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THE APPROVAL-VOTING POLYTOPE:
COMBINATORIAL INTERPRETATION OF THE FACETS

Jean-Paul DOIGNON!, Samuel FIORINI?

RESUME — Le polytope du vote par approbation : interprétation combinatoire des facettes.
Doignon et Fiorini (2003) déterminent toutes les facettes du polytope du vote approbatoire. Ils
livrent ainsi une caractérisation d’un modéle probabiliste dii & Falmagne et Regenwetter (1996) : le
modéle sous indépendance de taille pour le vote approbatoire. Le présent texte est un complément.
1l donne d’abord une preuve alternative du résultat central, plus directe mais aussi constructive.
L’interprétation combinatoire des facettes du polytope du vote approbatoire est ensuite étudiée.
Enfin, une description linéaire du polytope est obtenue dans le cas ot le nombre d’alternatives vaut
6.

MOTS CLES — Polytope du vote approbatoire, Facette, Flot dans un réseau, Sous-ensemble
stable d’un graphe

SUMMARY — Doignon and Fiorini (2003) determine all facets of the approval-voting polytope,
thus offering a characterization of the size-independent model for approval voting of Falmagne
and Regenwetter (1996). The present paper is a follow-up. It first provides an alternate proof of
the basic result, which is more direct and at the same time constructive. Then, the combinatorial
interpretation of the facets of the approval-voting polytope is further investigated. Finally, we derive
a linear description of the polytope in case the number of alternatives equals 6.

KEYWORDS - Approval-voting polytope, Facet, Network flow, Stable set in a graph

1. INTRODUCTION

In order to give a concrete approach to our subject, we start with an example in
which there are only three alternatives a, b and c; the general theory will handle a
general, finite set S of n alternatives. Consider the following 0/1-matrix M having
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one row per subset of S = {a, b, ¢}, and one column per ranking of S:

(a,b,c) (a,c,b) (b,a,c) (b,c,a) {c,a,b) (c,b,a)

%] 1 1 1 1 1 1
{a} 1 1 0 0 0 0
(b} 0 0 1 1 0 0
{c} 0 0 0 0 1 1
{a, b} 1 0 1 0 0 0
{a,c} 0 1 0 0 1 0
(b, ¢} 0 0 0 1 0 1
S 1 1 1 1 1 1

The entry Mx . equals 1 if the ranking 7 of S’ places the alternatives of X before the
other alternatives from S, and equals 0 otherwise. The convex hull of the column
vectors of M forms a 0/1-polytope, the so-called approval-voting polytope P3,,. We
will investigate the facets of the polytopes Pjy, .

The question of finding all (or many) facets of some definite 0/1-polytope repeat-
edly appears in combinatorial optimization. It is usually motivated by the applica-
tion of linear programming to an optimization problem. The problem of determining
all facets of the approval-voting polytopes PJy, stems instead from mathematical psy-
chology: as shown in Doignon and Regenwetter [8], the complete collection of facets
entails a characterization of the Falmagne and Regenwetter [9] model of ‘approval
voting’. The latter term refers to a voting procedure according to which each voter
announces the set of alternatives she/he approves of. This procedure is advocated
by e.g. Brams and Fishburn [1] as being less sensitive to vote manipulations. Several
data were collected for such elections performed in various scientific societies, and
are subject to statistical studies which test possible probabilistic models (see e.g.
Regenwetter and Grofman [16]). The size-independent model is central among these
probabilistic models (see also Doignon, Peke¢ and Regenwetter [7]).

In a sense, the problem of finding all facets of P}, was solved by Doignon and
Fiorini [6]: they exhibit a one-to-one correspondence between the facets and certain
antichains of the power set of S. The present work is to be seen as a complement
to this paper. First, an alternate proof of the basic result is built on the Max Flow
Min Cut Theorem; it is thus a proof which can be easily turned into an algorithm
for expressing any point in P}, as a convex combination of the vertices. Second,
the combinatorial interpretation of the facets is further investigated in terms of
(hyper)graph theory. As a byproduct, we derive in the final section a list of all
facets of P};, when n < 6. In particular, we confirm by theoretical arguments the
results produced for n < 5 by the Porta software [3] and reported in Doignon and
Regenwetter [8].

2. A LINEAR DESCRIPTION OF THE APPROVAL-VOTING POLYTOPE

Given a set S of n alternatives, with n > 2, we denote by P(S) the power set of S,
and by P(S, k) the collection of all k-sets contained in S, for 0 < k < n. Moreover,
we let IT denote the collection of all rankings (or linear orderings) of S, and IIx the



collection of all rankings starting with the subset X of S (these are the rankings in
which the elements of X precede those from S\ X).

We create a 0/1-matrix M having one row per subset X of S, and one column
per ranking 7 of S, by setting

MX7r

’

o { 1 ifﬂ'enx, (1)

0 otherwise.

The approval voting polytope PY,, is the convex hull of the set of column vectors
of M. This polytope lies in a real space of dimension 2" having one coordinate
per subset of S, but its affine dimension equals only 2" — n — 1 (see Doignon and
Regenwetter [8]).

To describe the approval voting polytope PJ,, by a system of linear equations and
inequalities, we need some further notions. In P(S) partially ordered by inclusion,
an antichain A is a collection A of subsets of S such that for every pair of distinct
sets in A, none is included in the other. For each subset A of P(S), we set z(A) =
Y xeaTx- Itiseasily seen that all vertices of P}y satisfy the following (in)equalities:

z(P(S,k)) = 1, fork=0,1,...,n; (2)
zy > 0, forY e P(S), (3)
z(A) < 1, for any antichain A of P(S). (4)

These (in)equalities are thus satisfied by the whole polytope P%,,. According to
Doignon and Fiorini [6], they completely describe the polytope.

PROPOSITION 1. The approval-voting polytope Py, consists exactly of the solutions
to the (redundant) system of (in)equalities formed by Equations (2), (3), and (4).

The proof of Proposition 1 given in Doignon and Fiorini [6] is based on two
classical results: first, a polyhedral characterization of perfect graphs, due to Fulk-
erson [10, 11, 12], Lovéasz [14] and Chvatal [4] and second, Dilworth’s Theorem [5]
on chain coverings of posets. We now present an alternate proof, which can be
summarized as follows. Let x be a vector satisfying Inequalities (2), (3), and (4).
Replacing each element Y of the power set of S with two successive elements Y~
and Y, we get a network with source @~ and sink X*. Our assumption implies
that the minimum of all cut capacities equals 1. The Max Flow Min Cut Theorem
delivers a flow with value 1. We then conclude either by applying the Flow Decom-
position Theorem, or by giving an explicit expression of z as a convex combination
of the polytope vertices.

We write X C Y when X is covered by Y, that is X C Y and | X|+1=|Y|.

Proof. As mentioned above, the approval-voting polytope is easily seen to satisfy
(In)equalities (2)-(4). We now prove conversely that any vector x with real compo-
nents indexed by P(S) and satisfying these (in)equalities is a convex combination
of the columns of the matrix M. We will derive the coefficients of a desired convex
combination from quantities f(X,Y’) defined for all pairs (X,Y) of subsets of S



Figure 1. The digraph G from the proof of Proposition 1, when n = 5.

with X C Y. The quantities f(X,Y’) will be obtained as flow values on a certain
digraph G (see Korte and Vygen [13] for terminology).

We now build the digraph G' by doubling the elements of the power set and
defining appropriate arcs e with capacities v(e). An illustration of such a digraph,
in case n = 5, is given in Figure 1. The digraph G has two vertices Y~ and Y for
each subset Y of S, and two types of arcs. First, it has an arc (Y—,Y ™) for each
Y € P(S), with capacity v(Y~,Y™) = zy. Second, for each pair (X,Y) of subsets of
S with X C Y, the digraph G has an arc (X*,Y ™) with capacity v(X*,Y ") = cc.
We turn G into a network by selecting @~ as the source, and ST as the sink. To
apply the Max Flow Min Cut Theorem, we proceed to show that the minimum
value of a (@, S™)-cut of the network (G,v, @, S™) equals 1. From now on, we
will always abbreviate ‘(@~, ST)-cut of G’ into ‘cut’.

Notice that the cut value v(6* (")) equals 1 in case I' = {Y~ € G||Y| =k +
1JU{X~, X" € G||X| <k} for some k = —1,0, ..., n— 1 because then 67 (') =
{(Y—,Y")|Y € P(S,k + 1)} and Equation (2) applies.

Take now any cut 67 (T"). If §7(T") contains some arc of the type (X, Y ™),
the cut value 67(I") is infinite. We may thus assume that 67(I") contains only
arcs of the type (Y—,Y"). Let I'y = {Y € P(S,0)|Y~ € Tand Y ¢ I'}, and
k = —1 4+ max{¢|, # @}. Notice that Yt € I' implies |Y| < k. Moreover, in



case P(S,k + 1) = I'yy1, we know v(61(I')) > 1. In the other case, we will build
another cut I with v(6+(I")) < v(67(T)) and with a lesser value of k. By decreasing
recurrence on k, we can then conclude that any cut has value at least 1.

Define the following subsets of P(S) (see Figure 2 for a sketch):

Awr = {Y€P(S,k+1)|Y ¢T},
Bii = {YePS,k+1)|Y™ €T},
Ay = {XeP(Sk)|Y,YteTl}.

Figure 2. A sketch of subsets Ag41, Brt+1 and Ay, from the proof of Proposition 1.

As the cut value is not infinite, Ag U Agy1 is an antichain. Our assumption z (A U
Ai11) <1 together with Equation (2) implies 2(Ag) < x(Bg+1). From I', construct
a new cut [V by setting

' = r \ (Fk—|—1 U {X+|X S .Ak})

This cut I has a value v(6%(I")) not larger than v(6*(I")), and moreover no set
Y with |Y| = k + 1 satisfies Y~ € I" and Y ¢ I'. We have thus shown that the
minimum value of a cut of the network G equals 1.

Consequently, there exists a flow f on G from @~ to ST with value 1. Notice
that this flow necessarily saturates all arcs of the first type, that is f(Y~,Y*) =
v(Y~,Y ™). The proof can now be completed by applying the Flow Decomposition
Theorem (see e.g. [13], page 157). Any path in G from the source @~ to the sink S*
univocally corresponds to a linear ordering of S; moreover, G' has no circuit. Hence,
there exists for each 7 in IT a nonnegative real number A(7) in such a way that

S @) = 1 (5)
well
(remember that 1 is the flow value) and
Yo M) = ax, VX eP(S) (6)
wellx
(because the arc (X, X 1) is saturated). The latter equation amounts to
Tx = Z MX,7r /\(7‘-)’ (7)
well

so that z is a convex combination of the columns of M. This completes the proof. [



Notice that the following explicit value can be given for the coefficients A(r)
appearing in the above proof. Seeing any 7 from II as a chain of n + 1 subsets

g C {r(1)} C {x(1),7(2)} C ... € {x(1),w(2),...,7(n)},

we write X; = {n(1),7(2),...,7(i)} and then set

n—1 _
YL — 7 i+1
() g EE—
with the convention A(7) = 0 if some denominator xx, vanishes. As the flow satisfies
for all A in P(S,k) and B in P(S,k + 1)

S {FAY)Y €P(S,k+1),ACY} = a4, (8)
Y {f(X,B)|X €P(S,k),X C B} = zp, (9)

it can be directly checked that Equations (5) and (6) hold. Thus the proof can also
be completed without calling the Flow Decomposition Theorem.

3. THE FACETS OF THE APPROVAL-VOTING POLYTOPE

The system in Proposition 1 is generally redundant. Doignon and Fiorini [6] provide
an irredundant system. As for any polytope, the inequalities in such a system are ex-
actly the facet-defining inequalities for the approval voting polytope P}, . To list the
facet-defining inequalities of P}, we need more terminology about antichains. Two
distinct elements A, B of P(S, k) are adjacent when the following four equivalent
conditions hold:

A~B <<= dXeP(S,k—-1):XCAand X CB
< Y ePS,k+1):ACYand BCY
<< |ANB|=k-1
< JAUB|=k+1.

The graph (P(S, k), ~) is the Johnson graph J(S, k) (as for instance in [2]).

A bilayer antichain with parameter k is an antichain in P(S) of the form Ay UA 4
with @ # A, C P(S,k), and @ # Ay1 C P(S,k+1) for some k£ with 0 < k <n—1,
which moreover satisfies
C1) the graph induced on Ay by J(S, k) is connected,
C2) the graph induced on Ag,; by J(S, &k + 1) is connected,
Ay ={X € P(S,k)|VY € Ay11: X ¢ Y} and

A1 ={Z € P(S,k+1)|NT € A, : T ¢ Z).

C3

(
(
(
(C4

)
)
)
)

Here is the main result of Doignon and Fiorini [6].



PROPOSITION 2. The approval-voting polytope Py, consists exactly of the solutions
to the following irredundant system of (in)equalities:

z(P(S,k)) = 1, fork=0,1,...,m; (10)
zy > 0, forY eP(S)\{g,S}, (11)
z(A) < 1, for any bilayer antichain A. (12)

It is possible to strengthen the arguments from previous section in order to show
that (In)equalities (10)-(12) still characterize Py,. But proving that none of these
inequalities is redundant requires another proof. Thus the simplest way to establish
Proposition 2 is to derive it from Proposition 1 along the combinatorial approach
followed in [6].

An open problem is to better understand the bilayer antichains: for instance,
how many are there? how to algorithmically produce them? We proceed to give
some (partial) answers.

4. COMBINATORIAL INTERPRETATION OF THE FACETS

As before, let |S| =n and Ay U Ag;1 be a bilayer antichain with parameter £.

We consider first the case £ = 1. Set then T" = {i € S|{i} ¢ A}. By
Condition (C4), Ay consists exactly of all unordered pairs of elements from 7". Con-
sequently, the bilayer antichains with parameter £ = 1 bijectively correspond to
subsets T' of S with size 2, 3, ..., n — 1; we need to assume n > 3. There are in all
2" — (n + 2) of them.

Next, we study bilayer antichains with parameter 2. Here, A, can be seen
as the set of edges of a graph on S; this graph will be denoted as ® = (S, .As).
Condition (C4) exactly says that Aj consists of all stable subsets of ® with size 3,
and does not impose any restriction on the graph ®. In turn, Condition (C3) states
that any pair of elements of S which do not form an edge of ® is included in at least
one stable subset of size 3. Call a graph G = (S, E) almost connected if exactly one
of its connected components has more than one vertex. Condition (C1) amounts
to the almost connectedness of ® (notice in passing that (As, ~) is the line graph
of ®). Unfortunately, translating in a useful way Condition (C2) seems to be more
difficult.

A graph G = (S, E) with vertex set S is facet-defining when A, U Aj3 is a bilayer
antichain (with parameter k = 2), where

A, = E, (13)
As = {Y eP(S)||Y|=3andY is a stable subset of G}. (14)

As we are not able to fully characterize the facet-defining graphs, we collect a bunch
of conditions, either necessary or sufficient.

PROPOSITION 3. Let G = (S, E) be a (simple) graph with n = |S| > 3.

(i) Assume G has at least two isolated vertices. Then G is facet-defining iff G is
almost connected.



(i) Assume G has exactly one isolated vertex v. Then G is facet-defining iff G
is almost connected and moreover the complement of the graph G \ {v} is
connected.

(iii) Assume now that G has no isolated vertex. If G is facet-defining, then G
18 connected without being a complete graph, any two nonadjacent vertices in
G are contained in at least one stable subset of size 3 of G and the comple-
ment graph G is almost connected. Conversely, if G satisfies the three latter
conditions and moreover G has no induced Ky + Cy, then G is facet-defining.

Proof. We know that Condition (C4) always holds, because of Equation (14), and
that Condition (C1) is equivalent to G being almost connected.

(i) If G has isolated vertices v and w, Condition (C3) is true. Moreover, any
stable subset of size 3 is easily seen to be at distance at most 3 in the graph (A3, ~)
from any stable subset of the form {v,w,u}. There follows the connectedness of
(A3, ~), that is Condition (C2).

(ii) Assume G has one isolated vertex v. Let G be facet-defining. By Condi-
tion (C1), the graph G \ {v} is connected and by Conditions (C2) and (C3) its
complement is connected. The converse is also straightforward.

(iii) Finally, assume G has no isolated vertex. The proof of the first assertion is
routine. To prove the second assertion, there remains to establish Condition (C2).
Let {vy, v9,v3} and {wy, we, w3} be two elements of A3. By our assumptions, there
is a shortest path wug, u1, ..., U, from v; to w; in G, and any two successive vertices
u;, u;11 along this path belong to some element {u;, u;11,t;} of As. If t; = u;5 and
ti+1 = U;, W€ have {’U/i, Uit1, tz} = {U'H—la Ui+2, ti_|_1}. If exactly one of the two equali—
ties tz = Ui+1 and ti_|_1 = U; hOldS, then {’U/i, Ui+1, tz} ~ {Ui_H, Uit2, ti+1}. Assume now
ti # iy and tipg # v I =140, we again have {u;, wiv1, 6} ~ {Uit1, Yite, tiv1 }-
Finally, if ¢; # ;41 (the generic case), {u;, u;y1,t;} and {u;y1, uire,tiv1} are at dis-
tance 2 in (Ajg, ~) except if the graph induced by G on {u;, u;i1,t;, Uit tiv1} is
isomorphic to K; + C4. As the latter cannot occur, we deduce the existence of a
path from {vy, ve, v3} to {wy, we, w3} in (Asz, ~). O

Among the graphs G with at least one isolated vertex, we thus have characterized
those which are facet-defining. Notice also that a facet-defining graph G on n vertices
cannot have a vertex of degree n — 2; moreover, if G' has a vertex v of degree n — 3,
the two vertices nonadjacent to v must be nonadjacent. Moreover, facet-defining
trees can be easily characterized.

PROPOSITION 4. Let G be a tree on n wvertices, with n > 3. Then G is facet-
defining iff G is not isomorphic to any of the trees depicted in Figure 3.

Proof. Condition (C1) holds for any tree, and Condition (C4) always holds. Condi-
tion (C3) reads: any two nonadjacent vertices a and b belong to a common stable
set of size 3. If some vertices a, b do not satisfy this requirement, then any other
vertex of G is adjacent to a or b. It is then easily seen that Condition (C3) holds
for a tree G iff G is not isomorphic to any of the trees appearing in Figure 3. This
establishes the implication from left to right. The converse follows now directly from
the very last assertion in Proposition 3. U



Figure 3. The trees mentioned in Proposition 4. Here, k > 0,1 > 0 with & +1 = n — 3 on the left
and k 4+ 1 =n — 4 on the right.

Bilayer antichains Ay U Ag,; with parameter & > 2 can be combinatorially
interpreted as uniform hypergraphs (S, .Ax), with Ay, the collection of all stable
subsets of size k 4+ 1. We leave their study for later work.

5. THE CASES WITH FEW ALTERNATIVES

Relying on our previous results, we will now derive a minimum system of (in)equalities
for the approval-voting polytope when n < 6. In other words, we will list all facets,
which essentially means all bilayer antichains.

We first explain that in general we need only investigate the bilayer antichains
with parameter 2 < k£ < (n—1)/2. Indeed, bilayer antichains with £ = 1 were easily
listed (at the beginning of previous section). Moreover, the linear permutation
sending the point = onto the point y with yx = zg x for any X € P(S) stabilizes
P}, and thus induces an affine automorphism of Py, (cf. [8]). This automorphism
maps a facet corresponding to a bilayer antichain with parameter £ onto a facet
corresponding to a bilayer antichain with parameter n — k — 1.

Let us first consider the cases 2 < n < 5 (which are completely solved in Doignon
and Regenwetter [8] by using the Porta software [3]). For n = 2, the polytope
has only two vertices and is a segment. For n = 3, the bilayer antichains have
necessarily parameter £ = 1, and are thus known. Together with the 6 inequalities
from Equation (11), they deliver 9 facet-defining inequalities for P3,,. When n = 4,
we need only count the bilayer antichains with & = 1 (because those with & = 2
follow from them by applying an automorphism). There are 24—2 = 14 facets defined
by Inequalities (11), 2* — (4 + 2) = 10 facets coming from bilayer antichains with
parameter k£ = 1, and also 10 facets coming from bilayer antichains with parameter
k = 2. This gives a total of 34 facets for Py, as obtained in [8]. For n = 5, there
are 30 Inequalities (11). Moreover, we have 2° — (5+ 2) = 25 bilayer antichains with
parameter £ = 1, and the same number with £ = 3. Further work is necessary to
find the bilayer antichains with & = 2. Applying the previous section, we list all
facet-defining graphs with 5 vertices. The result of our search (up to isomorphism)
is given below, with graph designations taken from Read and Wilson [15].

(i) G20, G21, G23;
(i) G25;

(iii) G29, G34, G46.



Notice that each of these graphs can appear a certain number of times (equal to
5! divided by the number of its automorphisms). All counting done, we obtain 235
facets, exactly as in the output of Porta reported in [8].

We now turn to the case n = 6. Here again, only bilayer antichains with £ = 2
require thorough investigation, which rely on Propositions 3 and 4. The resulting
graphs (up to isomorphism) are the following ones:

(i) G54, G56, G57, G58, G59, G62, G63, GT1, G8E;
(ii) G65, G66, GT3, GT4, G75, GT6, G88, GIO;
(i) G77, G79, G80, G92, G94, G98, G111, G117, G133, G136, G161, G179, G201.

The summary of our computation is as follows: there are 62 Inequalities (11),
and the respective numbers of bilayer antichains equal 56 for £ = 1; 5,068 for k = 2;
5,068 for k = 3; and 56 for £ = 4. Summing up, we get:

PROPOSITION 5. For n =6, the approval-voting polytope has 10,310 facets.
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