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RATING THE DIVERSITY IN SETS OF OBJECTS
BY REFERRING TO TRANSFORMATIONS

AS CRITERIA

Luigi BURIGANA1, Michele VICOVARO1

résumé – Évaluer la diversité dans des ensembles d’objets en faisant référence aux transfor-
mations comme critères
Le point de départ de cette étude est la définition de deux concepts relatant comment un ensemble
de transformations, agissant à l’intérieur d’un domaine, peut représenter une limite supérieure
ou inférieure à la diversité existante dans n’importe quel sous-ensemble de ce domaine. Le su-
jet de cette analyse est ensuite graduellement étendu, considérant des partitions (plutôt que des
sous-ensembles) d’un domaine, des familles d’ensembles de transformations (plutôt qu’un seul en-
semble), et du genre des ensembles d’objets indirectement reliés à ce domaine (plutôt que des
ensembles directement inclus dans le domaine). Les principaux concepts définis sont explorés dans
leurs propriétés formelles et illustrés au travers d’exemples. Les sections introductive et conclusive
incluent des commentaires sur la motivation et les avantages possibles de la méthode discutée.

mots-clés – Diversité, Invariance, Transformation interne

summary – The starting point of this study is the definition of two concepts expressing how
a set of transformations acting within a domain may represent an upper or a lower bound of the
diversity existing in any subset of that domain. The subject of analysis is then gradually expanded,
by considering partitions (rather than subsets) of the domain, families of sets of transformations
(rather than just one such set), and sets of objects indirectly related to the domain (rather than
sets directly included in it). The main concepts defined in this study are explored in their formal
properties and illustrated by examples. The introductory and concluding sections include comments
on the motivation for the study and the possible merits of the method discussed.

keywords – Diversity, Inner transformation, Invariance

1. INTRODUCTION

Similarity and its antonym dissimilarity are supposed to play important roles in various cognitive
processes, such as categorization, learning, visual search, social judgement, etc. In consequence,
the construction of methods for evaluating those relationships forms an important topic of cogni-
tive psychology. A distinction may be made between empirical methods, which estimate similarity
and dissimilarity based on the answers of real subjects in suitable experiments, and analytic meth-
ods, which evaluate those relationships by analysing the properties implicit in the objects to be
compared, or assessing their position relative to an a priori criterion. The classic “contrast model”
of Tversky [1977] and the recent use of the “representational distortion” criterion of Hahn, Chater,
Richardson [2003] are examples of the analytic method. In particular, this criterion is described

1Dipartimento di Psicologia Generale, Università di Padova, Via Venezia 8, I-35131 Padova
(Italy), luigi.burigana@unipd.it, vicovaro85@gmail.com
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as a “transformational approach to similarity”, because of the part played in it by the concept
of transformation. Specifically, a set T of “basic transformations” is presumed, and these trans-
formations are understood as production rules (i.e., ways of constructing new objects from given
objects by additions, deletions, changes, etc.); the dissimilarity of an object y from an object x is
computed as the minimum length of a sequence of transformations in T which is able to produce
y starting from x (the so-called “transformational distance” of y from x).

The method we discuss in this paper is itself “analytic” and “transformational” in the generic
senses stated above. However, it differs markedly from “representational distortion” in two respects.
The first concerns the target of the method: in an application, a set A of objects is considered,
and the aim is to rate the overall diversity within A (rather than the dissimilarity between its
objects taken in pairs). In the concluding section we mention possible research situations in which
such a target may have scientific importance. Because the word “dissimilarity” is regularly used in
psychometrics for pairwise measures of lack of similarity (e.g. [Barthélemy, Guénoche, 1991]) we
use the word “diversity” here for lack of similarity as the collective property of a set of objects. The
second respect concerns the transformations in a reference set T (or a hierarchy T1 ⊂ . . . ⊂ Tm

of such sets), which in our method intervene as substitution rules (rather than production rules).
More precisely, we hypothesize a basic set X of objects (of which the set A to be measured may
be a subset), and a set T of transformations acting within X (i.e., T is a subset of XX , the set of
all functions having X as domain and codomain). Each transformation t ∈ T is interpreted here
as a substitution rule, so that the equation y = t(x) (for any x, y ∈ X) means that object y is
similar or adjacent to object x (according to the criterion represented by t). More generally, for
any x, y ∈ X, the existence of a t ∈ T such that y = t(x) means that y is similar or adjacent to
x (according to the criterion collectively represented by the set of transformations T ). We must
emphasize that the transformations referred to in this study are defined over the whole basic set
X, and that this assumption is essential for a special property of our method, that is, the property
that the same transformation set T may serve as a criterion for judging similarity and diversity
not only within sets of elements of X, but also within sets of objects of higher complexity which
are constructed using elements of X. For example, a triple (y1, y2, y3) of elements of X may be
judged to be similar or adjacent to another triple (x1, x2, x3) of elements of X if y1 = t(x1) and
y2 = t(x2) and y3 = t(x3) for some t ∈ T (the same t for all three components). This issue is
developed in Section 5.

The idea of referring to a set T of transformations within a domain X as a set of legitimate
substitution rules replicates a standard notion associated with permutation groups – for example,
the group of automorphisms of a structure is the set of substitution rules on its domain which
leave the structure unchanged. Moreover, the idea of referring to a hierarchy T1 ⊂ . . . ⊂ Tm of
such transformation sets as a reference system for rating the diversity within sets of objects is itself
analogous to a known kind of application of permutation groups (our reference here is to theories
imitating the so-called “Erlanger Program” of theoretical geometry, to be mentioned in Section 4).
Actually, owing to these analogies, there are points in this paper in which we refer to elementary
concepts of the theory of permutation groups, in particular the concepts of “invariant set”, “orbit”,
and “action” of a group. For ease of reference, let us here recall the meanings of these concepts.
If T is a permutation group on a domain X (that is, a set of bijective functions from X onto X,
closed under composition and inversion) and A ⊆ X, then A is invariant under T if t(A) = A for
all t ∈ T (where t(A) = {t(x) : x ∈ A}). A set A ⊆ X is a T -orbit if T (x) = A for all x ∈ A (where
T (x) = {t(x) : t ∈ T}). The action of the group relates to the fact that each permutation t ∈ T ,
while directly acting within the domain X, may indirectly also act on other domains if these are
systematically related to X (for example, any t ∈ T induces a permutation t∗ on the power set 2X

by the rule t∗({x1, . . . , xn}) = {t(x1), . . . , t(xn)} for all {x1, . . . , xn} ∈ 2X , so that t acts on 2X as
made explicit by t∗) [Dixon, Mortimer, 1996, pp. 5-6].

Owing to the analogies stated above, the contexts for the possible use of the method in this
study are similar to those for the use of permutation groups for classification purposes involving
the invariance condition. There are, however, two noticeable features distinguishing our approach
in this regard. One is the definition of a reference transformation set T , which we presume to be
any set of inner transformations of a basic set X, not necessarily a permutation group (i.e., not
necessarily a set closed to inversion and composition, nor even a set of bijective transformations).
The main reason for this choice of greater freedom is that, in our approach, set T determines a
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similarity on X, and when T is a permutation group then the similarity it determines is necessarily
an equivalence (the quotient set of X modulo that equivalence is the partition of X into T -
orbits). But it is well known in cognitive psychology that similarity relationships as revealed
by psychological experiments may fail to be equivalences, that is, may fail to be symmetric and
transitive relations [Tversky, 1977, pp. 328-329]2. Thus in order to model psychological similarities
and dissimilarities accurately, we must suspend the general assumption that T is a permutation
group, and only presume that it is a set of inner transformations of the basic set X. Our formal
analysis in this paper amounts to an exploration of the regularities which still hold true in such
less constrained conditions. The other special feature of our approach is the distinction between
two ways in which an object set A may relate to a transformation set T , which we denote by
T B A and T C A, and describe by stating that T represents, respectively, an “upper bound” and
a “lower bound” of the diversity in A. These two concepts are formally defined and examined in
their basic properties in Section 2. This second feature (the distinction between the relations B
and C) is a consequence of the first one (the reference to generic sets of inner transformations)
using the following argument. If T is a permutation group, then it is seen that the sets A such that
T B A are the subsets of T -orbits, and the sets A such that T C A are the subsets of X expressible
as unions of T -orbits. Thus, when T is a permutation group, there is a simple direct connection
between the two kinds of sets, linked by the orbits of the group. Otherwise, when T is a generic set
of inner transformations (not a permutation group), then the relationship between the two kinds
of sets becomes looser (since there is no family of orbits serving as a common basis), and each of
them deserves its own analysis which constitutes our main task in the following sections.

The plan of the paper is as follows. In Section 2 we discuss the basic case, when one object
set A ⊆ X becomes related to one transformation set T ⊆ XX . In Section 3 we make a first step
towards complexity, by presuming that the object side of the paradigm is a family P = {P1, . . . , Pn}
of subsets of X (specifically, a partition of X). In Section 4 we make a further step towards
complexity, by presuming that the transformation side is an ordered family T = (T1, . . . , Tm) of
transformation sets. In Section 5 we discuss a form of “indirect action” of transformation sets, so
that transformations acting directly within a domain X may serve as criteria for judging diversity
within another domain X∗. In Section 6 we comment on the possible uses and merits of the
transformational approach we have described.

2. A SET OF TRANSFORMATIONS AND A SUBSET OF THEIR DOMAIN

Throughout our discussion we assume that the basic set X has finite cardinality.

DEFINITION 1. Let X, T ⊆ XX , and A ⊆ X be as presumed so far. The transformation set T
represents an upper bound (symbol T B A) or lower bound (symbol T C A) of the diversity within
the object set A depending on whether the first or the second of the following two conditions holds
true:

T (x) ⊇ A for all x ∈ A

T (x) ⊆ A for all x ∈ A

in which T (x) = {t(x) : t ∈ T}.

The meaning of these concepts may be illustrated by considering the following alternative expres-
sions:

T B A iff (∀x ∈ A)(∀y ∈ A)(∃t ∈ T )(y = t(x))
T C A iff (∀x ∈ A)(∀t ∈ T )(∃y ∈ A)(y = t(x)).

Thus, T BA means that for any two objects x and y in A there is some transformation t in T which
carries from x to y, so that the overall diversity within A is covered by the diversity expressible

2There are also standard sets of transformations endowed with scientific importance which fail
to be groups or semigroups. The set of “perspective transformations” referred to in perceptual
psychology and computer vision is an example [Mundy, Zisserman, 1992, p. 475].
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through T . Conversely, T C A means that for any object x in A and transformation t in T , by
applying t to x an object t(x) is obtained which is itself in A, so that the diversity expressible
through T is covered by the overall diversity within A. As a special case, if T is a permutation
group (on a finite domain X), then T C A means that t(A) = A for all t ∈ T (i.e., A is invariant
under T ), and the conjunction (T B A and T C A) means that T (x) = A for all x ∈ A (i.e., A is a
T -orbit).

A convenient way of expressing the concepts in Definition 1 is by means of a binary relation
on X defined in this way:

R = {(x, y) ∈ X2 : y = t(x) for some t ∈ T}.

We call R the directed adjacency determined by transformation set T . Henceforth we presume that
R is a reflexive relation, which is certainly true if the identity transformation idX on the domain
X belongs to T . Moreover, for any A ⊆ X, by R(A) we denote the image of set A through the
relation R, so that:

R(A) = {y ∈ X : y = t(x) for some x ∈ A and t ∈ T}.

PROPOSITION 1. Let X, T ⊆ XX , R ⊆ X2, A ⊆ X, and R(A) ⊆ X be as stated above.
(i) T B A if and only if R ⊇ A2.
(ii) T C A if and only if R(A) ⊆ A.

Proof. (i) If T B A and (x, y) ∈ A2, then y ∈ A ⊆ T (x), so that y = t(x) for some t ∈ T , and
(x, y) ∈ R. If R ⊇ A2 and x, y ∈ A, then (x, y) ∈ R, so that y = t(x) for some t ∈ T , and y ∈ T (x).
(ii) If T C A and y ∈ R(A), then y = t(x) ∈ T (x) ⊆ A for some x ∈ A and t ∈ T , so that y ∈ A. If
R(A) ⊆ A, x ∈ A and y ∈ T (x), then y = t(x) for some t ∈ T , so that y ∈ R(A), and y ∈ A.

As an example, let us consider X = {a, b, . . . , l} as the basic set, and a set T = {t1, . . . , t6} of
6 inner transformations defined as follows (where t1 is the identity idX):

t1 = {(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (g, g), (h, h), (i, i), (j, j), (k, k), (l, l)} (1)
t2 = {(a, b), (b, c), (c, d), (d, b), (e, f), (f, f), (g, h), (h, i), (i, j), (j, h), (k, k), (l, k)}
t3 = {(a, a), (b, d), (c, c), (d, c), (e, e), (f, e), (g, i), (h, j), (i, g), (j, j), (k, l), (l, l)}
t4 = {(a, b), (b, b), (c, b), (d, d), (e, d), (f, e), (g, g), (h, g), (i, h), (j, h), (k, j), (l, h)}
t5 = {(a, a), (b, c), (c, b), (d, b), (e, b), (f, f), (g, i), (h, i), (i, h), (j, i), (k, l), (l, k)}
t6 = {(a, b), (b, d), (c, c), (d, c), (e, f), (f, e), (g, h), (h, j), (i, g), (j, i), (k, k), (l, h)}.

The directed adjacency determined by T is described by the following list of pairs and is represented
in Figure 1:

R = {(a, a), . . . , (l, l), (a, b), (b, c), (b, d), (c, b), (c, d), (d, b), (d, c), (e, b), (e, d), (e, f), (f, e),
(g, h), (g, i), (h, g), (h, i), (h, j), (i, g), (i, h), (i, j), (j, h), (j, i), (k, j), (k, l), (l, h), (l, k)}.

Then consider these subsets of X : A1 = {b, c, d}, A2 = {g, h, i}, A3 = {a, b, c, d}, and A4 =
{a, c, e, g}. By applying Proposition 1 we see that T B A1 and T C A1; T B A2 but not T C A2;
T C A3 but not T B A3; and neither T B A4 nor T C A4.

Owing to Proposition 1, the relations B and C depend on a transformation set through the
directed adjacency it determines. For this reason, and for the immediacy of our proofs, in stating
the basic properties of both relations we find it preferable to refer to the adjacency R (rather than
the transformation set T determining that adjacency)3. A list of elementary properties is given in
the next proposition. For stating one of them we apply the following special concept: a relation
R ⊆ X2 is part-wise symmetric if for all A ⊆ X, if there are x ∈ A and y ∈ X \ A such that

3However, there are aspects of the action of T that cannot be mediated by R, such as any
process of “transformation induction” as discussed in Section 5. Thus, the initial concept T (the
set of inner transformations) cannot be removed from our analysis.
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figure 1. The directed adjacency determined by a set of 6 transformations on a set of 12
points (loops at the points are implied).

(x, y) ∈ R, then there are also x′ ∈ A and y′ ∈ X \ A such that (y′, x′) ∈ R. This amounts to a
weakening of the standard symmetry property of binary relations4.

PROPOSITION 2. For all T ⊆ XX , the resulting adjacency R ⊆ X2, and all A,B ⊆ X these
implications hold true:
(i) if T B A and A ⊇ B, then T B B;
(ii) if R is transitive, A ∩B 6= ∅, T B A, and T B B, then T B A ∪B;
(iii) if T C A and T C B, then T C A ∩B and T C A ∪B;
(iv) if R is part-wise symmetric and T C A, then T C X \A;
(v) if T C A, then T C R(A);
(vi) if T B A and T C B, then either A ⊆ B or A ∩B = ∅.

Proof. (i) This is implied by Proposition 1.i. (ii) Presume the four hypotheses and consider any
x, y ∈ A ∪ B. If x, y ∈ A or x, y ∈ B, then (x, y) ∈ A2 ∪ B2 ⊆ R. If x ∈ A \ B and y ∈ B \ A,
then (x, z), (z, y) ∈ A2 ∪ B2 ⊆ R for any z ∈ A ∩ B 6= ∅, so that (x, y) ∈ R. Thus (A ∪ B)2 ⊆ R,
and T B A ∪ B by Proposition 1.i. (iii) If T C A and T C B, then R(A) ⊆ A and R(B) ⊆ B by
Proposition 1.ii, hence R(A∩B) ⊆ R(A)∩R(B) ⊆ A∩B and R(A∪B) = R(A)∪R(B) ⊆ A∪B,
so that T C A ∩B and T C A ∪B by the same proposition. (iv) If T C A, then R(A) ⊆ A, so that
there are no x ∈ A and y ∈ X \ A such that (x, y) ∈ R. Part-wise symmetry of R implies that
neither can there be any x′ ∈ A and y′ ∈ X \A such that (y′, x′) ∈ R, thus R(X \A) ⊆ X \A, and
T CX \A. (v) If T CA, then R(A) ⊆ A, hence R(R(A)) ⊆ R(A), and T CR(A). (vi) Suppose (ad
absurdum) T BA, T CB, A∩B 6= ∅, but not A ⊆ B, and take any x ∈ A∩B and y ∈ A\B. Thus
(x, y) ∈ A2 ⊆ R, x ∈ B, y /∈ B, and y ∈ R(B) \B, which contradicts the hypothesis T C B.

The next proposition highlights some simple properties of the relations B and C which depend
on the choice of the transformation set. In the fourth property reference is made to a semigroup
as a set of inner transformations which is closed under composition (symbol ◦).

PROPOSITION 3. For all T, S ⊆ XX , the adjacencies RT , RS ⊆ X2 resulting from them, and all
A ⊆ X these implications are true:
(i) if T B A and RT ⊆ RS, then S B A;
(ii) if T C A and RT ⊇ RS, then S C A;
(iii) if T C A and S C A, then T ∪ S C A;
(iv) if T is the semigroup generated by S, then T C A if and only if S C A.

4This characterization holds true: a binary relation R is part-wise symmetric on domain X if
and only if the strong components of the digraph (X, R) are completely isolated from one another
(there is no line between distinct strong components). We thank one anonymous reviewer for
pointing out this property.
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Proof. Parts (i) and (ii) are implied by Proposition 1. (iii) If T C A and S C A, then RT (A) ⊆ A
and RS(A) ⊆ A, so that RT∪S(A) = (RT ∪RS)(A) = RT (A)∪RS(A) ⊆ A∪A = A, and T ∪S CA
by Proposition 1.ii. (iv) The “only if” part follows from part (ii) of this proposition, as T ⊇ S. For
proving the “if” part, suppose S C A and consider any x ∈ A and t ∈ T , so that t = sk ◦ · · · ◦ s1 for
some s1, . . . , sk ∈ S (as T is generated by S). Then t(x) = sk(. . . s1(x) . . .) ∈ A (because S C A).
This is true of all x ∈ A and t ∈ T , so that T C A by Definition 1.

For any fixed transformation set T ⊆ XX , let BA and CA be the families of subsets of X that
have T as an upper and, respectively, lower bound of diversity:

BA = {A ∈ 2X : T B A}
CA = {A ∈ 2X : T C A}.

Figure 2 represents (as a unified Hasse diagram) the families BA and CA resulting from T described
by (1).
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figure 2. Hasse diagram of the families BA and CA resulting from the transformation
set described by (1). Members of BA are the sets below the dotted line, and members of
CA are the sets above the dashed line (including ∅).
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The next proposition specifies the algebraic profiles of both families. In the proposition ref-
erence is made to the directed adjacency R determined by T , the symmetric part of R (sp(R) =
R ∩ R−1, where R−1 is the reverse of R), and the transitive closure of R (tc(R) = R ∪ (R ◦ R) ∪
(R ◦R ◦R) ∪ · · · , where ◦ is the composition of binary relations). By the reflexivity of R and the
definition of its symmetric part, the structure (X, sp(R)) is a graph (with loops), and the cliques in
it are its maximal complete subgraphs. By the reflexivity of R and the definition of its transitive
closure, the structure (X, tc(R)) is a quasi-ordered set, and an order filter in it is any subset A ⊆ X
such that, for all x, y ∈ X, if (x, y) ∈ tc(R) and x ∈ A, then y ∈ A too.

PROPOSITION 4. Let X; T ⊆ XX ; R, sp(R), tc(R) ⊆ X2; and BA, CA ⊆ 2X be as defined
above.
(i) Family BA is an order ideal in the partially ordered set (2X ,⊆). Its maximal members are the
cliques of the graph (X, sp(R)).
(ii) Family CA is a sub-lattice of lattice (2X ,∩,∪). Its members are the order filters in the quasi-
ordered set (X, tc(R)). 5

Proof. (i) That BA is an order ideal by set inclusion (i.e., A ∈ BA and B ⊆ A implies B ∈ BA)
is tantamount to Proposition 2.i. That the maximal members of BA are the cliques of (X, sp(R))
follows from Proposition 1.i (BA is the set of complete subgraphs of the graph). (ii) The first
statement in this part is tantamount to Proposition 2.iii. To prove the second statement, first note
that R(A) ⊆ A if and only if tc(R)(A) ⊆ A, for all A ⊆ X, as the “if” is simply due to inclusion
R ⊆ tc(R), and the “only if” follows from Proposition 2.v. Thus CA = {A ∈ 2X : tc(R)(A) ⊆ A},
and this is precisely the set of order filters in the quasi-ordered set (X, tc(R)).
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figure 3. Three families of subsets (enclosed by solid, dotted, and dashed line contours)
of a quasi-ordered set of 30 elements (the dots). Lines between the dots represent the
symmetric part of the quasi-order (an equivalence).

The general properties in Proposition 4 undergo specialization when additional conditions are
given concerning the transformation set T (and the adjacency R it determines). (i) If R is a
quasi-order (which is the case, for example, when T is a semigroup and contains the identity
transformation), then sp(R) = R ∩ R−1 is an equivalence, and tc(R) = R. In this situation three

5The link between a directed adjacency R ⊆ X2 and the corresponding family of sets CA ⊆ 2X

is quite similar to that between a “surmise relation” and the corresponding “knowledge structure”
of a “quasi-ordinal space”, as defined in knowledge space theory [Doignon, Falmagne, 1999, p. 39].
Proposition 4.ii corresponds to Birkhoff’s theorem [Birkhoff, 1937] which is called for in knowledge
space theory.
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special families of subsets of X may be distinguished: one is X/sp(R), i.e., the quotient set of X
modulo equivalence sp(R); the second is the collection of blocks in X/sp(R) that are maximal in
the quasi-order R; and the third is X/tc(sc(R)), i.e., the quotient set of X modulo the transitive
closure of sc(R) = R∪R−1 (sc(R) is the symmetric completion of R). This distinction is illustrated
in Figure 3, in which the subsets forming the first, second and third family are those defined by
contours of solid, dotted and dashed lines, respectively. Under the condition stated above (i.e.,
when R is a quasi-order) the sets in the first family are the maximal members of the order ideal
BA, and those in the second are the atoms in the lattice CA. Owing to Proposition 2.vi, these
latter sets are the members of the intersected family BA∩ CA, i.e., they are the subsets of X
having T as both an upper and a lower bound of diversity. (ii) If T is a set (not necessarily a
group) of permutations, then the adjacency R is part-wise symmetric (this may be proved “by
contradiction” and taking account of the assumption that X has finite cardinality). This property
combined with Proposition 2.iv implies that the family CA is closed under complementation. In
turn, this property combined with Proposition 4.ii implies that CA is a field of subsets of X 6.
(iii) If T is a permutation group, then R is an equivalence and the whole system neatly simplifies,
as sp(R) = tc(R) = sc(R) = R. In this case, the maximal members of the order ideal BA are the
blocks in the quotient set X/R, which are also the atoms in the field of sets CA, so that BA∩
CA = X/R. Thus, CA is the family of “sets invariant under T ” and BA ∩ CA in the family of
“T -orbits”, in the standard senses mentioned in the Introduction.

3. A SET OF TRANSFORMATIONS AND A PARTITION OF THEIR DOMAIN

The concepts B and C may be consistently extended from subsets of X to families of subsets of
X. We are especially interested in families that are partitions of X, and we denote by P(X) their
collection.

DEFINITION 2. Let X be a set, T ⊆ XX , and P ∈ P(X). Set T represents an upper bound
(symbol T B P) or lower bound (symbol T C P) of the diversity in the parts of the partition P
depending on whether the first or the second of these two conditions holds true:

T B P for all P ∈ P
T C P for all P ∈ P.

Thus, T BP or T CP depending on whether P ⊆ BA or P ⊆ CA. For an example, let us refer to the
transformation set T described by (1), and consider P1 = {{b}, {b, c, d}, {e, f}, {g, h, i}, {j}, {k, l}},
P2 = {{a, b, c, d, e, f}, {g, h, i, j, k, l}}, and P3 = {{a, b, c, d}, {e, f}, {g, h, i, j}, {k, l}} (see Figure
1). Applying Definition 2 we see that T BP1 but not T CP1; T CP2 but not T BP2; and neither
T B P3 nor T C P3. There is no partition P in this example such that both T B P and T C P 7.

A property of partitions is their one-to-one correspondence with equivalence relations. Specif-
ically, if P = {P1, . . . , Pn} is a partition of X, then P = X/E with E the equivalence thus defined:

E = P 2
1 ∪ · · · ∪ P 2

n .

This correspondence allows for simple characterizations of the concepts in Definition 2.

PROPOSITION 5. Let T ⊆ XX , P ∈ P(X), R ⊆ X2 be the adjacency determined by T , and
E ⊆ X2 be the equivalence corresponding to P. Then:
(i) T B P if and only if R ⊇ E;
(ii) T C P if and only if R ⊆ E.

6“Field of subsets of X” is a name used for a Boolean algebra of subsets of X, i.e., a set of
subsets of X that is closed under union and complementation [Birkhoff, 1967, p. 12].

7The relations B and C may further be extended from partitions to functions. Specifically,
if T ⊆ XX , f ∈ UX , and Ef is the equivalence determined by f on X (i.e., (x, y) ∈ Ef iff
f(x) = f(y)), then define T B f iff T B X/Ef , and T C f iff T C X/Ef . The properties of B
and C for partitions may then be interpreted in relation to functions. For example, part (vii) of
Proposition 6 means that if f ∈ UX and g ∈ V X are such that T Bf and T Cg, then X/Ef � X/Eg,
which implies that there is an h ∈ V U such that g = h ◦ f (i.e., T B f and T C g for some T ⊆ XX

implies that g is functionally dependent on f).
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Proof. (i) Suppose P = {P1, . . . , Pn}. Then T BP iff (T BP1 and . . . and T BPn) iff (R ⊇ P 2
1 and

. . . and R ⊇ P 2
n) iff R ⊇ E. (ii) Similarly, T C P iff (T C P1 and . . . and T C Pn) iff (R(P1) ⊆ P1

and . . . and R(Pn) ⊆ Pn) iff (P1 × R(P1) ⊆ P 2
1 and . . . and Pn × R(Pn) ⊆ P 2

n) iff R ⊆ E (as
{P1, . . . , Pn} is a partition of X, so {P1 × R(P1), . . . , Pn × R(Pn)} is a partition of R, and this
justifies the last "iff").

Other elementary properties of partitions are the following: on the set P(X) of all partitions of
X a binary relation � is defined such that P � Q (for any P,Q ∈ P(X)) means that, for all P ∈ P,
there is a Q ∈ Q such that P ⊆ Q. Relation � is a partial order; more precisely, the partially
ordered set (P(X),�) is a lattice, which means that it is endowed with a meet operation ∧ and a
join operation ∨; for all P,Q ∈ P(X), each part in the meet partition P ∧Q is the intersection of
a part in P and a part in Q that are non-disjoint, and each part in the join partition P ∨Q is the
union of the parts in a connected component of the intersection graph of P ∪ Q. These concepts
are used in stating and proving the following properties of the relations B and C as referred to
partitions.

PROPOSITION 6. Let T ⊆ XX , R ⊆ X2, P,Q ∈ P(X), and A ⊆ X be as supposed so far. Then
the following implications hold true:
(i) if T B P and Q � P, then T BQ;
(ii) if R is transitive, T B P, and T BQ, then T B P ∨Q;
(iii) if T C P and P � Q, then T CQ;
(iv) if T C P and T CQ, then T C P ∧Q;
(v) if T B P and T C A, then there are P1, . . . , Pk ∈ P such that A = P1 ∪ · · · ∪ Pk;
(vi) if T C P and T B A, then there is a P ∈ P such that A ⊆ P ;
(vii) if T B P and T CQ, then P � Q.

Proof. (i) If EP and EQ are the equivalences corresponding to P and Q, then the hypotheses imply
R ⊇ EP ⊇ EQ, so that T BQ (by Proposition 5.i). (ii) Each part B in the join partition P∨Q may
be expressed as B = A1 ∪A2 ∪ · · · ∪Ak with {A1, . . . , Ak} ⊆ P ∪Q and (A1 ∪ · · · ∪Ah−1)∩Ah 6= ∅
for all h = 2, . . . , k. The hypotheses and Proposition 2.ii (repeatedly applied) imply T BB. This is
true of all B ∈ P ∨Q, so T BP ∨Q. (iii) The hypotheses imply R ⊆ EP ⊆ EQ, so that T CQ (by
Proposition 5.ii). (iv) The hypotheses imply R ⊆ EP and R ⊆ EQ, so that R ⊆ EP ∩EQ = EP∧Q,
and T C P ∧ Q (by Proposition 5.ii). (v) The hypotheses imply T B P for all P ∈ P and T C A,
so that (either P ⊆ A or P ∩ A = ∅) for all P ∈ P (by Proposition 2.vi), and this amounts to
the consequent of the implication. (vi) The hypotheses imply T C P for all P ∈ P and T B A, so
that (either P ⊇ A or P ∩ A = ∅) for all P ∈ P (by Proposition 2.vi), and this implies A ⊆ P
for one P ∈ P (the parts are disjoint). (vii) The hypotheses imply R ⊇ EP and R ⊆ EQ, so that
EP ⊆ EQ, which means P � Q.

For any fixed transformation set T ⊆ XX , let BP and CP be the families of all partitions of X
having T as an upper and, respectively, lower bound of diversity:

BP = {P ∈ P(X) : T B P}
CP = {P ∈ P(X) : T C P}.

The next proposition specifies the algebraic profiles of these families. It does this by referring to
the relations sp(R) = R ∩R−1 (i.e., the symmetric part of the adjacency R determined by T ) and
tc(sc(R)) = tc(R∪R−1) (i.e., the transitive closure of the symmetric completion of R). The latter
is an equivalence on X (it is the smallest equivalence including R), and when R is transitive then
the former is itself an equivalence (it is the greatest equivalence included in R).

PROPOSITION 7. Let T ⊆ XX ; R, sp(R), tc(sc(R)) ⊆ X2; and BP,C P ⊆ P(X) be as defined
above.
(i) Family BP is an order ideal in the partially ordered set (P(X),�). In particular, if R is tran-
sitive, then BP is an ideal in the lattice (P(X),∧,∨), and the maximum in it is the quotient set
X/sp(R).
(ii) Family CP is a filter in the lattice (P(X),∧,∨). The minimum in it is the quotient set
X/tc(sc(R)).
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Proof. (i) That BP is an order ideal follows from part (i) of Proposition 6, and that if R is transitive
then BP is an ideal in the partition lattice follows from parts (i) and (ii) of that proposition.
Suppose that R is transitive (so that sp(R) is an equivalence) and put Q = X/sp(R). Then
EQ = sp(R) ⊆ R, so that Q ∈ BP by Proposition 5.i. If P is any member of BP, then P 2 ⊆ R
for all P ∈ P, so that for each P ∈ P there exists Q ∈ Q such that P ⊆ Q (because each Q ∈ Q
is a maximal subset of X such that Q2 ⊆ R), hence P � Q. Thus, in the presumed conditions,
partition Q is the maximum member of the ideal BP. (ii) That CP is a filter in the partition lattice
follows from parts (iii) and (iv) of Proposition 6. Put Q = X/tc(sc(R)). For all Q 6= Q′ ∈ Q,
(Q×Q′)∩R ⊆ (Q×Q′)∩tc(sc(R)) = ∅, so that R(Q) ⊆ Q, which means Q ∈ CP by Proposition 1.ii
and Definition 2. Consider any P ∈ CP and suppose (to reach a contradiction) not Q � P, which
means that there are Q ∈ Q and k ≥ 2 distinct blocks P1, . . . , Pk in P such that Q ⊆ P1 ∪ · · · ∪Pk

and Q ∩ Ph 6= ∅ for all h = 1, . . . , k. Then take any x ∈ Q ∩ P1 and z ∈ Q ∩ Pk. Owing to the
definition of Q and because x, z ∈ Q, there is a sequence (y1, . . . , yn) of elements of Q such that
y1 = x, yn = z, and (yj , yj+1) ∈ R or (yj+1, yj) ∈ R for all j = 1, . . . , n−1. Let i be any index such
that yi ∈ P1 and yi+1 ∈ Ph with h 6= 1 (such an index does exist, as y1 ∈ P1 and yn ∈ Pk). Then
(yi, yi+1) ∈ R (which contradicts T C P1 implied by P ∈ CP) or (yi+1, yi) ∈ R (which contradicts
T C Ph also implied by P ∈ CP). These contradictory results imply that, if P ∈ CP then Q � P,
so that the partition Q is the minimum member of the filter CP.

We complete Proposition 7 with comments on two special cases. (i) If R is a transitive relation
(which is the case, for example, when T is a semigroup), then (X, R) is a quasi-ordered set and,
by referring to Figure 3 as a generic example, the partitions X/sp(R) and X/tc(sc(R)) forming,
respectively, the maximum of the ideal BP and the minimum of the filter CP are illustrated by the
subsets enclosed by, respectively, the solid line and the dashed line contours. Of course sp(R) ⊆
tc(sc(R)), so that the maximum partition in BP stands in the relation � with the minimum
partition in CP (and note that, no matter whether R is transitive or not, P � Q for all P ∈ BP
and Q ∈ CP, because of Proposition 6.vii). (ii) If R is a transitive and symmetric relation (which
is the case, for example, when T is a permutation group), then sp(R) = R = tc(sc(R)), so that the
same partition X/R constitutes the maximum of the ideal BP and the minimum of the filter CP.
If T is a permutation group, then X/R is the partition of X into T -orbits.

4. A HIERARCHY OF SETS OF TRANSFORMATIONS

So far we have referred to one set T of inner transformations, but the method we are presenting
involves a sequence of such sets as a standard for rating diversity.

DEFINITION 3. A transformation hierarchy on a basic set X is a sequence T = (T1, . . . , Tm) of
transformation sets on X such that the sequence (R1, . . . , Rm) of the adjacencies they determine
satisfies these conditions:

R1 = idX (the identity relation on X)
Rm = X2 (the universal relation on X)
Ri ⊂ Ri+1 for each i = 1, . . . ,m− 1 (the sequence is strictly increasing).

DEFINITION 4. Let T = (T1, . . . , Tm) be a transformation hierarchy on X, and consider any
A ⊆ X. The outer and, respectively, inner diversity rank of A relative to T (denoted by O(A) and
I(A)) are, respectively, the first number i in the sequence (1, 2, . . . ,m) such that Ti B A and the
last number i in that sequence such that Ti C A. In other words:

O(A) = min{i = 1, . . . ,m : Ti B A}
I(A) = max{i = 1, . . . ,m : Ti C A}.

When applying these definitions we use a hierarchy of sets of transformations (and invariance
under those transformations) as a criterion for rating purposes. In these generic respects there is a
resemblance between our method and theories using transformation sets for classification purposes
(for example, for classifying geometric or perceptual properties according to permutation groups
which leave them invariant, or for classifying measurement scales according to the automorphism
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groups of their numerical systems; [Klein, 1872/1893; Cassirer, 1944; Stevens, 1951; Luce, Krantz,
Suppes, Tversky, 1990, ch. 22; van Gool, Moons, Pauwels, Wagemans, 1994]). There are, however,
peculiarities of our method, in that the reference hierarchy may be formed of arbitrary sets of inner
transformations (not necessarily permutation groups), and the specific target is to rate the overall
diversity within sets of objects.

Conditions R1 = idX and Rm = X2 in Definition 3 ensure that T1 C A and Tm B A, so
that the ranks I(A) and O(A) do exist for all A ⊆ X. The members TO(A) and TI(A) of the
reference hierarchy constitute, respectively, the least upper bound and the greatest lower bound of
the diversity in set A. Parts (i) and (ii) of Proposition 3 imply that Ti B A for all i ≥ O(A), and
Ti C A for all i ≤ I(A). Both schemes O(A) ≤ I(A) and O(A) > I(A) are possible. The former
implies Ti B A and Ti C A for each i ∈ [O(A), I(A)] (the interval of integer numbers from O(A) to
I(A)), so that each transformation set Ti in the interval precisely characterizes the diversity in set
A. The latter implies that neither Ti B A nor Ti C A for each i ∈ [I(A) + 1, O(A)− 1].

We illustrate the above definitions by an example constructed on a set of simple pictures as
shown in Figure 4. Each of the pictures represents a tree with a bush nearby, and they differ
from one another in three variables: the form of the tree, the size of the tree, and the location
of the bush. These variables have, respectively, four, three, and three possible values, denoted by
integers from 1 to 4 as specified in the figure. Thus, the basic set X in this example is a set of
4 × 3 × 3 = 36 pictures, determined by freely combining the values of the three variables. Each
element x in the set may be coded as a triple of numbers (xf , xs, xb), which are the values taken
in it by the variables form, size, and bush. The triple recorded in each cell of Figure 4 is the code
for the picture shown in it.
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(3,1,1) (3,1,2) (3,1,3)

figure 4. A sample of pictures illustrating the meaning of the possible values of the
variables form, size, and bush.
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In addition, let us suppose that for each variable some permutations on its range are determined
a priori, to be interpreted as admissible substitution rules between the values of the variable.
Specifically, let us presume the following sets of permutations:

F = {f1 = 1234, f2 = 2143, f3 = 4321, f4 = 3412}
S = {s1 = 123, s2 = 213, s3 = 132, s4 = 321}
B = {b1 = 123, b2 = 321, b3 = 231, b4 = 312}.

For example, f2 = 2143, s4 = 321, and b3 = 231 mean the substitution rules (1 → 2, 2 → 1, 3 →
4, 4 → 3), (1 → 3, 2 → 2, 3 → 1), and (1 → 2, 2 → 3, 3 → 1) acting within the ranges of
the variables form, size, and bush, respectively. In these conditions, a transformation tijk acting
within the basic set X of 36 pictures may be defined by combining the transformations fi from
F , sj from S, and bk from B. For example, t243 is the global transformation on X combining
the local transformations f2, s4, and b3, so that t243((1, 1, 1)) = (f2(1), s4(1), b3(1)) = (2, 3, 2),
t243((1, 1, 2)) = (f2(1), s4(1), b3(2)) = (2, 3, 3), and so on.

The reference transformation sets (on X) we presume in this example are the following:

T1 = {f1} × {s1} × {b1} (2)
T2 = {f1} × {s1} × {b1, b2}
T3 = {f1} × {s1, s2} × {b1, b2}
T4 = {f1, f2} × {s1, s2} × {b1, b2}
T5 = {f1, f2} × {s1, s2} × {b1, b2, b3, b4}
T6 = {f1, f2} × {s1, s2, s3} × {b1, b2, b3, b4}
T7 = {f1, f2, f3} × {s1, s2, s3} × {b1, b2, b3, b4}
T8 = {f1, f2, f3} × {s1, s2, s3, s4} × {b1, b2, b3, b4}
T9 = {f1, f2, f3, f4} × {s1, s2, s3, s4} × {b1, b2, b3, b4}.

For example, T4 is a set of 2×2×2 = 8 inner transformations on X, i.e., all transformations which
may be constructed by combining one of {f1, f2} with one of {s1, s2} and one of {b1, b2} as stated
above. The system T = (T1, . . . , T9) thus defined is an increasing monotone sequence of sets of
inner transformations of the basic set X, and each set Th in the sequence collectively represents
a similarity relation within the basic set X, a relation which is more inclusive or “permissive” the
more advanced is the place of Th in the sequence. An assumption we made in constructing the
sequence is that a difference in the location of the bush (third variable) is less important than a
difference in size (second variable), which in turn is less important than a difference in form (first
variable). It is easily seen that sequence T = (T1, . . . , T9) has the properties required by Definition
3, so that it may serve as a transformation hierarchy in rating diversity.

Having established this background, let us now consider any subset A of X, such as the sample
of 8 pictures represented in Figure 5 and specified by these codes:

A = {(1, 1, 1), (1, 1, 3), (1, 2, 1), (1, 2, 3), (2, 1, 1), (2, 1, 3), (2, 2, 1), (2, 2, 3)}.

Through detailed examination it is seen that the transformation set T4 is both the largest member
of the hierarchy T such that T4 C A (a step higher in the hierarchy is not possible, because, for
example, t114 is in T5, (1, 1, 3) is in A, but t114((1, 1, 3)) = (1, 1, 2) is not in A), and the smallest
member of the same hierarchy such that T4 BA (a step lower is not possible, because, for example,
(1, 1, 1) and (2, 1, 1) are both in A but there is no tijk in T3 such that (2, 1, 1) = tijk((1, 1, 1))).
Thus, according to Definition 4, number 4 is the inner I(A) and outer O(A) diversity rank of the
object set A, as rated by referring to the hierarchy T of transformation sets. The following is
another sample of 8 items from the same basic set:

B = {(1, 1, 1), (1, 1, 3), (1, 2, 1), (1, 2, 3), (4, 1, 1), (4, 1, 3), (4, 2, 1), (4, 2, 3)}.

Applying the same procedure, we can see that T3 is the largest member of the hierarchy T such
that T3 CB, and T7 is the smallest member such that T7 BB, so that the inner rank I(B) = 3 and
the outer rank O(B) = 7 are different in this case.

We resume the general discussion with a definition concerning partitions.
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(1,1,1) (1,1,3) (1,2,1) (1,2,3)

(2,1,1) (2,1,3) (2,2,1) (2,2,3)

figure 5. A sample of 8 pictures (trees-with-bush) to be rated in overall diversity.

DEFINITION 5. Let T = (T1, . . . , Tm) be a transformation hierarchy on X, and P a partition
of X. The outer and, respectively, inner diversity rank of P relative to T (denoted by O(P) and
I(P)) are, respectively, the first number i in the sequence (1, 2, . . . ,m) such that Ti B P and the
last number i in that sequence such that Ti C P.

Supposing that P = {P1, . . . , Pn} and using Definition 2, the following equalities are obvious:

O(P) = max(O(P1), . . . , O(Pn))
I(P) = min(I(P1), . . . , I(Pn)).

Owing to the third condition in Definition 3, the scheme O(P) < I(P) is impossible for partitions
(actually, if O(P) < I(P), then there would exist O(P) ≤ i < j ≤ I(P) such that Ti B P, Ti C P,
Tj B P, and Tj C P, and because of Proposition 5 this would imply that Ri = EP = Rj , which
contradicts the condition Ri ⊂ Rj). Thus I(P) ≤ O(P) for each partition P of X. The equality
I(P) = O(P) is possible, and implies that RI(P) is an equivalence (RI(P) = EP).

The next proposition collects a few simple properties of diversity ranks referring to subsets or
partitions of X.

PROPOSITION 8. Let T = (T1, . . . , Tm) be a transformation hierarchy on X, O and I the diversity
ranks (relative to T ), A any subset of X, and P and Q any partitions of X. Then these implications
hold true:
(i) if P � Q, then I(P) ≤ I(Q) and O(P) ≤ O(Q);
(ii) if O(P) ≤ I(A), then there are P1, . . . , Pk ∈ P such that A = P1 ∪ · · · ∪ Pk;
(iii) if O(A) ≤ I(P), then there is a P ∈ P such that A ⊆ P ;
(iv) if O(P) ≤ I(Q), then P � Q.

Proof. Part (i) is implied by parts (i) and (iii) of Proposition 6. If O(P) ≤ I(A), then there is
a Ti ∈ T such that Ti B P and Ti C A, so that part (ii) is implied by part (v) of Proposition 6.
Similarly, parts (iii) and (iv) are separately implied by parts (vi) and (vii) of that proposition.

Implications (ii)-(iv) which have been proved in this way deserve notice as they show that
knowledge of certain relations in diversity ranks between suitable items (information of ordinal
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type) enables us to infer set-theoretic relations between those items (information of structural
type). Also note that, if P and Q are partitions of X such that P � Q, then I(P) ≤ I(Q) and
O(P) ≤ O(Q) owing to Proposition 8.i; furthermore, as I(P) ≤ O(P) and I(Q) ≤ O(Q) in general,
then either one of these schemes must be true:

I(P) ≤ O(P) ≤ I(Q) ≤ O(Q) or I(P) ≤ I(Q) < O(P) ≤ O(Q).

We remark that not only the first, but also the second of them is compatible with P � Q. To show
this, let us suppose that X = {a, b, c, d, e} is the basic set, Ti and Ti+1 are two consecutive levels
of a transformation hierarchy acting on it, the adjacencies Ri and Ri+1 determined by them are
equivalences, and X/Ri = {{a, b}, {c}, {d}, {e}} and X/Ri+1 = {{a, b}, {c, d, e}} are the quotient
sets modulo those equivalences. Further, consider the partitions P = {{a}, {b}, {c}, {d, e}} and
Q = {{a, b, c}, {d, e}} of X. Then P ≺ Q, Ti+1 B P, not Ti B P, Ti C Q, and not Ti+1 C Q (by
Proposition 5), so that I(Q) = i < i+1 = O(P) (by Definition 5). Scheme I(P) < I(Q) < O(Q) <
O(P) is itself feasible, but implies that neither P � Q nor Q � P (owing to Proposition 8.i).

5. INDIRECT ACTION OF TRANSFORMATIONS

Addressing the problem of rating diversity in a transformational perspective makes it possible to
use a transformation hierarchy T = (T1, . . . , Tm) for rating not only subsets of the domain X on
which the transformations in T directly act, but also subsets of some other domain X∗, provided
that there is a systematic relationship between X and X∗. This possibility rests on the process
of “transformation induction”, which means that in suitable conditions a transformation t acting
within X uniquely determines a transformation t∗ acting within X∗ 8. In the introduction we
mentioned “actions of permutation groups” as a related standard concept of algebra. In footnote
3 we remarked that this possibility is the very reason why the adjacency R determined by a
transformation set T cannot replace T everywhere in our analysis (in general, the transformation
set T ∗ induced by T cannot be recovered from R).

In principle, there are several methods of transformation induction, as there are several kinds
of relationship that can serve as a bridge for translating a transformation on a domain X into a
transformation on another domain X∗. Here we discuss induction by substitution 9. As a basic
example, let us suppose that X∗ = Xn for a fixed positive integer n, that is, X∗ is the set of all
“words” of length n in the “alphabet” X. If t is any inner transformation on X, then an inner
transformation t∗ on X∗ becomes determined as follows:

t∗(x∗) = (t(x1), . . . , t(xn)), for all x∗ = (x1, . . . , xn) ∈ X∗.

Thus, transformation t∗ changes each n-tuple x∗ = (x1, . . . , xn) ∈ X∗ into an n-tuple t∗(x∗) =
(t(x1), . . . , t(xn)) ∈ X∗ by substituting each component xj of x∗ with the component t(xj) specified
by t. More generally, if T is a set of inner transformations on X (T ⊆ XX), then T ∗ = {t∗ : t ∈ T}
is a set of inner transformations on X∗ (T ∗ ⊆ X∗X∗

), and the latter preserves some properties of
the former. For example, if T is a semigroup, then T ∗ is also a semigroup, and is homomorphic to
T .

In these conditions, for any subset A∗ of X∗ it appears proper to define the relations B and C

8We are using “induction” in a sense similar to that used by Tarski, Givant [1987, p. 57] in
discussing “logical objects”.

9A different kind of transformation induction (by composition) may be considered when a
function f from X to X∗ is available. Then for any t ∈ XX the following set of pairs can be
determined:

t∗ = {(x∗, y∗) ∈ X∗2 : x∗ = f(x) and y∗ = f(t(x)) for some x ∈ X}.

If f and t are such that f(x) = f(y) implies f(t(x)) = f(t(y)) for all x, y ∈ X, then t∗ is a function
(i.e., t∗ ∈ X∗X∗

). In particular, if f is a bijective function, then t∗ has the form f ◦ t ◦ f−1 of a
“conjugate” of the transformation t.
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as follows:

T B A∗ iff T ∗ B A∗

T C A∗ iff T ∗ C A∗.

In other words, T B A∗ (T represents an upper bound of the diversity in A∗) means that for all
x∗, y∗ ∈ A∗ a transformation t ∈ T exists which is able to change x∗ into y∗ (so that y∗ = t∗(x∗)),
whereas T C A∗ (T represents a lower bound of the diversity in A∗) means that, for all x∗ ∈ A∗

and t ∈ T , the result t∗(x∗) is itself in A∗. Other concepts discussed in the previous sections can
also be extended in this manner – in particular, the diversity ranks O(A∗) and I(A∗) of a subset
of X∗, as compared with a transformation hierarchy T on X. Note that this way of adapting
the concepts makes sense only if the following assumption is accepted: each inner transformation
in T expresses a similarity not only when individual elements of X are compared, but also when
combinations of such elements are compared – i.e., for all x∗ = (x1, . . . , xn), y∗ = (y1, . . . , yn) in
X∗, the availability of a t ∈ T such that (y1 = t(x1) and . . . and yn = t(xn)) signifies that y∗ is
somehow similar or substitutable to x∗.

We illustrate this part of the method by an example which continues that presented in Section
4. Suppose that X∗ is the set of all fourfold rows of trees-with-bush of the kind shown in Figure
4 (in set-theoretic terms, X∗ is the Cartesian power X4 of the basic set X of 36 trees-with-bush).
The following expression specifies a sample of 6 such rows of trees, which are depicted in Figure 6:

A∗ = {a∗1 = ((3, 1, 1), (4, 1, 2), (2, 2, 3), (4, 1, 2)), a∗2 = ((4, 1, 1), (3, 1, 2), (1, 2, 3), (3, 1, 2)),
a∗3 = ((3, 2, 1), (4, 2, 2), (2, 1, 3), (4, 2, 2)), a∗4 = ((3, 1, 3), (4, 1, 2), (2, 2, 1), (4, 1, 2)),
a∗5 = ((4, 1, 3), (3, 1, 2), (1, 2, 1), (3, 1, 2)), a∗6 = ((3, 2, 3), (4, 2, 2), (2, 1, 1), (4, 2, 2))}.

Through detailed examination it is seen that T2 is the largest member of hierarchy (2) such
that T2 C A∗ (for example, t112 ∈ T2, t122 ∈ T3 \ T2, t112(a∗1) = a∗4 ∈ A∗, but t122(a∗2) =
((4, 2, 3), (3, 2, 2), (1, 1, 1), (3, 2, 2)) /∈ A∗), and T4 is the smallest member of the same hierarchy
such that T4 B A∗ (for example, a∗2 = t211(a∗1) with t211 ∈ T4, but there is no tijk ∈ T3 such that
a∗2 = tijk(a∗1)). Thus, I(A∗) = 2 and O(A∗) = 4 are the inner and outer ranks of diversity of
the set A∗ = {a∗1, ..., a∗6} of composite objects, when it is rated by referring to hierarchy (2) of
transformation sets on the set X of primitive objects.

6. CONCLUDING COMMENTS

A peculiar characteristic of the method we discussed is the kind of output it produces: some set
A of objects is considered and (in suitable conditions) the method yields an ordinal evaluation of
the overall diversity within A. We believe that there may be situations of psychological research
in which this kind of output has scientific importance. For example, suppose that X is a set
of figural patterns related to one another by transformations of various kinds and/or degrees
(some patterns are derivable from one another by simple and small changes, others by substantial
and large changes, and there are also intermediate levels between these extremes). Also suppose
that in an experiment one such pattern x is fixed as the “standard stimulus” and several other
patterns from X are compared with x in separate trials. The task of the participant in a trial is
to judge whether the “comparison stimulus” y presented in the trial is or is not the same (with
tolerable perturbation) as the standard stimulus x (a same/different judgment task). Experiments
of this kind have actually been performed in studying “perceptual shape equivalence” (e.g. [Niall,
Macnamara, 1990; Wagemans, 1993; Wagemans, van Gool, Lamote, Foster, 2000]). The net result
of such an experiment (when run on one participant) would be a subset A of X, i.e., the set of
comparison stimuli y that received the response “same” when compared with the standard stimulus
x. In such a context it would be scientifically important to be able to evaluate the overall diversity
within set A, by referring to a hierarchy T = (T1, . . . , Tm) of sets of transformations acting within
the basic set X. That evaluation would represent (with approximation) the boundary between
the transformations that do not disrupt the figural identity of the standard pattern, and all other
transformations in the system.

In the introduction and elsewhere in this paper we suggested that our method amounts to a
variation on the classic theme of using permutation groups for classification purposes. Consistent
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a∗1 = ((3, 1, 1), (4, 1, 2), (2, 2, 3), (4, 1, 2))

a∗2 = ((4, 1, 1), (3, 1, 2), (1, 2, 3), (3, 1, 2))

a∗3 = ((3, 2, 1), (4, 2, 2), (2, 1, 3), (4, 2, 2))

a∗4 = ((3, 1, 3), (4, 1, 2), (2, 2, 1), (4, 1, 2))

a∗5 = ((4, 1, 3), (3, 1, 2), (1, 2, 1), (3, 1, 2))

a∗6 = ((3, 2, 3), (4, 2, 2), (2, 1, 1), (4, 2, 2))

figure 6. A sample of 6 fourfold rows of trees-with-bush.

with standard versions of this theme (e.g., in measurement theory) we referred to sets of inner
transformations of a basic set X, interpreted them as substitution rules, and judged the diversity
of any subset of X by comparing it with the diversity expressible by those transformations. The
main difference in the premises of our approach is that the transformation sets may be any sets of
inner transformations of X, and not necessarily permutation groups on X. This choice allows a freer
context, and we stated a reason for it in the Introduction, when we noted the difference between
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similarity and equivalence relations. Of course, a greater freedom has a cost. In standard versions
of the theme the transformation sets are permutation groups, and typically these are standard and
well-known groups which constitute a kind of absolute reference system (e.g., in distinguishing the
main types of measurement scales reference is made to the sets of bijective, increasing monotone,
increasing linear, and dilation transformations on the real axis, and these are standard and well-
known permutation groups on the axis). In contrast, when applying the suggested method to a
specific empirical problem we may need to construct the intended transformation sets ad hoc for
that problem (and, together with the object set A, these constitute the input of the method).
When X is a small set, such a construction is feasible, as illustrated by the example in Section 4.

As there are several methods of evaluating similarities and dissimilarities in a psychological
context, the following question is naturally raised: are there any special advantages of the trans-
formational approach to the problem? This question concerns not only the modified version of
the approach discussed in this paper, but also the standard version that only involves permutation
groups. We answer the question by indicating two characteristics of the transformational approach.
One is its set-theoretic character, which means that the essential basis of the procedure is a hier-
archy of sets of inner transformations of a basic set, each transformation being interpreted as a
substitution rule in that set. In a sense, the set-theoretic character is a guarantee of generality,
because transformations as substitution rules may in principle be defined within any kind of basic
set, irrespective of the quality or complexity of the items constituting it. For example, the method
could be applied for rating the overall diversity within a set of shapes, or combinations of shapes,
or pictures of faces, etc., once a suitable reference system of inner transformations has been defined
on the relevant basic set. The other characteristic relates to the indirect action of inner transforma-
tions, which means that a transformation acting within a set may induce a transformation acting
within another set (if the latter set is systematically related to the former), so that the original
transformation also acts within this other set in a mediated way. In our analysis we illustrated
this capacity on the set of partitions of a basic set (Section 3) and on a set of objects constructed
by combining elements of a basic set (Section 5). The stated property enables the same system of
inner transformations of a basic set to serve as a common criterion for rating the diversity not only
within subsets of that basic set, but also within subsets of other domains connected with it. On
this account that property may be counted as an advantage of the transformational approach10.
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