =
1

h
H(3, 10)

and

x10 = x21 = x41 = y60 = x61 = y80 = xi,

x11 = x50 = y71 = xi+1,

y10 = y40 = x40 = x60 = xi − h,

y11 = xi + h = y41 = y61 = y81,

y20 = xi+1 − h = y70,

y21 = xi+1 + h = x51,

x20 = x30 = y51 = xi−1,

x31 = xi−1 + h = y31,

y30 = y50 = xi−1 − h.

Since a1 = b1 + b2, a2 = b3 + b4, a3 = b5, a4 = b6, a5 = b7, a6 = b8. Observing that

6∑
i=1

ai =
8∑

j=1

bj = [2H(20, 120) +
2

h
H(4, 20) = K∗(P, h) (say). (15)
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Thus apply Lemma 3.1 for m = 6, n = 8 and K = 1

|Li(f)| ≤ K∗(P, h)w(f{1}, P ). (16)

Now using the equations (8) and (16) in (13), we get

||e{2}(xi)|| ≤ y(h)K∗(P, h)w(f{1}, P ). (17)

This complete the proof of Theorem 3.2.

To obtain the bound of e(x), we replace mi by e(xi) in equation (5) to get

e(x) = P 2[e
{2}
i T5(t) + e

{2}
i+1T6(t) + L∗

i (f)] (18)

where

L∗
i (f) = P 2[{f{2}

i T5(t) + f
{2}
i+1T6(t)}+ fiT1(t) + fi+1T2(t) + P{f{1}

i T3(t) + f
{1}
i+1T4(t)} − f(x)].

Now L∗
i (f) in (18) may be rewritten as in the form of divided difference as follows

|Li(f)| = |
5∑

i=1

ai[xi0, xi1]f −
3∑

j=1

bj [yj0, yj1]f |

where

a1 = P[10t3 − 15t4 + 6t5]

a2 = P [t− 6t3 + 8t4 − 3t5]

a3 = P [−4t3 + 7t4 − 3t5]

a4 = P 2(t2 − 3t3 + 3t4 − t5)/2

a5 = P 2(t2 − 2t4 + t5)/2

b1 = P 2(t2 − 3t3 + 3t4 − t5)/2

b2 = P 2(t2 − 2t4 + t5)/2 = a5,

b1 = a4,

b3 = a1 + a2 + a3,

b3 = tP

and

x10 = xi = x40 = y11 = y30,

x30 = xi+1 − h = y20,

x11 = xi+1 = x50 = y21,

x31 = xi+1 + h = x51,

x20 = xi − h = y10, y31 = x,

x21 = xi + h = x11.
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Since a5 = b2, a4 = b1, a1 + a2 + a3 = b3. Therefore

5∑
i=1

ai =
3∑

j=1

bj =
P 2

2
(t+ t2 − 3t3 + t4) + Pt = K(P, h) (say).

Therefore, applying Lemma 3.1 for m = 5, n = 3 and K = 1 in (18) we get

|L∗
i (f)| ≤ K(P, h) w(f{1}, P ) (19)

and finally applying bounds of (17) and (19) in (18), we get inequality (10) of Theorem 3.2.

We now proceed to find e
{1}
i (x). Now

D
{1}
h si(x) = fiT

{1}
1 (t) + fi+1T

{1}
2 (t) + P{f{1}

i T
{1}
3 (t) + f

{1}
i+1T

{1}
4 (t)}

+ P 2{s{2}i T
{1}
5 (t) + s

{2}
i+1T

{1}
6 (t)}.

Therefore

PD
{1}
h ei(x) = P 2[e

{2}
i T

{1}
5 (t) + e

{2}
i+1T

{1}
6 (t)] + Ui(f) (20)

where

Ui(f) = P{fiT {1}
1 (t) + fi+1T

{1}
2 (t)}+ P 2{f{1}

i T
{1}
3 (t) + f

{1}
i+1T

{1}
4 (t)}

+ P 3{f{2}
i T

{1}
5 (t) + f

{2}
i+1T

{1}
6 (t)} − Pf

{1}
i

and

Q
{1}
1 (t) = Q

{1}
1 (t) = [−30(t2 + h2) + 60t(t2 + h2)− 30t2(t2 + h2)]

T
{1}
2 (t) = [30(t2 + h2)− 60t(t2 + h2)− 30t2(t2 + h2)]

T
{1}
3 (t) = [1− 18(t2 + h2) + 32t(t2 + h2)− 15t2(t2 + h2)]

T
{1}
4 (t) = [−12(t2 + h2) + 28t(t2 + h2)− 15t2(t2 + h2)]

T
{1}
5 (t) =

1

2
[2t− 9(t2 + h2) + 12t(t2 + h2)− 5t2(t2 + h2)]

T
{1}
6 (t) =

1

2
[3(t2 + h2)− 8t(t2 + h2) + 5t2(t2 + h2)].

Now, rewriting Ui(f) in terms of Divided difference we have

|Ui(f)| =

∣∣∣∣∣∣
5∑

i=1

ai[xi0, xi1]f −
3∑

j=1

bj [yj0, yj1]f

∣∣∣∣∣∣
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where

a1 = P 2(30− 60t− 30t2)(t2 + h2)

a2 = P 2{1− (18 + 32t− 15t2)(t2 + h2)}

a3 = P 2(−12 + 28t− 15t2)(t2 + h2)

a4 =
P 3

h

1

2
(2t− (9 + 12t− 5t2)(t2 + h2))

a5 =
P 3

h

1

2
(3− 8t+ 5t2)(t2 + h2)

b1 =
P 3

2h
(2t− (9 + 12t− 5t2)(t2 + h2))

b2 =
P 3

2h
(3− 8t+ 5t2)(t2 + h2))

b3 = P 2

and

x10 = xi = x40 = y11, x30 = xi+1 − h = y20,

x11 = xi+1 = x50 = y21, x31 = xi+1 + h = x51,

x20 = xi − h = y10 = y30,

x21 = xi + h = x41 = y31.

Since b3 = a1 + a2 + a3, b1 = a4, b2 = a5. Now, it can be easily see that

5∑
i=1

ai =

3∑
j=1

bj = [P 2 +
P 3

h
(t− (2t− 3)(t2 + h2))] = M∗(t, h, P ) (say).

By using Lemma 3.1, we get

|Ui(f)| ≤ M(t, h, P )w(f{1}, P ). (21)

Hence we get the bounds of e{1}(x) finally from (20), when we appeal to (21) and (17), thus

||e{1}(x)|| ≤ k2(P, h)w(f
{1}, P ). (22)

Thus we get inequality (11) of Theorem 3.2. �
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